Course outline, Fall 2008

(Scroll down for HTML version of the course outline)

Lab schedule

 

 

Week

 

Laboratory

 

September 1

 

No lab

 

September 8

 

Culture of embryonic neurons

 

September 15

 

Introduction to intracellular recording

 

September 22

 

Ionic basis of the resting potential

 

September 29

 

Giant axon recording: Earthworm nerve cord

 

October 6

 

Hodgkin-Huxley computer simulation

 

October 13

 

Fall break - no lab

 

October 20

 

Computer lab II: synaptic transmission

 

October 27

 

Crayfish neuromuscular junction I

 

November 3

 

Crayfish neuromuscular junction II

 

November 10

 

Sensory physiology: Crayfish stretch receptor

 

November 17

 

Single unit recording in the visual system

 

December 1

 

Practice for lab practical

 

December 8

 

Lab practicals

 

Course outline

Untitled Document

 DATE

 

CLASS

TEXT1

PAPERS

OPTIONAL

 ORGANIZATION AND DEVELOPMENT OF NERVOUS SYSTEMS

 Sept. 3

 

Nervous system organization & cell biology

1(3-9, 19-22)

 

1(9-19), FN3, FN4

5

 

Development: neurogenesis; migration

23(479-497)

(3)

FN15, 16, 17

 8

 

Axon outgrowth; synapse formation

23(497-512)

 

FN18, FN19

10

 

Cell death; trophic factors

23(512-523)

(4)

FN20, FN21 

12

 

Synapse elimination; denervation; regeneration

24(525-548)

 

 

 15

 

Neurogenesis in adult mammals

 

(15)+

 

[16

 

Optional evening review session]

 

 

 

 17

 

In-class exam, covers September 3 – 15

 

 

 

 ELECTRICAL SIGNALLING IN NEURONS

 

19

 

Ionic and electrical state of neurons

4(all)

 

2(all)  

 22

 

Membrane potentials

5(all)

 

FN6

 24

 

Ionic basis of the action potential

6(91-98)

 

H2

26

 

Voltage clamp analysis

6(98-103)

 

 

[26

 

Problem set 1 due]

 

 

 

 29

 

Hodgkin-Huxley model

 

(10)

 

Oct. 1

 

Neurons as conductors

7(113-127)

 

Appendix A, FN5

 3

 

Gating currents; introduction to channels

6(103-112)

 

[UMass symposium]

[3

 

Problem set 2 due]

 

 

 

6

 

Channel structure and function

3(all)

 

H3-5

8

 

Molecular basis of voltage sensitivity

 

(1)

H16-19

SYNAPTIC TRANSMISSION BETWEEN NEURONS

10

 

Electrical and chemical transmission

9(155-166)

 

FN7, FN11

Fall break

15

 

Conductance mechansisms: excitation

9(166-170)

 

FN12

[15

 

Optional evening review session]

 

 

 



 

[16

 

Evening exam, covers Sept. 19 - Oct. 8]

 

 

 

 17

 

Inhibitory synaptic transmission

9(171-176)

 

 

20

 

Presynaptic inhibition

 

(5)

 

22

 

No class – HHMI meeting

 

 

 

24

 

Indirect transmission; quantum neurobiology

10(all)

(14)

FN10

[24

 

Problem set 3 due]

 

 

 

 27

 

Neurotransmitter release

11(all), 13(all)

 

8(all), 14(all)

  CASE STUDIES: COMPUTATION, PLASTICITY, HYPEREXCITABILITY, GENETICS

 

29

 

Brain function & formal computation

 

(17), (2)

 

  31

 

Neurons as computers; neural coding

7(128-131)

(6)

FN13

Nov. 3

 

Neural coding II: spike timing

 

(13)

 

5

 

Neurons and populations: localization of sound

 

(8) (12)

 

[5

 

Optional evening review session]

 

 

 

[6

 

Evening exam, covers Oct. 10 - Nov. 3]

 

 

 

7

 

Neurobiology of disease: Epilepsy

 

(16)

 

10

 

Motor control systems; Neuroscience & free will

22(447-462)

(11)

Rest of 22,FN29-36

12

 

Synaptic plasticity

12, 15(291-304)

 

15(304-314), FN55

 14

 

Mechansisms of LTP and LTD

 

(7)

 

17

 

No class – SFN meetings; Neuronal epigenetics

 

(19)

 

    SENSORY NEUROBIOLOGY: THE VISUAL SYSTEM

19

 

Introduction to sensory systems

17(all)

 

18(all), FN23&24

21

 

Human vision: absolute sensitivity

 

(9)

 

Thanksgiving Break

1

 

Photoreceptors and photochemistry

19(379-394)

 

 

 3

 

Vision: retina

19(394-405)

 

FN28

 5

 

Visual cortex: basic physiology

20(all)

 

 

 8

 

Visual cortex: circuitry & functions 

21(all)

 

 10

 

Visual system plasticity

25(all)

(18)

FN22

 

 

 

 

 

Final exam, scheduled, November 5 - December 10

 



1Chapter references are to Nicholls et al., From Neuron to Brain, 4th ed. (2001)