Spring 2010

The Maxwellian Synthesis: Dynamics of Charges and Fields, Optics

Listed in: Physics and Astronomy, as PHYS-24

Faculty

David S. Hall (Section 01)

Description

In the mid-nineteenth century, completing nearly a century of work by others, Maxwell developed an elegant set of equations describing the dynamical behavior of electromagnetic fields. A remarkable consequence of Maxwell’s equations is that the wave theory of light is subsumed under electrodynamics. Moreover, we know from subsequent developments that the electromagnetic interaction largely determines the structure and properties of ordinary matter. The course will begin with Coulomb’s Law but will quickly introduce the concept of the electric field. Moving charges and their connection with the magnetic field will be explored. Currents and electrical circuits will be studied. Faraday’s introduction of the dynamics of the magnetic field and Maxwell’s generalization of it will be discussed. Laboratory exercises will concentrate on circuits, electronic measuring instruments, and optics. Four hours of lecture and discussion and one three-hour laboratory per week.

Requisite: Mathematics 12 and Physics 16 or 23. Spring semester.  Professor Hall.

Offerings

2015-16: Offered in Spring 2016
Other years: Offered in Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015