Spring 2018

Nonparametric Statistics

Listed in: Mathematics and Statistics, as STAT-225


Amy S. Wagaman (Section 01)


This course is an introduction to nonparametric and distribution-free statistical procedures and techniques. These methods rely heavily on counting and ranking techniques and will be explored through both theoretical and applied perspectives. One- and two-sample procedures will provide students with alternatives to traditional parametric procedures, such as the t-test. We will also investigate correlation and regression in a nonparametric setting. A variety of other topics may be explored in the nonparametric setting including resampling techniques (for example, bootstrapping), categorical data and contingency tables, density estimation, and the one-way and two-way layouts for analysis of variance. The course will emphasize data analysis (with appropriate use of statistical software) and the intuitive nature of nonparametric statistics.

Requisite:  STAT 111 or STAT 135. Limited to 24 students. Spring Semester.  Professor Wagaman.

If Overenrolled: Preference will be given to STAT majors.


Quantitative Reasoning


2021-22: Offered in Spring 2022
Other years: Offered in Spring 2015, Spring 2018, Spring 2020