Spring 2018

Data Science

Listed in: Mathematics and Statistics, as STAT-231


Nicholas J. Horton (Section 01)


Computational data analysis is an essential part of modern statistics and data science. This course provides a practical foundation for students to think with data by participating in the entire data analysis cycle. Students will generate statistical questions and then address them through data acquisition, cleaning, transforming, modeling, and interpretation. This course will introduce students to tools for data management and wrangling that are common in data science and will apply those tools to real-world applications. Students will undertake practical analyses of large, complex, and messy data sets leveraging modern computing tools.

Requisite: STAT 135 and COSC 111 or consent of the instructor. Limited to 24 students. Fall semester: TBA.  Spring semester: Professor Horton.

If Overenrolled: priority for sophomores then STAT majors


Quantitative Reasoning, Science & Math for Non-majors


2017-18: Offered in Fall 2017 and Spring 2018