Computational data analysis is an essential part of modern statistics and data science. This course provides a practical foundation for students to think with data by participating in the entire data analysis cycle. Students will generate statistical questions and then address them through data acquisition, cleaning, transforming, modeling, and interpretation. This course will introduce students to tools for data management and wrangling that are common in data science and will apply those tools to real-world applications. Students will undertake practical analyses of large, complex, and messy data sets leveraging modern computing tools.
Requisite: STAT 111 or STAT 135 and COSC 111 or consent of the instructor. Limited to 24 students. Fall and Spring semesters. Professor Correia.
If Overenrolled: For the Fall, priority for rising sophomores and Statistics majors. For the Spring, priority for sophomores and Statistics majors.
Keywords
Online Only, Quantitative Reasoning, Science & Math for Non-majors