Menu
Tools

Show curriculum in: ## Mathematics and Statistics

Year: ### 2014-15

MATH 105 and 106 are designed for students whose background and algebraic skills are inadequate for the fast pace of MATH 111. In addition to covering the usual material of beginning calculus, these courses will have an extensive review of algebra and trigonometry. There will be a special emphasis on solving word problems.

MATH 105 starts with a quick review of algebraic manipulations, inequalities, absolute values and straight lines. Then the basic ideas of calculus--limits, derivatives, and integrals--are introduced, but only in the context of polynomial and rational functions. As various applications are studied, the algebraic techniques involved will be reviewed in more detail. When covering related rates and maximum-minimum problems, time will be spent learning how to approach, analyze and solve word problems. Four class meetings per week, one of which is a two-hour group-work day.

Note: While MATH 105 and 106 are sufficient for any course with a MATH 111 requisite, MATH 105 alone is not. However, students who plan to take MATH 121 should consider taking MATH 105 and then MATH 111, rather than MATH 106. Students cannot register for both MATH 105 and CHEM 151 in the same semester.

Fall semester. Professor Cox.

MATH 106 is a continuation of MATH 105. Trigonometric, logarithmic and exponential functions will be studied from the point of view of both algebra and calculus. The applications encountered in MATH 105 will reappear in problems involving these new functions. The basic ideas and theorems of calculus will be reviewed in detail, with more attention being paid to rigor. Four class meetings per week, one of which is a two-hour group-work day.

Requisite: MATH 105. Spring semester. Professor Cox.

Basic concepts of limits, derivatives, anti-derivatives; applications, including max/min problems and related rates; the definite integral, simple applications; trigonometric functions; logarithms and exponential functions. Four class hours per week.

Limited to 35 students per section. Fall and spring semesters. In the fall semester, the intensive section (Section 01) is open only to students listed as eligible on the Mathematics placement list. The intensive section replaces one weekly class hour with a 90-to-120-minute group work day. Professors TBA.

A continuation of MATH 111. Inverse trigonometric and hyperbolic functions; methods of integration, both exact and approximate; applications of integration to volume and arc length; improper integrals; l’Hôpital’s rule; infinite series, power series and the Taylor development; and polar coordinates. Four class hours per week.

Requisite: A grade of C or better in MATH 111 or consent of the Department. Limited to 35 students per section. Fall and spring semesters. Professor TBA.

(Offered as STAT 135 and MATH 135.) Introduction to Statistics via Modeling is an introductory statistics course that uses modeling as a unifying framework for much of statistics. The course provides a basic foundation in statistics with a major emphasis on constructing models from data. Students learn important concepts of statistics by mastering powerful and relatively advanced statistical techniques using computational tools. Topics include descriptive and inferential statistics, probability (including conditional probabilities and Bayes' rule), multiple regression and an introduction to causal inference. This is a more mathematically rigorous version of STAT 111, formerly MATH 130. (Students may not receive credit for both STAT 111 and MATH 135.) Four class hours per week (two will be held in the computer lab).

Requisite: MATH 111. Limited to 24 students. Fall semester. Professor Horton.

Mathematical modeling is the process of translating a real world problem into a mathematical expression, analyzing it using mathematical tools and numerical simulations, and then interpreting the results in the context of the original problem. Discussion of basic modeling principles and case studies will be followed by several projects from areas such as environmental studies and biology (e.g., air pollution, ground water flow, populations of interacting species, social networks). This course has no requisites; projects will be tailored to each student’s level of mathematical preparation. Four class hours per week, with occasional in-class computer labs.

Limited to 24 students. Fall semester. Professor Leise.

Elementary vector calculus; introduction to partial derivatives; multiple integrals in two and three dimensions; line integrals in the plane; Green’s theorem; the Taylor development and extrema of functions of several variables; implicit function theorems; Jacobians. Four class hours per week.

Requisite: A grade of C or better in MATH 121 or the consent of the instructor. Limited to 35 students per section. Fall and spring semesters. Professors TBA.

This course is an introduction to some topics in mathematics that do not require the calculus. The topics covered include logic, elementary set theory, functions, relations and equivalence relations, mathematical induction, counting principles, and graph theory. Additional topics may vary from year to year. This course serves as an introduction to mathematical thought and pays particular attention to helping students learn how to write proofs. Four class hours per week.

Spring semester. Professor R. Benedetto.

MATH 225 is a mathematical treatment of fractal geometry, a field of mathematics partly developed by Benoit Mandelbrot (1924-2010) that continues to be actively researched in the present day. Fractal geometry is a mathematical examination of the concepts of self-similarity, fractals, and chaos, and their applications to the modeling of natural phenomena. In particular, we will develop the iterated function system (IFS) method for describing fractals, examine Julia sets, Mandelbrot sets, and study the concept of fractal dimension, among other things. Through the teaching of these concepts, MATH 225 will also lend itself to familiarizing students with some of the formalisms and rigor of mathematical proofs.

Requesite: MATH 211 or consent of the instructor. Limited to 35 students. Fall semester. Professor Folsom.

With new experimental techniques leading to large biological data sets of increased quality, the ability to analyze biological systems using mathematical modeling approaches has become an integral part of modern biology. This course aims to provide students interested in the interface between biology and mathematics with an integrated understanding of some of the mathematical and computational techniques used in this field. The mathematical approaches we will use to study biological systems will include discrete and continuous dynamical models as well as probability models and parameter estimation algorithms.

Requisite: MATH 211 and BIOL 181 or 191, or permission of instructor. Limited to 24 students. Spring semester. Professor Dresch.

An introduction to the theory of rational integers; divisibility, the unique factorization theorem; congruences, quadratic residues. Selections from the following topics: cryptology; Diophantine equations; asymptotic prime number estimates; continued fractions; algebraic integers. Four class hours per week. Offered in alternate years.

Requisite: MATH 121 or consent of the instructor. Spring semester. Professor Call.

The study of differential equations is an important part of mathematics that involves many topics, both theoretical and practical. The course will cover first- and second-order ordinary differential equations, basic theorems concerning existence and uniqueness of solutions and continuous dependence on parameters, long-term behavior of solutions and approximate solutions. The focus of the course will be on connecting the theoretical aspects of differential equations with real-world applications from physics, biology, chemistry, and engineering. Four class hours per week.

Requisite: MATH 211 or consent of the instructor. Spring semester. Professor D'Ambroise.

The study of vector spaces over the real and complex numbers, introducing the concepts of subspace, linear independence, basis, and dimension; systems of linear equations and their solution by Gaussian elimination; matrix operations; linear transformations and their representations by matrices; eigenvalues and eigenvectors; and inner product spaces. Special attention will be paid to the theoretical development of the subject. Four class meetings per week.

Requisite: MATH 121 or consent of the instructor. This course and MATH 272 may not both be taken for credit. Fall semester. Professors R.Benedetto and Dresch.

The study of vector spaces over the real and complex numbers, introducing the concepts of subspace, linear independence, basis, and dimension; systems of linear equations and their solution by Gaussian elimination; matrix operations; linear transformations and their representations by matrices; eigenvalues and eigenvectors; and inner product spaces. Additional topics include ill-conditioned systems of equations, the LU decomposition, covariance matrices, least squares, and the singular value decomposition. Recommended for Economics majors who wish to learn linear algebra. Four class hours per week, with occasional in-class computer labs.

Requisite: MATH 121 or consent of the instructor. This course and MATH 271 may not both be taken for credit. Spring semester. Professor D'Ambroise and Dresch.

The first half of the course covers continuous and discrete Fourier transforms (including convolution and Plancherel’s formula), Fourier series (including convergence and the fast Fourier transform algorithm), and applications like heat conduction along a rod and signal processing. The second half of the course is devoted to wavelets: Haar bases, the discrete Haar transform in 1 and 2 dimensions with application to image analysis, multiresolution analysis, filters, and wavelet-based image compression like JPEG2000. Three class hours per week plus a weekly one-hour computer laboratory.

Requisite: MATH 211 and 271 or 272. Omitted 2014-15.

An introduction to analytic functions; complex numbers, derivatives, conformal mappings, integrals. Cauchy’s theorem; power series, singularities, Laurent series, analytic continuation; Riemann surfaces; special functions. Four class hours per week.

Requisite: MATH 211. Fall semester. Professor D'Ambroise.

A brief consideration of properties of sets, mappings, and the system of integers, followed by an introduction to the theory of groups and rings including the principal theorems on homomorphisms and the related quotient structures; integral domains, fields, polynomial rings. Four class hours per week.

Requisite: MATH 271 or 272 or consent of the instructor. Fall semester. Professor Daniels. Spring semester. Professor Folsom.

Completeness of the real numbers; topology of n-space including the Bolzano-Weierstrass and Heine-Borel theorems; sequences, properties of functions continuous on sets; infinite series, uniform convergence. The course may also study the Gamma function, Stirling’s formula, or Fourier series. Four class hours per week.

Requisite: MATH 211. Fall semester. Professor Velleman. Spring semester: Professor Ching.

(Offered as STAT 360 and MATH 360.) This course explores the nature of probability and its use in modeling real world phenomena. The course begins with the development of an intuitive feel for probabilistic thinking, based on the simple yet subtle idea of counting. It then evolves toward the rigorous study of discrete and continuous probability spaces, independence, conditional probability, expectation, and variance. Distributions covered include the Bernoulli and Binomial, Hypergeometric, Poisson, Normal, Gamma, Beta, Multinomial, and bivariate Normal. Four class hours per week.

Requisite: MATH 121 or consent of the instructor. Fall semester. Professor Wagaman.

A stochastic process is a collection of random variables used to model the evolution of a system over time. Unlike deterministic systems, stochastic processes involve an element of randomness or uncertainty. Examples include stock market fluctuations, audio signals, EEG recordings, and random movement such as Brownian motion and random walks. Topics will include Markov chains, martingales, Brownian motion, and stochastic integration, including Ito’s formula. Four class hours per week, with weekly in-class computer labs. \

Requisite: MATH 360 or consent of instructor. Limited to 24 students. Omitted 2014-15.

Most mathematicians consider set theory to be the foundation of mathematics, because everything that is studied in mathematics can be defined in terms of the concepts of set theory, and all the theorems of mathematics can be proven from the axioms of set theory. This course will begin with the axiomatization of set theory that was developed by Ernst Zermelo and Abraham Fraenkel in the early part of the twentieth century. We will then see how all of the number systems used in mathematics are defined in set theory, and how the fundamental properties of these number systems can be proven from the Zermelo-Fraenkel axioms. Other topics will include the axiom of choice, infinite cardinal and ordinal numbers, and models of set theory. Four class hours per week.

Requisite: MATH 220, 271, 272, or 355, or consent of the instructor. Omitted 2014-15.

Mathematicians confirm their answers to mathematical questions by writing proofs. But what, exactly, is a proof? This course begins with a precise definition specifying what counts as a mathematical proof. This definition makes it possible to carry out a mathematical study of what can be accomplished by means of deductive reasoning and, perhaps more interestingly, what cannot be accomplished. Topics will include the propositional and predicate calculi, completeness, compactness, and decidability. At the end of the course we will study Gödel’s famous Incompleteness Theorem, which shows that there are statements about the positive integers that are true but impossible to prove. Four class hours per week. Offered in alternate years.

Requisite: MATH 220, 271, 272, or 355, or consent of the instructor. Spring semester. Professor Velleman.

Fall and spring semesters. The Department.

The quadratic formula shows us that the roots of a quadratic polynomial possess a certain symmetry. Galois Theory is the study of the corresponding symmetry for higher degree polynomials. We will develop this theory starting from a basic knowledge of groups, rings and fields. One of our main goals will be to prove that there is no general version of the quadratic formula for a polynomial of degree five or more. Along the way, we will also show that a circular cake can be divided into 17 (but not 7) equal slices using only a straight-edged knife.

Requisite: MATH 350 or consent of the instructor. Omitted 2014-15.

The topic will vary from year to year. The topic for fall 2014 is computational algebraic geometry.

The study of geometric objects by means of their defining equations dates back to the introduction of coordinates by Descartes in 1637.

This course will introduce algorithmic methods for manipulating and understanding algebraic equations and will develop a dictionary between algebra and geometry. We will also explore the structure of ideals in polynomial rings and the resulting quotient rings. The course will end with student presentations on applications of algebraic geometry to robotics, geometric theorem proving, invariant theory, graph theory, and sudoku. Three class hours per week plus a weekly one-hour computer lab.

Requisite: MATH 350. Limited to 16 students. Fall semester. Professor Cox.

(Offered as STAT 430 and MATH 430.) This course examines the theory behind common statistical inference procedures including estimation and hypothesis testing. Beginning with exposure to Bayesian inference, the course will cover Maximum Likelihood Estimators, sufficient statistics, sampling distributions, joint distributions, confidence intervals, hypothesis testing and test selection, non-parametric procedures, and linear models. Four class hours per week.

Requisite: STAT 360 or consent of the instructor. Spring semester. Professor Wagaman.

An introduction to general topology; the topology of Euclidean, metric and abstract spaces, with emphasis on such notions as continuous mappings, compactness, connectedness, completeness, separable spaces, separation axioms, and metrizable spaces. Additional topics may be selected to illustrate applications of topology in analysis or to introduce the student briefly to algebraic topology. Four class hours per week. Offered in alternate years.

Requisite: MATH 355. Spring semester. Professor TBA.

Open to seniors with the consent of the Department. Fall semester. The Department.

This course is an introduction to applied statistical methods useful for the analysis of data from all fields. Brief coverage of data summary and graphical techniques will be followed by elementary probability, sampling distributions, the central limit theorem and statistical inference. Inference procedures include confidence intervals and hypothesis testing for both means and proportions, the chi-square test, simple linear regression, and a brief introduction to analysis of variance (ANOVA). Four class hours per week (two will be held in the computer lab). Labs are not interchangeable between sections due to course content.

Limited to 20 students per section. Fall semester: Professors TBA. Spring semester: Professors TBA.

(Offered as STAT 135 and MATH 135.) Introduction to Statistics via Modeling is an introductory statistics course that uses modeling as a unifying framework for much of statistics. The course provides a basic foundation in statistics with a major emphasis on constructing models from data. Students learn important concepts of statistics by mastering powerful and relatively advanced statistical techniques using computational tools. Topics include descriptive and inferential statistics, probability (including conditional probabilities and Bayes' rule), multiple regression and an introduction to causal inference. This is a more mathematically rigorous version of STAT 111, formerly MATH 130. (Students may not receive credit for both STAT 111 and MATH 135.) Four class hours per week (two will be held in the computer lab).

Requisite: MATH 111. Limited to 24 students. Fall semester. Professor Horton.

This course is an introduction to nonparametric and distribution-free statistical procedures and techniques. These methods rely heavily on counting and ranking techniques and will be explored through both theoretical and applied perspectives. One- and two-sample procedures will provide students with alternatives to traditional parametric procedures, such as the t-test. We will also investigate correlation, regression, and one-way analysis of variance techniques in a nonparametric setting. A variety of other topics may be explored in the nonparametric setting including resampling techniques (for example, bootstrapping), categorical data and contingency tables, density estimation, and the two-way layout. The course will emphasize data analysis (with appropriate use of statistical software) and the intuitive nature of nonparametric statistics. Four class hours per week.

Requisite: STAT 111 or STAT 135 or equivalent. Spring semester. Professor Wagaman.

This course is an intermediate applied statistics course that builds on the statistical data analysis methods introduced in STAT 111 or STAT 135. Students will learn how to pose a statistical question, perform appropriate statistical analysis of the data, and properly interpret and communicate their results. Emphasis will be placed on the use of statistical software, data manipulation, model fitting, and assessment. Topics covered will include ethics, experimental design, parametric and nonparametric methods, resampling approaches, analysis of variance models, multiple regression, model selection, and logistic regression. Four class hours per week.

Requisite: STAT 111 or 135 or consent of the instructor. Limited to 24 students. Spring semester. Professor Liao.

Real world experiments often provide data that consist of many variables. When confronted with a large number of variables, there may be many different directions to proceed, but the direction chosen is ultimately based on the question(s) being asked. In biology, one could ask which observed characteristics distinguish females from males in a given species. In archeology, one could examine how the observed characteristics of pottery relate to their location on the site, look for clusters of similar pottery types, and gain valuable information about the location of markets or religious centers in relation to residential housing. This course will explore how to visualize large data sets and study a variety of methods to analyze them. Methods covered include principal components analysis, factor analysis, classification techniques (discriminant analysis and classification trees) and clustering techniques. This course will feature hands-on data analysis in weekly computer labs, emphasizing application over theory. Four class hours per week.

Requisite: STAT 111 or 135. Limited to 20 students. Fall semester. Professor Wagaman.

(Offered as STAT 360 and MATH 360.) This course explores the nature of probability and its use in modeling real world phenomena. The course begins with the development of an intuitive feel for probabilistic thinking, based on the simple yet subtle idea of counting. It then evolves toward the rigorous study of discrete and continuous probability spaces, independence, conditional probability, expectation, and variance. Distributions covered include the Bernoulli and Binomial, Hypergeometric, Poisson, Normal, Gamma, Beta, Multinomial, and bivariate Normal. Four class hours per week.

Requisite: MATH 121 or consent of the instructor. Fall semester. Professor Wagaman.

(Offered as STAT 430 and MATH 430.) This course examines the theory behind common statistical inference procedures including estimation and hypothesis testing. Beginning with exposure to Bayesian inference, the course will cover Maximum Likelihood Estimators, sufficient statistics, sampling distributions, joint distributions, confidence intervals, hypothesis testing and test selection, non-parametric procedures, and linear models. Four class hours per week.

Requisite: STAT 360 or consent of the instructor. Spring semester. Professor Wagaman.

Our world is awash in data. To allow decisions to be made based on evidence, there is a need for statisticians to be able to make sense of the data around us and communicate their findings. In this course, students will be exposed to advanced statistical methods and will undertake the analysis and interpretation of complex and real-world datasets that go beyond textbook problems. Course topics will vary from year to year depending on the instructor and selected case studies. Topics may include visualization techniques to summarize and display high dimensional data, advanced topics in design and linear regression, selected topics in data mining, nonparametric analysis, and analysis of network data. Through a series of case studies, students develop the capacity to think and compute with data, undertake and assess analyses, and effectively communicate their results using written and oral presentation.

Requisite: MATH 230 or 430. Limited to 20 students. Fall semester. Professor Horton.