Department of Mathematics and Computer Science

COMPREHENSIVE EXAMINATION

Mathematics 11, 12, 13, 25

2:00 p.m. Friday, January 29, 1999 Seeley Mudd 205 1. Evaluate each limit or determine that it doesn't exist.

(a)
$$\lim_{x \to 1} \frac{2^x - 2}{\ln x}$$

(b)
$$\lim_{b \to +\infty} \int_1^b xe^{-2x} dx$$

(c)
$$\lim_{x \to 0} (\sin x)^x$$

2. Evaluate each integral.

(a)
$$\int_{1}^{2} \frac{1}{x^2 + 2x} dx$$

(b)
$$\int_0^{\pi/2} \cos^3 x \, dx$$

(c)
$$\int_0^1 \sqrt{1-x^2} \, dx$$

- 3. (a) Let n be a positive integer. Derive a formula for $\int (\ln x)^n dx$ in terms of $\int (\ln x)^{n-1} dx$.
 - (b) Use part (a) to compute $\int (\ln x)^4 dx$.
- 4. (a) State the ϵ - δ definition of $\lim_{x \to a} F(x) = L$.

(b) Give an
$$\epsilon$$
- δ proof that $\lim_{x\to 2} 3x - 7 = -1$

5. In each case determine whether the given series converges absolutely, converges conditionally, or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + \sin(n)}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n ne^{-n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{n!+1}$$

- 6. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(3n)!}{(n!)^3} x^n$
- 7. Consider the double integral $\int_0^2 \int_0^x x \, dy \, dx$
 - (a) This integral represents the volume under some surface over some region in the x-y plane. What is the surface? What is the region?
 - (b) Express the integral in polar coordinates.
- 8. Find a function f such that $\nabla f = (2xy \cos x) \cdot \overrightarrow{i} + (x^2 + 2y\sin(y^2)) \cdot \overrightarrow{j}$.
- 9. Find the critical points of $x^2y x^2 y^2$ and classify them as to local maximum, local minimum, or saddle point.
- 10. (a) Define what it means for a function f(x,y) to be differentiable at a point (x_0,y_0) .
 - (b) State a theorem whose conclusion is that a function is differentiable.
 - (c) Give an ϵ - δ proof that $f(x,y) = x^2 + y^2$ is differentiable at (0,0).
- 11. Suppose that $T:V\to W$ is a linear map between vector spaces. If v_1,\ldots,v_n are vectors in V such that $T(v_1),\ldots,T(v_n)$ are distinct and linearly independent in W, then prove that v_1,\ldots,v_n are linearly independent in V.
- 12. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map which satisfies $T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $T \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$.
 - (a) Find a 2×2 matrix A such that $T \binom{x}{y} = A \binom{x}{y}$ for all vectors $\binom{x}{y} \in \mathbf{R}^2$.
 - (b) Is T an isomorphism? Justify your answer.
- 13. Let

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & -1 & \lambda \\ 3 & 0 & 2 \end{pmatrix}$$

- (a) Find all eigenvalues of A.
- (b) For which value of λ is A diagonalizable? Justify your answer.

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 26

January 29, 1999

Work the following four problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. Suppose $\phi: G \to G'$ is a homomorphism of groups and N' is a normal subgroup of G'. Let $N = \{a \in G : \phi(a) \in N'\}$. Show that N is a normal subgroup of G.
- 2. Let G be a finite group. Suppose x and y are distinct elements of order two in G such that xy = yx. Show that the order of G is divisible by 4.
- 3. Let R be a commutative ring with a multiplicative identity, and let I be an ideal of R. Show that R/I is a field if and only if I is a maximal ideal of R.
- 4. Let k be a field. Show that a cubic polynomial $f(x) \in k[x]$ is irreducible in k[x] if and only if f(x) has no roots in k.

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 28

March 26, 1999

Do the following three problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. (a) Complete the following definition: Let $\{f_n(x)\}_{n=1}^{\infty}$ be a sequence of real valued functions defined on a set A of real numbers. The infinite series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A to the function g(x) if...
 - (b) State the Weierstrass M-test.
 - (c) Prove the Weierstrass M-test.
- 2. Let the sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ of real numbers converge to real numbers A and B respectively. Using the definition of convergence of a sequence, give a rigorous proof that the sequence $\{a_n + b_n\}_{n=1}^{\infty}$ converges to A + B.
- 3. (a) State the Completeness Axiom for the real numbers.
 - (b) Let a and b be positive real numbers. Prove that there exists an integer n such that na > b.

ľ

AMHERST COLLEGE

Department of Mathematics and Computer Science

COMPREHENSIVE EXAMINATION

Mathematics 11, 12, 13, 25

2:00 p.m. Friday, January 30, 1998 Seeley Mudd 205 1. Evaluate each integral:

(a)
$$\int \ln(1/x) dx$$

(b)
$$\int_0^2 \sqrt{4-x^2} \, dx$$

(c)
$$\int_4^{+\infty} \frac{1}{x^2 - 5x + 6} dx$$

2. Evaluate each limit or determine that it does not exist:

(a)
$$\lim_{x \to +\infty} (1 - 2/x)^{3x}$$

(b)
$$\lim_{x \to 0} \frac{x - \sin^{-1} x}{x^3}$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 1}}{3x + 1}$$

3. Let f be a real-valued function defined on an open interval containing the point x_0 .

- (a) Define what it means for f to be differentiable at x_0 .
- (b) Prove that if f is differentiable at x_0 , then f is continuous at x_0 .
- (c) Is the converse of (b) true? Give a proof or counterexample.

4. Let C be the curve given by parametric equation $x = \cos^3 t$; $y = \sin^3 t$ for $0 \le t \le \pi/2$.

- (a) Find dy/dx at the point where $t = \pi/6$.
- (b) Find the length of C.

5. (a) In each case determine whether the given series converges or diverges. Give reasons.

i)
$$\sum_{n=1}^{\infty} n \sin(1/n)$$

ii)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2 + 1}$$

iii)
$$\sum_{n=1}^{\infty} \frac{(-3)^n (n!)^2}{(2n)!}$$

- (b) Find all values of x for which the series $\sum_{n=1}^{\infty} \frac{2^n (2x-3)^n}{\sqrt{2n+1}}$ converges. Give reasons.
- 6. A rectangular box with edges parallel to the coordinate axes is inscribed in the ellipsoid $9x^2 + 3y^2 + z^2 = 9$. What is the greatest possible volume of such a box?
- 7. Let F(x, y, z) = z xy x.
 - (a) Find the directional derivative of F at (1,2,3) in the direction from (1,2,3) to (2,4,1).
 - (b) What is the least possible directional derivative of F at (1, 2, 3)?
 - (c) Let S be the surface F(x,y,z)=1. Is the vector $\vec{v}=(1,2,3)$ perpendicular to the tangent plane to S at $(\frac{1}{2},2,\frac{5}{2})$? Explain your reasoning.
- 8. Let R be the solid bounded above by the sphere $x^2 + y^2 + z^2 = 12$ and below by the cone $\sqrt{3} z = \sqrt{x^2 + y^2}$. Suppose that R has density d(x,y,z) = z. Set up three triple integrals giving the mass of R, one in rectangular, one in cylindrical, and one in spherical coordinates. Then evaluate one of your three integrals.
- 9. (a) Sketch a graph of the polar-coordinate curve $r=1+\cos\theta$ for $0\leq\theta\leq2\pi$.
 - (b) Evaluate the line integral $\int_C (x^3 + y^3 y) dx + (3xy^2 + y^3) dy$, where C is the curve of (a) oriented counter-clockwise.

- 10. Let V and W be vector spaces over a field F and let T be a linear transformation from V to W.
 - (a) Prove that the nullspace N(T) of T (also called the kernel of T) is a subspace of V.
 - (b) Prove that T is one-one if and only if $N(T) = {\vec{0}}$.
 - (c) Show that if T is one-one and $\{\vec{x}_1,\ldots,\vec{x}_n\}$ is a set of n linearly independent vectors in V, then $\{T(\vec{x}_1),\ldots,T(\vec{x}_n)\}$ is linearly independent in W.
- 11. The set of solutions of the homogeneous system of equations

$$\begin{cases} x + 2y + 3w = 0 \\ x + 2y + z + 2w = 0 \\ x + 2y + 3z = 0 \end{cases}$$

forms a subspace of \mathbb{R}^4 . Find a basis for this subspace.

- 12. Define the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 by T(x,y)=(y,-4x+4y).
 - (a) Is T invertible? If so, find the formula for $T^{-1}(x,y)$.
 - (b) Find the eigenvalues of T.
 - (c) Prove or disprove: T is diagonalizable.

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 26

January 30, 1998

Work the following four problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

1. Let S_3 denote the symmetric group on $\{1,2,3\}$ and let $\sigma,\tau\in S_3$ denote the permutations

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Consider the subgroups $H=<\sigma>$ and $K=<\tau>$ of S_3 generated by σ and τ respectively. Are H and K normal subgroups of S_3 ? Prove your answer for each.

- 2. Let *G* be a group and let $I(G) = \{x \in G | x = x^{-1}\}.$
 - (a) Show that if G is abelian, then I(G) is a subgroup of G.
 - (b) Give an example of a group G for which I(G) is not a subgroup of G.
 - (c) Show that if G is finite and $I(G) \neq \{e\}$, then G must have even order.
- 3. Recall that if R is a commutative ring and $a \in R$, then $(a) = \{ra \mid r \in R\}$ denotes the principal ideal of R generated by a.
 - (a) Show that (5) is a maximal ideal of the integers Z.
 - (b) Show that (5) is not a maximal ideal of the Gaussian integers $Z[i] = \{a + bi \mid a, b \in Z\}$.
- 4. Let R be a commutative ring with identity 1, and let I and J be ideals of R. Suppose there are elements $x \in I$ and $y \in J$ such that x + y = 1.
 - (a) Show that I + J = R.
 - (b) Define $\phi: I \to R/J$ by $\phi(a) = a + J$ for all $a \in I$. Show that if $I \cap J = (0)$, then ϕ is an isomorphism of I onto R/J.

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 28

January 30, 1998

Work the following three problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. (a) State the Completeness Axiom for the real numbers.
 - (b) Prove that the square root of 2 is not a rational number.
 - (c) Let x be a real number. Give an example of a sequence of irrational numbers which converges to x. (You may use the result of part (b) even if you did not do that part.)
- 2. State and prove a theorem having the following hypothesis: Let y = f(x) define a continuous function for $a \le x \le b$.
- 3. Consider the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.
 - (a) Prove that this series converges uniformly on (-77,66].
 - (b) Using the definition of uniform convergence, explain as best you can why this series fails to converge uniformly on $(-\infty, 0]$. (Hint: You may wish to identify the function represented by this series.)

Department of Mathematics and Computer Science

COMPREHENSIVE EXAMINATION

Mathematics 11, 12, 13, 25

2:00 p.m. Friday, January 31, 1997 Seeley Mudd 205 1. Evaluate the following limits.

(a)
$$\lim_{x \to 0} \frac{xe^x - \ln(1+x)}{x^2}$$

(b)
$$\lim_{x \to +\infty} (1 - e^{-x})^{e^x}$$

2. Evaluate the following derivatives.

(a)
$$\frac{d}{dx} \int_0^x \sec^3 \theta \, d\theta$$

- (b) $\frac{d}{dt}F(f(t),g(t))$, where F(x,y) is a differentiable function of x,y and f(t),g(t) are differentiable functions of t
- 3. Evaluate the following integrals.

(a)
$$\int_2^\infty \frac{dx}{x^2 - 1}$$

(b)
$$\int_0^{\pi} \int_x^{\pi} \frac{\sin y}{y} \, dy \, dx$$

(c)
$$\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} x^2 \, dy \, dx$$

- 4. (a) State the Mean Value Theorem.
 - (b) Let f be a differentiable function on the interval (a, b) with the property that f'(c) > 0 for all c in (a, b). Use the Mean Value Theorem to prove rigorously that f is increasing on (a, b).
- 5. For each of the following series, determine if it converges or diverges. Give reasons for your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^2 + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$$

6. Find all values of x for which the series $\sum_{n=1}^{\infty} \frac{x^{2n}}{2^n \sqrt{n}}$ converges.

7. Let
$$f(x,y) = \begin{cases} \frac{x^2 y^2 \cos x}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a) Compute $f_x(0,0)$ and $f_y(0,0)$.
- (b) Prove that f is differentiable at (0,0).
- (c) Is f continuous at (0,0)? Explain your reasoning.
- 8. Given point P=(1,2) and Q=(2,1), let γ be a path in the plane not going through (0,0) which connects P to Q.
 - (a) Explain why the line integral

$$\int_{\gamma} \frac{10x}{(x^2 + y^2)^2} dx + \frac{10y}{(x^2 + y^2)^2} dy$$

gives the same answer for all possible γ .

- (b) Find the value of the line integral in part (a).
- 9. Consider the region in 3-dimensional space bounded above by the hemisphere $z=\sqrt{8-x^2-y^2}$ and bounded below by $z=\sqrt{x^2+y^2}$.
 - (a) Express the volume of this region using cartesian coordinates, cylindrical coordinates and spherical coordinates.
 - (b) Evaluate one of the integrals found in part (a).
- 10. (a) Define what it means for a real number $\lambda \in \mathbf{R}$ to be an eigenvalue of an $n \times n$ matrix $A \in M_{n \times n}(\mathbf{R})$.
 - (b) Find all eigenvectors of the matrix

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

- 11. Let $\vec{v}_1, \ldots, \vec{v}_k$ be linearly independent vectors in a vector space V, and let $\vec{v} \in V$. Prove that $\vec{v}, \vec{v}_1, \ldots, \vec{v}_k$ are linearly independent if and only if $\vec{v} \notin \operatorname{Span}(\vec{v}_1, \ldots, \vec{v}_k)$.
- 12. Let $L: \mathbf{R}^3 \to \mathbf{R}^2$ be a linear map.
 - (a) Can L be one-to-one? Explain your reasoning.
 - (b) Describe how you would construct a 2×3 matrix A with the property that $L(\vec{v}) = A\vec{v}$ for all $\vec{v} \in \mathbf{R}^3$.

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 26

January 31, 1997

Work the following four problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. Suppose G is a nontrivial group (i.e., $G \neq \{e\}$) whose only subgroups are the trivial group $\{e\}$ and itself. Show that G is a cyclic group of prime order.
- 2. Suppose that σ is a permutation in the alternating group A_{10} given by

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 7 & 2 & 6 & 10 & 1 & 5 & & & 3
\end{pmatrix}$$

where the images of 8 and 9 have been lost. Determine the images of 8 and 9 under σ . What is the order of σ ?

- 3. Let R be a commutative ring and let I be a proper ideal of R. I is said to be a **prime ideal** of R if, for all $a, b \in R$, $ab \in I$ implies $a \in I$ or $b \in I$. Prove that R/I is an integral domain if and only if I is a prime ideal. (You may assume that R/I is a commutative ring in your proof.)
- 4. Let $\mathbf{R}[x]$ denote the ring of polynomials in x with real coefficients, and let \mathbf{C} denote the field of complex numbers. Define a map $\phi : \mathbf{R}[x] \longrightarrow \mathbf{C}$ by $\phi(p(x)) = p(i)$, where i is the usual complex number satisfying $i^2 = -1$. You may assume that ϕ is a ring homomorphism.
 - (a) Show that the kernel of ϕ is (x^2+1) , the principal ideal of $\mathbf{R}[x]$ generated by the polynomial x^2+1 .
 - (b) Show that $\mathbf{R}[x]/(x^2+1)$ is isomorphic to \mathbf{C} .

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 28

January 31, 1997

Work the following three problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. (a) Complete the following definition: The real number P is an accumulation point (also known as a cluster point) of the set A of real numbers if...
 - (b) State the Bolzano-Weierstrass Theorem.
 - (c) Complete the following definition: Let f be a real valued function defined on the set A of real numbers. Then f is uniformly continuous on A if...
- 2. (a) Prove that the sequence $\{e^{-nx}\}_{n=0}^{\infty}$ converges uniformly on $(1,\infty)$.
 - (b) Prove that series $\sum_{n=0}^{\infty} x^n$ does **not** converge uniformly on (0,1).
- 3. The goal of this problem is to prove that if $f:[a,b]\to R$ is continuous and $f(a)>0,\ f(b)<0,$ then f(c)=0 for some c in (a,b).
 - (a) Explain how this result easily follows from the Intermediate Value Theorem.
 - (b) Give a direct proof of the result which uses **only** the definition of continuity and the properties of the real numbers. Hint: Prove carefully that the least upper bound of the set $\{x \in [a,b]: f(x) > 0\}$ exists and is in (a,b). Let c denote this least upper bound. Then prove carefully that f(c) = 0.

Department of Mathematics and Computer Science

COMPREHENSIVE EXAMINATION

Mathematics 11, 12, 13, 25

2:00 p.m. Friday, February 2, 1996 Seeley Mudd 205

- 1. (a) Use L'Hôpitals rule to evaluate $\lim_{x\to 0} \frac{x\cos x \sin x}{x^3}$.
 - (b) Use the power series expansions of $\sin x$ and $\cos x$ to evaluate $\lim_{x\to 0} \frac{x \sin x \cos x}{x^3}$.
 - (c) Evaluate $\lim_{x \to -\infty} \frac{\sqrt{x^2 1}}{2x + 1}$.
 - (d) Evaluate $\lim_{x \to +\infty} (x^a + 1)^{1/\ln x}$, where a > 0.
- 2. Evaluate the following integrals.
 - (a) $\int x \tan^{-1} x \, dx$
 - (b) $\int (F(x))^2 (\ln x)^2 dx$, where $F(x) = \int_1^x (\ln t)^2 dt$
 - (c) $\int_C (1-xy) dx + (x+y^2) dy$, where C is the boundary (oriented counterclockwise) of the square with vertices (0,0), (1,0), (1,1) and (0,1).
- 3. (a) State the Mean Value Theorem.
 - (b) Use the Mean Value Theorem on the interval [1, x] to show that $e^x > ex$ when x > 1.
- 4. For each of the following infinite series, determine if it converges absolutely, converges conditionally, or diverges. Give reasons for your answers.

(a)
$$\sum_{n=0}^{\infty} \frac{(2n)!}{3^n (n!)^2}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{n^2+1}$$

5. For what values of x does the following series converge? Justify your answer.

$$\sum_{n=0}^{\infty} \frac{\cos^n x}{n+1}$$

6. Let f(x,y) be defined by

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a) Show that $f_x(0,0)$ and $f_y(0,0)$ exist.
- (b) Is f(x,y) differentiable at (0,0)? Give full reasons for your answer.
- 7. Let $F(x,y) = x^2 + y^2 2x 2y$.
 - (a) Find the critical points of F(x,y) and classify them as to local maximum, local minimum or saddle point.
 - (b) Find the absolute minimum and maximum values of F(x,y) subject to the constraint $x^2 + y^2 = 8$.
 - (c) By combining parts a and b, determine the absolute minimum and maximum values of F(x,y) in the region $x^2 + y^2 \le 8$. Explain your reasoning.
- 8. Find the volume of the region inside the cylinder $x^2 + y^2 = a^2$ which lies between the planes z = 0 and z = x + a. (Here, a > 0 is a constant.)
- 9. Let V and V' be vector spaces over a field F and let $T:V\to V'$ be a linear transformation. If $W'\subseteq V'$, let $W=\{\overrightarrow{v}\in V:T(\overrightarrow{v})\in W'\}$. Show that if W' is a subspace of V', then W is a subspace of V.
- 10. Let $V = M_{2\times 2}(\mathbf{R})$ and consider the subspaces $W_1 = \{A \in V : A \text{ is symmetric}\}$, $W_2 = \{A \in V : tr(A) = 0\}$ and $W_3 = \{A \in V : A \text{ is a diagonal matrix}\}$.
 - (a) Find bases for W_1 , W_2 and W_3 . You do not need to prove that you have found a basis.
 - (b) Carefully compute $\dim(W_1 + W_3)$ and $\dim(W_2 + W_3)$.
- 11. Suppose the linear transformation $T: \mathbf{R}^2 \to \mathbf{R}^2$ satisfies T(1,1) = (3,2) and T(2,1) = (5,4).
 - (a) Find a formula for T(x, y).
 - (b) Is T invertible? If so, find $T^{-1}(x,y)$.
- 12. Define $T: \mathbf{R}^3 \to \mathbf{R}^3$ by T(x, y, z) = (3x + 3y, 3x + 3y, -3x + y + 4z).
 - (a) Compute the rank r(T) and the nullity n(T).
 - (b) Prove or disprove: T is diagonalizable.

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 28

February 2, 1996

Work the following four problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. (a) State the Completeness Axiom for the real numbers.
 - (b) State the Bolzano-Weierstrass Theorem.
 - (c) State the Intermediate Value Theorem for Continuous Functions.
 - (d) Complete the following definition: Let f be a real-valued function defined on the set A of real numbers. If $a \in A$, then f is **continuous** at a if and only if
- 2. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be convergent sequences of real numbers, with respective limits A and B. Using the definition of convergence of a sequence, prove that the sequence $\{a_n+b_n\}_{n=1}^{\infty}$ converges to A+B.
- 3. Let f be a real-valued, continuous function on the closed, bounded interval [a,b]. Assuming that f is bounded on [a,b], prove that f takes on a maximum on [a,b], i.e., that there must exist $c \in [a,b]$ such that $f(c) \geq f(x)$ for all $x \in [a,b]$.
- 4. Consider the sequence of functions $\{x^n\}_{n=1}^{\infty}$.
 - (a) Prove that this sequence converges uniformly on $[0, \frac{1}{2}]$.
 - (b) Prove that this sequence does not converge uniformly on [0, 1].

Department of Mathematics and Computer Science

COMPREHENSIVE EXAMINATION

Mathematics 11, 12, 13, 25

2:00 p.m. Friday, February 3, 1995 Seeley Mudd 205

<u>Instructions</u>: Work all the problems in this section. Record your solutions in the blue book(s) provided.

SHOW ALL WORK.

1. (a) Find a positive rational number and a positive irrational number both smaller than 0.00001.

(b) Find the solution set for
$$\frac{x+5}{2x-1} \le 0$$

2. Find the following limits or show that no limit exists.

(a)
$$\lim_{x\to 2} \frac{1-\frac{2}{x}}{x^2-4}$$

(b)
$$\lim_{x\to 0} \frac{\tan x}{\sin 2x}$$

(c) $\lim_{t\to 2^-} (\llbracket t \rrbracket - t)$, where $\llbracket t \rrbracket$ is the greatest integer less than or equal to t.

(d)
$$\lim_{(x,y)\to(0,0)} \frac{xy+y^3}{x^2+y^2}$$

3. (a) Find the equation of the tangent line to $x^2y^2 + 3xy = 10y$ at (2,1).

(b) Find the local extreme values of $f(x) = (\sin x)^{2/3}$ on $\left[-\frac{\pi}{6}, \frac{2\pi}{3} \right]$. For which values of x is f increasing, decreasing, concave up, concave down?

4. Evaluate:

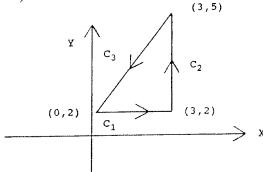
(a)
$$\int_0^{\frac{\pi}{4}} \tan^5 x \, dx$$

(b)
$$\int_{1}^{2} \ln x \, dx$$

(c)
$$\int \frac{1}{a^2 - x^2} dx$$
, $a > 0$

(d)
$$\int_0^4 \int_{\frac{x}{2}}^2 e^{y^2} \, dy \, dx$$
 (Hint: Change the order of integration.)

(e)
$$\int_C xy^2 dx + xy^2 dy$$
 along $C = C_1 \cup C_2 \cup C_3$, where



5. (a) Do the following series converge absolutely, converge conditionally, or diverge? Give reasons.

(i)
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots$$

(ii)
$$\sum_{k=1}^{\infty} \ln \frac{k}{k+1}$$

(iii)
$$\sum_{k=1}^{\infty} kr^k, \ |r| < 1.$$

(iv)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{e^n}$$

- (b) Find the convergence set for the series $1+(x+2)+\frac{(x+2)^2}{2!}+\frac{(x+2)^3}{3!}+\dots$
- (c) Find the Taylor series in (x-a) through the term $(x-a)^3$ for $\cos x$, where $a=\frac{\pi}{3}$.
- 6. (a) Find the area enclosed by the graph of the polar equation $r = 4 \sin 3\theta$.
 - (b) Find the volume of the tetrahedron bounded by the coordinate planes and the plane 3x + 6y + 4z 12 = 0.
- 7. The temperature of a ball centered at the origin is given by $T(x, y, z) = \frac{200}{5 + x^2 + y^2 + z^2}$.
 - (a) By inspection decide where the ball is hottest.
 - (b) Find a vector pointing in the direction of greatest increase in temperature at (1,-1,1).
 - (c) Does the vector in part (b) point toward the point where the ball is hottest?
- 8. Determine if $\overrightarrow{F} = (4x^3 + 9x^2y^2) \overrightarrow{i} + (6x^3y + 6y^5) \overrightarrow{j}$ is conservative, and if so find a function f of which it is the gradient.
- 9. Let V be a vector space over a field F and let W_1 and W_2 be subspaces of V.
 - (a) Show that $W_1 + W_2$ is a subspace of V.
 - (b) Give an example to show that $W_1 \cup W_2$ need not be a subspace of V.

- 10. Is the real matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$ invertible? If so, find its inverse.
- 11. Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by T(x,y,z) = (3x 2y, -2x + 3y, 5z). Find all the eigenvalues of T and determine whether or not T is diagonalizable.
- 12. Let T be a linear transformation on a finite-dimensional vector space V over R and suppose that $T^2=T$.
 - (a) Show that $V = N(T) \oplus R(T)$.
 - (b) Show that T + I is invertible, where I is the identity transformation on V.

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 26 February 3, 1995

Work the following four problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. Let $\phi: G \longrightarrow G'$ be a homomorphism of groups and suppose $x \in G$ has order $n \geq 1$.
 - (a) Show that the order of $\phi(x)$ divides n.
 - (b) Prove that if the order of G' is relatively prime to n, then x is in the kernel of ϕ .
- 2. Let G be a group and define $Z(G) = \{g \in G \mid ga = ag \text{ for all } a \in G\}$.
 - (a) Show that Z(G) is a subgroup of G.
 - (b) Show that the subgroup Z(G) is normal in G.
 - (c) Prove that if the quotient group G/Z(G) is cyclic, then G is abelian.
- 3. Suppose R and R' are rings and $\psi: R \longrightarrow R'$ is a ring homomorphism with kernel K. Suppose A' is a subring of R' and let $A = \{a \in R \mid \psi(a) \in A'\}$.
 - (a) Show that A is a subring of R and that A contains K.
 - (b) Prove that if A' is an ideal of R', then A is an ideal of R.
- 4. Let F be a field and let p(x) be a polynomial in F[x] of degree 3. Write $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ with $a_0, a_1, a_2, a_3 \in F$. Prove that if there is no element $r \in F$ such that $p(r) = a_3r^3 + a_2r^2 + a_1r + a_0 = 0$, then p(x) is irreducible in F[x].

Department of Mathematics and Computer Science COMPREHENSIVE EXAMINATION: MATHEMATICS 28 February 3, 1995

Work the following four problems. Record your answers in the blue book provided. PLEASE SHOW ALL YOUR WORK.

- 1. Let f and g be functions, f, $g : \mathbf{R} \to \mathbf{R}$, and let $a \in \mathbf{R}$. Suppose f is continuous at a and g is continuous at f(a). Prove that $g \circ f(x) = g(f(x))$ is continuous at a.
- 2. Let

$$S_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}, \qquad n = 1, 2, 3, \cdots$$

Prove that $\{S_n\}_{n=1}^{\infty}$ converges and $\lim_{n\to\infty} S_n \leq \frac{1}{2}$.

- 3. State and prove the Bolzano-Weierstrass Theorem.
- 4. Let

$$f(x) = \sum_{n=0}^{\infty} e^{-nx} x^n, \qquad (0 \le x \le 10)$$

- (a) Does this series converge uniformly on [0,10]? (Hint: Find the maximum value of xe^{-x} .)
- (b) Find the sum of the series representing f(x).