GTiler: A Python Script to Generate Google Tiles From a Georeferenced Image

Andy Anderson
Academic Technology Services
Amherst College
Amherst, Massachusetts
Simplifying Geographic Discovery

• Many professors understand the value of thinking geographically.

• Many tools for geographic discovery aren’t as time-consuming as full GIS.

• But: what can we provide students that not only lets them explore but also lets them easily build integrated geographic multimedia presentations?

Encyclopedia of Edo-Meiji-Tokyo Digital Map or Superimposed Map (Epipi Company, 2004)
Reinventing Tokyo

• We considered many possibilities for a class taught in Fall 2009:

Reinventing Tokyo: The Art, Literature, and Politics of Japan's Modern Capital

“Tokyo is the political, cultural, and economic center of Japan, the largest urban conglomeration on the planet, holding 35 million people…. Since its founding 400 years ago, when a small fishing village became Edo, the castle headquarters of the Tokugawa shoguns, the city has been reinvented multiple times...”

Fishing Village, Flying Crane, and Mount Fuji
Google Tokyo

- Google Earth’s Rumsey Historical Maps would make it a valuable tool.

- But creating presentations requires knowledge of HTML!

- Also not very “Web 2.0”

- Solution: Build our own platform with Google Maps
Cityscapes Paris

http://ats.amherst.edu/parisdemo

GTiler: A Python Script to Generate Google Tiles From a Georeferenced Raster
Cityscapes Features

- zooming
- layering
- transparency
- fully web-based
- Google-provided map service with vector features, satellite imagery, and terrain
- and more!
Cityscapes Feature: Content Balloons

- content balloons provide structured media inclusion
- dialogues don’t require knowledge of HTML
- created using the Ext JS “Rich Internet Application Framework”
Other Features

- Balloons can have blogs.
- Balloons can reference images and display them in a dedicated viewer.
- Images can be pulled directly from several different collections:
 - Luna (Smith College)
 - DigiTool (Amherst College)
 - Flickr (provided by students and others)
- Built-in access control and groups for classes.
Map Image Processing

• Map images were downloaded at the highest available resolution, usually on the order of 10K pixels\(^2\), with a scale of 1-2 meters per pixel.

• They were georeferenced using ArcMap, with the projection **WGS84 Web Mercator (Auxiliary Sphere)**, corresponding to Google Maps. *Don’t use Google Mercator* (it’s an inconsistent datum)!

• As a background, the ArcGIS Map Service **World Street Map** had great performance.
Cityscapes Feature: Georeferencing

Cityscapes historical maps are closely georeferenced:

- Google Earth
- Cityscapes
Google Tiles

- Google tiles are square and $256 = 2^8$ pixels across.
- The Mercator pixel size is:
 $$\text{cellSize}(z) = 2\pi r / 2^{z+8}$$
 where $r = 6378137$ m is the equatorial radius, and z is the Google zoom level.
- By definition, $z = 0$ produces a single tile covering the Earth exclusive of the polar regions (a distance of $2\pi r$).
- Incrementing the zoom level doubles the number of tiles.
- The zoom levels for large cities like Tokyo or Paris range from about 17 (1.2 m/px) to 7 (1.2 Km/px).
Rescaling to Tile Space

- A scanned, rectified map can be rescaled to the appropriate cell size using: ArcToolbox > Data Management > Projections and Transformations > Raster > Project Raster

- Project Raster can force a raster to a Google pixel boundary by specifying a registration point of (0, 0) — unlike Resample.
Tile Coverage

• Rescaled images typically overlap many tiles, but lie completely within one tile at the smallest scales.

• For a given zoom level, Google tiles are indexed from 0 to $2^z - 1$, west to east and north to south.

• For a given spherical Mercator position (lx, ly), the Google tile indices are given by:

$$tx(lx, z) = \text{floor} \left(2^{z-1} \left(1 + lx / (\pi r) \right) \right)$$

$$ty(ly, z) = \text{floor} \left(2^{z-1} \left(1 - hy / (\pi r) \right) \right)$$

• So, the image extent yields the tile coverage.
Extending the Image

- An image must be padded with NoData around its edge to fill it out to the extent of the covering tiles.
- The Mercator coordinates of the northwest corner of a tile \((tx, ty)\) are given by the inverse formulae:

\[
\begin{align*}
 lx(tx, z) &= \pi r \left(\frac{tx}{2^{z-1}} - 1 \right) \\
 ly(ty, z) &= \pi r \left(1 - \frac{ty}{2^{z-1}} \right)
\end{align*}
\]

which can be used to calculate the padding.
- So, the covering tile indices yield the size of the extended image, always a multiple of 256 pixels.
GTiler Script

- Tiling a georeferenced and rescaled image can be effected with programs such as Photoshop, etc.

- But, to automate the process, I wrote a Python script.
GTiler Procedure 1: Project Raster and Tiles

• The georeferenced image is first rescaled using:

\[
gp\text{-}ProjectRaster_management(\text{inputRaster}, zRaster, \text{spatialReference}, "CUBIC", \text{cellSize}, \"\", \"0 0\")
\]

• Using the formulae described previously, the four corners of the covering tiles are calculated:

\[
\begin{align*}
\text{corner} & = gp\text{-}CreateObject("Point") \\
\text{boundary} & = gp\text{-}CreateObject("Array") \\
\text{corner}\text{.ID} & = 0; \ \text{corner}\text{.X} = x\text{Min}; \ \text{corner}\text{.Y} = y\text{Min} \quad \# \text{four times} \\
\text{boundary}\text{.Add}(\text{corner}) & \quad \# \text{four times}
\end{align*}
\]
GTiler Procedure II: Create Extent Polygon

- Using the boundary list, an extent rectangle is created:

```python
gp.CreateFeatureClass_management( gp.Workspace, bPolygon, "Polygon", "", "", "", spatialReference )
cursor = gp.InsertCursor( bPolygon )
polygon = cursor.NewRow()
polygon.shape = boundary  # the field polygon.Id defaults to 0
cursor.InsertRow( polygon )
```
GTiler Procedure III: Create a Background

• A background raster the size of the final image is created with all NoData:

```python
gp FeatureToRaster_conversion( bPolygon, "Id", bRaster, tileSize = 256 * cellSize )
```

• If the input raster has more than one band, the previous step is repeated for each and then:

```python
gp CompositeBands_management( "band_1; band_2; band_3", bRaster )
```
GTiler Procedure IV: Mosaic the Image

• An empty raster is created to hold the mosaic:

 gp.CreateRasterDataset_management(gp.Workspace, xRaster, cellSize, inputRasterPixelType, spatialReference, inputRasterBandCount)

• The background and rescaled image are then mosaicked together:

 gp.Mosaic_management(bRaster + ";" + zRaster, xRaster, "LAST", "LAST", 0, """, "NONE", 0.1, "NONE")
GTiler Procedure V: Clip the Mosaic

- The mosaicked image is turned into tiles by clipping it multiple times:

```python
gp.Clip_management( xRaster,
    "%f %f %f %f" % ( xMin + cellOffset, yMin + cellOffset, xMax - cellOffset, yMax - cellOffset ),
    tRaster )
```

- In the above, `cellOffset = cellSize/2` to intersect only the boundary pixels of the raster and avoid rounding errors.
GTiler Execution

Completed

Close this dialog when completed successfully

Executing: GTiler.py G:\Paris\1855\1855R.jp2 G:\Paris\1855\Tiles 1855 1.049552999999999 11 76.4370282851763 11 11 76.4370282851763
Start Time: Tue Dec 07 21:06:34 2010
Running script GTiler.py...
Input Raster = "G:\Paris\1855\1855R.jp2"
 Raster bands = 3
 Raster Pixel Type = 8 BIT UNSIGNED
Output Folder = "G:\Paris\1855\Tiles"
Output Tile Base Name = "1855"
Zoom level range = [11, 11]
Cell size range = [76.4370282852, 76.4370282852]
z = 11:
 Cell size = 76.4370282852
 Creating Z Raster...
 Z Raster Extent:
 X Range = [253971.755115, 268187.950500]
 Y Range = [6245030.286391, 6256196.480756]
Indices of Tiles Covering Z Raster:
 X Range = [1036, 1037]
 Y Range = [704, 704]
Extent of Tiles Covering Z Raster:
 X Range = [234814.550892, 273950.309374]
 Y Range = [6242153.477881, 6261721.357122]
Creating Background Raster from the Extent of the Covering Tiles...
Mosaicking together the Background Raster and the Z Raster...
Clipping the Extended Z Raster into tiles in "G:\Paris\1855\Tiles\1855_z11"
 Creating tile 1855_z11-00-00.png
 Creating tile 1855_z11-01-00.png
End Time: Tue Dec 07 21:10:07 2010 (Elapsed Time: 3 minutes 33 seconds)
Acknowledgements

- **Samuel Morse**, professor of History of Art and of Asian Languages and Civilizations, the initiator.
- **Scott Payne**, director of Academic Technology Services, who suggested we build our own platform using Google Maps.
- **Paul Chapin**, who built the platform in JavaScript.
- **Miodrag Glumac**, who built the database interface.
- Smith College folks: **Prof. Hélène Visentin** (French), **GIS Specialist Jon Caris**, and especially student georeferencing specialist **Zoë Zaferiou**.
Image Sources

- Scanned maps were obtained from historical map collections at our institutions,
- And from those available on-line, specifically:

 The University of California at Berkeley’s East Asian Library

 The Harvard University Libraries

 The David Rumsey Historical Map Collection
Contact Information

• Andy Anderson, Academic Technology Specialist:
 * Academic Technology Services, Amherst College, Amherst, MA 01002-5000
 * aanderson@amherst.edu
 * 413-542-2255
 * https://www.amherst.edu/people/facstaff/aanderson
 * Twitter @GeoObservatory