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There are 12 problems (totaling 140 points) on this portion of the examination. Record your
answers in the blue book provided. Show all of your work.

1. [15 points] Compute the following limits:

(a) lim
x→0

1− cos(sinx)

sin2(x)

(b) lim
x→0

(
ln(x + 1) + 1

)csc(x)
(c) lim

n→∞

n∑
k=0

(−1)k2k

32k+2

2. [10 points] Compute the following integrals:

(a)

∫ 1
2

0

sin−1(x) dx

(b)

∫
x2 + x + 1

x3 + x
dx

3. [15 points] Determine whether the following series converge or diverge. Justify your
answers carefully.

(a)
∞∑
n=1

(−1)n

n + lnn

(b)
∞∑
n=0

26n(n!)3

(3n)!

(c)
∞∑
n=1

n ln
(n + 1

n

)

4. [10 points] For each real number x, determine whether the series

∞∑
n=1

(1− 2x)n

n2n

converges absolutely, converges conditionally, or diverges.
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5. [15 points] Evaluate the following integrals:

(a)

∫ 1

0

∫ 1

x2

x3 sin(y3) dy dx.

(b)
∫
C

(y2 + 6y)dx +
(
cos(y2) + 2x(y + 1)

)
dy, where C is some circle of radius 3 in

the xy-plane, oriented counterclockwise.

6. [10 points] Find the volume of the solid above the cone z =
√

x2 + y2 and below the
sphere x2 +y2 +z2 = z. Note that, while the sphere is not centered at the origin, using
spherical coordinates still works nicely for this problem.

7. [12 points] Consider the function

f(x, y) =

{
xy

x2+y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Is f continuous at (0, 0)? Justify your answer.

(b) Find fx(0, 0) and fy(0, 0).

(c) Is f differentiable at (0,0)? Justify your answer.

8. [10 points] Assume that the temperature in degrees Celsius at a point (x, y) on the
circle x2 + y2 = 4 is given by T (x, y) = x2 + 4x− y2 + 12. Find the points on the circle
at which the temperature is highest and lowest, and state the temperature at each of
these points.

9. [10 points] Let C be a 3× 5 real-valued matrix. Answer the following questions about
C and briefly justify your answers:

(a) Can the columns of C be linearly independent?

(b) Does the equation Cx = 0 have a unique solution with x ∈ R5?

(c) Assume that the span of the columns of C is all of R3. Can you determine the
nullity (= dimension of the null space or kernel) of C?

10. [8 points] Consider the matrix

A =

[
1 3
4 2

]
.

(a) Determine the eigenvalues and eigenvectors of A.

(b) Find an invertible matrix P and a diagonal matrix D such that A = PDP−1.
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11. [10 points] Let T : V → V be a linear transformation on a finite dimensional vector
space V . Suppose T is one-to-one (injective). Prove that if {v1, ..., vn} is a basis for V ,
then {T (v1), ..., T (vn)} is also a basis for V .

12. [15 points] Let T : P2 → R2, where P2 = {a + bt + ct2 : a, b, c ∈ R}, be defined by

T (p) =

[
p(1)
p(2)

]
.

You may assume that T is linear.

(a) Find bases of the null space (kernel) and range of T .

(b) Find the matrix representation of this transformation with respect to the bases

{1, t, t2} and

{[
1
0

]
,

[
−1
1

]}
.
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Amherst College
Department of Mathematics

Comprehensive Examination: Algebra

Friday, January 27, 2012

Instructions: Do all four of the following problems. Write your solutions and all scratchwork
in your bluebook(s). Show all your work, and justify your answers.

1. (25 points). Let G be a group, and let H,K ⊆ G be subgroups of G.

(a) Prove the following standard theorem about subgroups: that H∩K is a subgroup
of G.

(b) If H and K are both normal subgroups of G, prove that H ∩K is also a normal
subgroup of G.

2. (25 points). Let G and H be groups. Recall that a homomorphism φ : G → H is
said to be trivial if φ(g) = eH for all g ∈ G.

(a) If |G| = 144 and |H| = 25, prove that any homomorphism φ : G → H is trivial.

(b) Let G be the cyclic group of order 2, and let H be the cyclic group of order 6.
Give an example of a nontrivial homomorphism φ : G → H.

3. (25 points).

(a) List all elements of A4, the alternating group of degree four, expressing each such
element as a product of disjoint cycles.

(b) For each element you listed, say what its order is.

4. (25 points). Let R be a ring.

(a) Define what it means for a subset I ⊆ R to be an ideal of R.

(b) Let R =

{[

a b

0 c

]

: a, b, c ∈ R

}

. You may assume that R is a ring under the

operations of matrix addition and matrix multiplication.

Let I =

{[

a b

0 0

]

: a, b ∈ R

}

. Prove that I is an ideal of R.



AMHERST COLLEGE
Department of Mathematics

COMPREHENSIVE EXAMINATION: ANALYSIS
January 27, 2012

Work the following four problems.
Record your answers in the blue book provided.

PLEASE SHOW ALL OF YOUR WORK.

1. [4 points] State the Axiom of Completeness (also known as the Axiom of Continuity
for the Real Numbers or Axiom C).

2. (a) [6 points] The standard triangle inequality states that |x + y| ≤ |x| + |y| for
x, y ∈ R. Assuming this result, give a careful proof that if x1, . . . , xn ∈ R, n ≥ 2,
then |x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|.

(b) [6 points] Recall that a function f : S → R is bounded if there is M ∈ R with
|f(x)| ≤ M for all x ∈ S. Now suppose we have bounded functions f1, . . . , fn :
S → R, n ≥ 2, and define f1 + · · · + fn : S → R by (f1 + · · · + fn)(x) =
f1(x) + · · ·+ fn(x) for x ∈ S. Prove that f1 + · · ·+ fn is bounded.

3. Consider the sequence of functions defined by fn(x) = 2 + (1 + 1
n
)x for n ≥ 1. This

sequence converges pointwise to f(x) = 2 + x.

(a) [7 points] Prove that the sequence converges uniformly to f on [0, 10].

(b) [7 points] Prove that the sequence does not converge uniformly on [0,∞).

4. [10 points] Suppose that we have continuous functions f, g : R → R. Prove that the
composition f ◦ g : R→ R is also continuous.
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