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Abstract

Abrupt Changes in the Tunneling Levels for Mn12-tBuAc Induced by a

Transverse Magnetic Field

Faculty Advisor: Professor Jonathan R. Friedman

This thesis investigates the magnetic dynamics of the high symmetry SMM

Mn12-tBuAc. The core of this molecule has an arrangement of twelve Man-

ganese magnetic ions giving the molecule a total (giant) spin of 10. This SMM

has a large uniaxial anisotropy between the m = +10 and m = −10 eigen-

states of the Sz spin operator. The spin can reverse direction by rotating

from up (m = +10) to down (m = −10) if it has enough thermal activation

to “climb” over the anisotropy barrier. But at low enough temperatures this

classical relaxation behavior will be suppressed in favor of a semi-classical phe-

nomenon called thermally assisted tunneling of magnetization. In particular,

this research investigates the longitudinal- and transverse-field dependences

of the magnetic relaxation rate for Mn12-tBuAc. We interpret our results as

evidence that the dominant levels for thermally assisted resonant tunneling

change abruptly as the applied transverse field is increased.
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Chapter 1

Introduction

Some of the predictions of Quantum Mechanics are often presented to the

general public as counterintuitive, strange and sometimes philosophically un-

sound. However, any doubts about the validity of the theory are overpowered

by the immense body of experiments that confirm it, such as tests of Bell’s

inequalities. Although most problems are rarely solved analytically, perturba-

tion theory and other approximation methods give a quantitative explanation

of most phenomena in the microscopic scale.

In the Schröndinger Cat paradox the animal is found in a superposition

of macroscopic states. The cat is a macroscopic object that contains a macro-

scopic degree of freedom (its own life) and this degree of freedom can be in a

quantum mechanical superposition of macroscopically distinct states (dead or

alive). In the spirit of the original intentions of Schröndinger we must remark

that we do not observe macroscopic objects in a superposition of macroscop-

ically distinct states. This is frustrating since it should be expected that, if

macroscopic objects are just a large collection of microscopic particles, a the-

ory that explains microscopic phenomena should fully explain the macroscopic.
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As a self assessment I would ask the reader to categorize the phenomena of

alpha particle emissions by heavy nuclei and the mechanics of a heat engine.

These two should clearly fall under the microscopic and macroscopic labels

respectively. But our understanding of phenomena that occur, not when a

single particle shows quantum behavior, but instead a large ensemble of them

do, still requires further investigation.

There has been a large commitment by physicists over the past few decades

to experiment with systems that show both quantum mechanical and macro-

scopic characteristics. There are many approaches to produce these kinds of

systems, but in essence most of them will fall under two categories, as ex-

plained by Friedman in [2]. One way is to start with a macroscopic system

and shrink it to smaller scales until the system behaves quantum mechanically

(in a top-down fashion). Another way is to start with a microscopic system

displaying quantum behavior and then either enlarge the system until macro-

scopic degrees of freedom can be measured or to put together an ensemble of

these microscopic systems until the whole ensemble displays macroscopic de-

grees of freedom (in a bottom-up approach). Molecular Magnets fall under this

latter category, where the magnetization represents the macroscopic degree of

freedom.

In this thesis I will describe the experiments we have performed on the

Molecular Magnet Mn12-tBuAc. In particular, we have studied the magnetic

field dependence of its relaxation rate of magnetization. Most of the data that

will be discussed in later chapters was collected during the summer and fall

of 2007. After this productive period we have encountered several technical

problems that prevented further measurements. Although we had a qualitative

understanding of the main features of the data, it became clear that we needed

3



a more detailed understanding of the dynamics that controls the relaxation of

the magnetization for Mn12-tBuAc. This ignited a new phase of this project,

where we performed detailed simulations of the relaxation dynamics.

The primary motivation for the experiments, and later theoretical calcula-

tions, has been to understand how the phenomenon of transverse-field-induced

barrier reduction can change the relaxation dynamics of magnetization in a

single-molecule magnet. In this first chapter I will give a brief introduction

of molecular magnets, citing key experimental results that attracted attention

to the field since the mid-nineties. And, I will also present the Hamiltonian

for Mn12-tBuAc in a constructive approach, where I will explain the physical

interpretation of the terms in the Hamiltonian that will be relevant to this

thesis. Since the Schröndinger equation dictates the time evolution of any

system in quantum mechanics, understanding the Hamiltonian is a key step

toward a better comprehension of the dynamics of the system of interest.

1.1 Molecular Magnets

Molecular magnets are, as the name suggests, molecules that have a nonzero

magnetic moment. If these molecules are constructed out of magnetic ions,

then the entire molecule should behave as a little magnetic domain or as a

single nanometer size magnet. The term single-molecule magnet (SMM) has

become the canonical term to describe molecules that fall under the descrip-

tion in the last sentence. In this thesis I will discuss experiments and results

that were done on the SMM [Mn12O12(O2CCH2Bu
t)16(CH3OH)4] ·CH3OH,

Mn12-tBuAc for short [3, 4]. This SMM is a variant of the more well known

[Mn12O12(O2CCH3)16(H2O)4] ·2CH3CO2H ·4H2O, Mn12-Ac for short, molec-
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ular magnet (see Fig. 1.1) which is the most studied SMM of the last fifteen

years. Because both SMMs share most of their characteristics, it is only nat-

ural to begin a discussion of Mn12-Ac. In the next section I will address these

shared characteristics and for simplicity, I will, at some points, refer to both

Mn12-Ac and Mn12-tBuAc as Mn12, while keeping the distinction when appro-

priate.

Figure 1.1: The Mn12-Ac Molecule. Reproduced by permission of R. Sessoli.

1.1.1 The Mn12 SMM

The compound Mn12-Ac was first synthesized by Lis [5] in 1980. The ionic

core of Mn12 is composed of four Mn4+ ions with spin S= 3/2 in a tetrahedron

surrounded by eight Mn3+ ions with spin S= 2 in a non-coplanar ring. At low

enough temperatures, the coupling between the Mn ions is strong enough to

preserve the molecular structure, therefore giving rise to a giant spin1 S = 10

1For Mn12 g is approximately 2. It will be left to the reader to decide if a magnetic
moment of 2×10µB = 20µB is macroscopic enough for the giant spin term to be applicable.
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system. This spin allows for 21 quantized orientations of the projection of

the spin along the z-axis (−10 ≤ m ≤ +10). In the absence of any external

magnetic fields the system is characterized by a large anisotropy between the

m = −10 and m = +10 states, which, by convention, will be referred to as the

down and up orientations. So the simplest Hamiltonian for the system would

be given by:

HA = −DS2
z , (1.1)

where D ≈ 0.548K [6]. This results in a anisotropy barrier between the

m = ±10 states of approximately (S2 − 02) × 0.548 ≈ 55 K. A potential

diagram versus the polar angle (angle between the spin and the z-axis) yields

a double-well structure and can be seen in Fig. 1.2, where the lines represent

the possible energies for the m states.

Figure 1.2: Double Well Potential - Schematic representation of the energy
levels in Mn12 at zero applied magnetic field.

In the Bohr atom, the energy level spacing between adjacent levels de-

creases dramatically as we move to higher levels (away from the nucleus). The
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energy level density is so high far from the nucleus, that the quantization

effects of QM are washed away, giving preference to a quasi-continuous en-

ergy spectrum. It is, therefore, pertinent to ask under what regimes should

the quantization of the energy levels in Mn12 be relevant. It is obviously

not relevant at room temperature since the anisotropy barrier is of the or-

der of 60 K. A back of the envelope calculation yields an energy spacing of

D × (S2 − (S − 1)2)0.55 K × (100− 81) ≈ 10.45 K between the ground state

and the first excited level. As a rough estimate, it can be said that the quan-

tization of the system is relevant whenever the temperature is in the order of

10 K. Most of the experiments performed on this SMM, including the ones I

will describe in this thesis, are performed at temperatures below 10 K.

Notice that, if the system was solely described by Eq. (1.1), then HA

and Sz would commute and the |m〉 eigenstates of the Sz operator would be

eigenstates of the Hamiltonian. The picture becomes a little more interesting

if we add a symmetry breaking term to Eq. (1.1).

HA,Z = −DS2
z − gµB ~H · ~S (1.2)

= −DS2
z − gµB(HxSx +HzSz) (1.3)

In Eq. (1.2) the dot product on the RHS is the Zeeman coupling term. The

constant µB is the Bohr magneton and g ≈ 2 [7]. To make the effects of this

applied magnetic field evident I have rewritten the RHS in (1.3) assuming

that ~H is in the x-z plane. For nonzero Hx the HA,Z Hamiltonian does not

commute with the Sz operator. Consequently the |m〉 states no longer form

an energy eigenbasis of the system. More on this topic will be addressed in

chapter 2.

Evidence for quantum resonant tunneling of the magnetization was first

conclusively observed and interpreted by Friedman et al. [8] in the form of
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Figure 1.3: Hysteresis for Mn12-Ac. The steps occur for field values (Hz) that
are independent of temperature. As the temperature is increased the loops
close in on themselves [2, 9]. Reproduced by permission of J.R. Friedman, ©
1997 The American Physical Society.

steps in the hysteresis loops of magnetization versus an applied longitudinal-

field Hz. The hysteresis curves for Mn12-Ac can be seen in Figure 1.3. The

steps in the magnetization occur at equally spaced values of Hz, which are

independent of temperature. However, as the temperature is increased, the

hysteresis loops close in on themselves. At high enough temperatures, the

molecules have enough energy to reverse their spin orientation when the mag-

netic field changes direction, suggesting that the process of relaxation of mag-

netization is partially caused by thermal activation.

The steps were interpreted to appear at values of Hz where m levels on

opposite wells align, which we will intuitively call the resonance condition; it

can be seen schematically in Fig. 1.4. The condition for two levels m and m′
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to be on resonance is2

−Dm2 − gµBHzm = −Dm′2 − gµBHzm
′. (1.4)

After some algebraic manipulation, Eq. (1.4) yields

Hz =
−D(m+m′)

gµB
= −N D

gµB
, (1.5)

where m + m′ = N is the resonance. So, for example, the N = 1 resonance

occurs when m = ±10 and m′ = ∓9 align on opposite wells. Figure 1.4 shows

the N = 4 resonance. Given the value of D mentioned above, the resonance

condition is Hz ≈ N × 0.45T , as the reader can verify in Fig. 1.3. I have

dropped the minus sign since, for example, the +9,−10 resonance condition is

analogous to the −9,+10 condition and will both be referred to as the N = 1

resonance.

For the sake of argument I have neglected an important term to the Hamil-

tonian of Mn12. This term is a fourth order anisotropy −BS4
z , where B =

1.17 × 10−3 K [6]. When resonance is achieved between the m = −7 and

m = +9 levels, for example, other levels will not be on resonance because

of the fourth order anisotropy (Fig. 1.5). The resonance condition has to be

altered:

Hz = −D(m+m′)

gµB

[
1 +

B

D
(m2 +m′2)

]
. (1.6)

Where the resonance no longer depends on N = m + m′ only, instead, the

term inside the square brackets depends on both m and m′ independently. I

will sometimes ambiguously use the N resonance terminology. Even though

the N resonance is split into many resonances, the range of the N resonance

2The existence of a fourth order anisotropy term, as discussed in the end of this section,
will alter this resonance condition. This is, however, a good approximation for understanding
the existence of the steps in the hysteresis.
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DOWN
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m=‐10

m=‐9

m=‐8

m=+10
m=+9
m=+8

Figure 1.4: Resonance Condition — the m = −6 level is aligned with the
m = +10 level. This is the N = 4 resonance.
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does not overlap with the range of the N ±1 resonances, as long as N remains

small.

Figure 1.5: Double Well Potential — level m = +9 is on-resonance with m =
−7 but the fourth order anisotropy (−BS4

z ) does not allow more resonances
(see dashed lines). Red lines represent energy of the levels on the left well and
purple lines represent energy of the levels on the right well.

And, for completeness, I will also mention the existence of a transverse

anisotropy term E(S2
x − S2

y) [10, 11, 12]. The full Hamiltonian reads:

HT = −DS2
z −BS4

z − gµB ~H · ~S + E(S2
x − S2

y) . (1.7)

Throughout most of the this thesis, however, I will not take into account effects

due to the transverse anisotropy. We will primarily work with the reduced

Hamiltonian:

H = −DS2
z −BS4

z − gµB ~H · ~S . (1.8)
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1.1.2 Differences between Mn12-Ac and Mn12-tBuAc

The core molecular structure of Mn12-tBuAc and Mn12-Ac are identical, but

the former has much less intermolecular interaction due to a larger separation

between molecules. Furthermore, Mn12-tBuAc has a a truly axial four-fold

symmetry. Cornia et al. [13] found that although Mn12-Ac has an average

four-fold symmetry, it actually contains Mn12 molecules in six different forms,

depending on the form of its hydrogen bonds (Fig. 1.6 from [13]). Detailed

EPR studies showed that Mn12-tBuAc has less solvent disorder [3]. Ideally

Figure 1.6: Six different isomers of Mn12-Ac. Only two have four-fold axial
symmetry (n = 1 and n = 4) [13].

we would like all molecules in a Mn12 crystal to have no interaction with each

other and, also, all the molecules to share the same z-axis (crystallographic

axial symmetry).

In 2006 Wernsdorfer et al. [4] performed detailed studies of the hysteresis

loops for Mn12-tBuAc. At temperatures near the crossover between thermally

assisted and pure quantum tunneling they observed a very clear fine structure

to the hysteresis loops. A comparison between Mn12-tBuAc and Mn12-Ac can
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be seen in Fig. 1.73. The steps in the fine structure of the hysteresis loops

are due to the fourth order anisotropy. Wernsdorfer et al. concluded that

the increased level of detail they found in the Mn12-tBuAc was only possible

because of less disorder in its crystalline structure of Mn12-tBuAc.

Figure 1.7: Hysteresis loops of single crystals of (a)(b) Mn12-tBuAc and (c)
Mn12-Ac molecular clusters at different temperatures and a constant field
sweep rate indicated in the figure. The data in (c) were taken from [14].
The loops display a series of steps, separated by plateaus. As the temper-
ature is lowered, there is a decrease in the transition rate due to reduced
thermally assisted tunneling. The hysteresis loops become temperature inde-
pendent below 0.6 K, demonstrating quantum tunneling at the lowest energy
levels. Reproduced from [4] by permission of W. Wernsdorfer, © 2006 The
American Physical Society.

We also believe that the higher symmetry in the Mn12-tBuAc crystal al-

3Figure’s caption reproduced from [4]
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lowed more detailed measurements of its longitudinal-field dependence of the

relaxation rates of magnetization. Similar studies have been performed in

Mn12-Ac [15] but only with Mn12-tBuAc have we been able to observe the level

of detail necessary for a more accurate characterization of these processes.

1.2 Summary of Chapters

In chapter 2, I will first discuss the process of spin tunneling in a two-state

system and introduce the concept of tunnel splitting. Then, I will briefly re-

view some key theoretical results obtained by Friedman [16], Garanin, and

Chudnovsky [17, 18], via perturbation theory, regarding the process of bar-

rier reduction. So, the purpose of the first two chapters will be to give the

reader enough background information to allow a clear understanding of the

experimental and theoretical results in chapters 4 and 5.

In chapter 3, I will discuss the experimental techniques used to measure

the relaxation rate of magnetization in Mn12-tBuAc and its longitudinal- and

transverse-field dependence. In chapter 4, I will discuss our experimental re-

sults and our preliminary interpretations of the data. We observe the measured

transverse-field dependence of the relaxation rate for Mn12-tBuAc to increase

in a series of plateaus and steps. We interpret our results as evidence that the

dominant levels for thermally assisted resonant tunneling change abruptly as

the applied transverse-field is increased. Not all features of the experimental

data could be understood, which pushed the research in a theoretical direction.

In chapter 5, I will describe how we use density matrix formalism, follow-

ing the results by Chudnovsky and Garanin [17, 18], to gain a better under-

standing of the phonon-induced magnetic relaxation processes in Mn12-tBuAc,

14



culminating in calculations that determine the dominant path for a molecule

relaxing from one well to the other. We construct path diagrams for different

transverse-fields and present them as video files that can be played in any

computer. In chapter 6, I will summarize the key results in this thesis and

discuss directions for future research.
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Chapter 2

Theoretical Background

I will not fully develop a theoretical description of tunneling. In appendix A

I sketch the textbook calculation that obtains spatial tunneling as a solution

to Schröndinger Equation (SE) for single particles facing a potential barrier

and without enough energy to overcome it. In this chapter I will show how

to obtain spin tunneling in a two-state system by introducing a perturbation

to a simple spin Hamiltonian. The objective of the first section is, therefore,

to familiarize the reader with spin tunneling, and to introduce the concept of

tunnel splitting.

2.1 Tunneling in a two-state system

Consider the Hamiltonian,

Ĥ = −Ŝ2
z + Ĥ

′
, (2.1)

where Ĥ′ is a perturbation to the unperturbed Ŝ2
z Hamiltonian. The attentive

reader will notice the similarity of this Hamiltonian to the one in Eq. (1.8). In
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the basis |±z〉 this Hamiltonian can be represented in matrix form by

Ĥ =

(
〈+z| Ĥ |+z〉 〈+z| Ĥ |−z〉
〈−z| Ĥ |+z〉 〈−z| Ĥ |−z〉

)
. (2.2)

If we let E be the eigenvalue of the unperturbed Hamiltonian (Ŝ2
z) (notice

the degeneracy of the eigenvalues due to the second order in the Ŝ2
z term)

and 〈−z| Ĥ′ |+z〉 = 〈+z| Ĥ′ |−z〉 = ∆/21 be the off diagonal elements, then

Eq. (2.2) can be rewritten in a more friendly form:

Ĥ =

(
E ∆/2

∆/2 E

)
. (2.3)

This matrix can be easily diagonalized and we obtain two eigenstates of

the Hamiltonian,

|ψ1〉 =
1√
2

(|+z〉+ |−z〉)

|ψ2〉 =
1√
2

(|+z〉 − |−z〉) , (2.4)

with their respective eigenenergies E1 = E + ∆/2 and E2 = E − ∆/2. The

time-dependent solution to the Hamiltonian is |Ψ(t)〉 = e−iĤt/~ |Ψ(0)〉. If we

set |Ψ(0)〉 = |+z〉 we find the following solution:

|Ψ(t)〉 =
e−iĤt/~
√

2
(|ψ1〉+ |ψ2〉)

=
1√
2

(e−it(E+∆/2)/~ |ψ1〉+ e−it(E−∆/2)/~ |ψ2〉)

=
eitE/~

2
(e−it∆/2~(|+z〉+ |−z〉) + eit∆/2~(|+z〉 − |−z〉))

=
eitE/~

2
((e−it∆/2~ + eit∆/2~) |+z〉 − (eit∆/2~ − e−it∆/2~) |−z〉)

= eitE/~(cos(
t∆

2~
) |+z〉 − i sin(

t∆

2~
) |−z〉). (2.5)

1Here we use the fact that the Hamiltonian is a hermitian operator to obtain
〈−z| Ĥ′ |+z〉 = 〈+z| Ĥ′ |−z〉 and the orthogonality of the |±z〉 basis.
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If Ĥ′ = 0, then ∆ = 0, the oscillatory terms in Eq. (2.5) will be irrelevant and

|Ψ(t)〉 = |+z〉. This would mean that the states |±z〉 are localized and any

transition is forbidden. For nonzero Ĥ
′
, however, the probability of transition

to the |−z〉 state is sin2( t∆
2~ ). If we plot the potential energy of the system

versus the polar angle between the spin and the z-axis we will find that it has

a double-well shape (see Fig. 1.2). The two wells represent the |±z〉 states. In

our example the particle is initially trapped in the left well without enough

energy to go over the barrier. The effect of Ĥ
′
6= 0 is to allow tunneling. In

the case of Mn12-tBuAc the Hamiltonian operates in a 21 dimensional space

and analytical solutions like the one we just found are not trivial [19]. We

will see in the next section, however, that approximate solutions to the tunnel

splitting can be found using perturbation theory.

2.2 Barrier Reduction and Thermally Assisted

Quantum Tunneling

Consider the Hamiltonian in Eq. (2.6)

H = −DS2
z − gµBHxSx, (2.6)

where Hx is a small perturbation to the unperturbed −DS2
z Hamiltonian. The

potential diagram is represented by a double-well potential. A molecule that

is initially localized in the S = +10 state and has enough energy to overcome

the barrier, will do so according to an Arrhenius Law,

Γ = ω0e
−E
T , (2.7)
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where Γ is the transition rate between the up and down orientations, and E is

the height of the barrier2. The constant factor, ω0, is the attempt frequency

which represents the frequency of oscillations at the bottom of the inverted

potential (i.e. the top of the barrier). I will not discuss the attempt frequency

or its physical significance. The interested reader can find more information

in [20].

The relaxation rate Γ depends on the temperature and on the barrier

height. A lower barrier implies, according to Eq. (2.7), a larger value for

Γ. How can we control the height of the barrier? Classically a transverse field

(in the x-axis) would reduce the height of barrier. We can rewrite Eq. (2.6),

taking it to be the total potential energy, in terms of a continuous classical

variable: the polar angle the spin makes with the z-axis. The classical energy

is

E = −DS2 cos2(θ)− hxS sin(θ), (2.8)

where hx = −gµBHx, and we restrict the motion of the spin to the x-z plane.

To find the top and bottom of the barrier we can find the values of θ for which

the first derivative of E with respect to θ vanishes. We find the extrema to

be:

Emax = −hxS and (2.9)

Emin = −DS2

(
1− h2

x

4D2S2

)
− h2

x

2D
. (2.10)

The next equation gives the height of the barrier.

∆E = DS2

(
1− hx

2DS

)2

(2.11)

This result implies that a nonzero transverse field will reduce the height of the

barrier.

2The energy barrier is measured in Kelvins, since we are using units of k = 1 in the
exponential factor in Eq. (2.7)
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To reconcile the classical picture with quantum mechanics first note that,

as we have seen in section 2.1, a nonzero transverse field acts as a symmetry

breaking perturbation that allows tunneling between the eigenstates of the Sz

operator. The tunnel splitting is, up to a factor of ~, just the frequency of

oscillations between any two levels close to the resonance condition3. For small

Hx, Garanin [21] was able to find an analytical solution to the tunnel splitting

for the case Hz = 0 in 2|m|th order perturbation theory. His result for the

tunnel splitting is:

∆m =
2D

[(2m− 1)!]2
(S +m)!

(S −m)!

(
hx
2D

)2S

. (2.12)

And for 1� |m| � S one can find an approximate expression4,

∆m ≈
2D|m|
π

(
e2Shx
8Dm2

)2|m|

. (2.13)

The use of perturbation theory to solve for the tunnel splitting is valid for small

∆m. From Eq. (2.13) we see that this condition no longer applies whenever

(e2Shx/8Dm
2) ≥ 1. So for m2 ≤ e2Shx/8D the very large splitting implies

transitions so large that the barrier above these m states becomes irrelevant

to the relaxation process. One can then obtain an expression for the height of

the barrier [16],

∆Eeff = DS2 −De
2Shx
8D

≈ DS2

[
1−

(
e2

8

)
hx

2DS

]2

, (2.14)

which differs from the classical expression in Eq. (2.11) only by a factor of

e2/8 ≈ .92 which is of the order of 1.

What we learn from this exercise is that we can talk about a barrier re-

duction in the quantum mechanical picture by defining the top of the barrier

3See Eq. (2.5)
4Following the argument by Friedman [16] to find the effective barrier height.
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to be where tunneling occurs sufficiently fast. But sufficiently fast compared

to what? To answer this question we will have to account for the thermal

processes that can excite a given molecule to the effective top of the barrier.

To find the relaxation rate one must take into account all the processes that

rotate the orientation of the spin. Suppose, for the sake of argument, that we

apply a large longitudinal-field that populates the ground state, m = +10, for

example. The potential diagram for this metastable state would be similar to

Fig. 1.4. The magnetization, ~M, of an ensemble of Mn12 molecules is therefore

saturated because all the spins point in only one direction. Any increase in

Hz will not change the value of ~M. Suppose that we now turn off the longitu-

dinal magnetic field, while keeping the transverse field Hx at a nonzero value

in order to allow tunneling. The molecules will now try to reach equilibrium.

The population of each well in equilibrium is determined by the Boltzmann

factor exp [−(Em − E−10)/T ], which is just the ratio of the population of the

m state to the population of m = −10 state. So, the probability that a spin

initially in the metastable ground state will populate a level is exponentially

dependent on m (since Em depends on m). The tunneling rate from a given

level also depends strongly on m (see exponent in Eq. (2.13)). Table 2.1 shows

the tunneling rates between any two quasi-degenerate levels at Hz = 0 and

Hx = 100 Oe. The values for the relaxation rate are computed using Eq. (2.12)

divided by ~. The tunneling rate changes by several orders of magnitude be-

tween matching levels. For m = ±3 the relaxation time is in the order of ten

seconds, while for m = ±7 the relaxation time is about ten thousand times

the age of the universe.

Because the tunneling rate for a given matching pair changes so much, the

chances are that the tunneling will be too fast or too slow compared to the rate

of thermal activation given by the Arrhenius exponent. If for a particular level
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m Tunneling Rate (Hz)
±1 2.4× 109

±2 1.1× 106

±3 4.1× 101

±4 3.4× 10−4

±5 8.8× 10−10

±6 8.7× 10−16

±7 3.6× 10−22

±8 6.6× 10−29

±9 5.1× 10−36

±10 1.3× 10−43

Table 2.1: Tunneling Rates

(m∗ ) the tunneling is too large, any spin that is thermally excited to that level

will tunnel immediately. If, however, the tunneling on the next lower level is

too slow, then the spins are effectively forbidden to tunnel. This means that

we can define the barrier to be Es−Em∗ . So, this process of thermally assisted

tunneling is essentially a competition between the probability of occupancy of

a given level versus the probability of tunneling due to a perturbation of the

Hamiltonian.

Using the same line of argument as Garanin [21], the tunnel splitting can be

obtained using perturbation theory for the condition of small transverse field

and N 6= 0 resonance. The result is similar and can be found in [16, 20, 22].

One would expect, however, that because the probability of tunneling off-

resonance is so small, the relaxation under these conditions would be entirely

of thermal nature. Because of the large (orders of magnitude) differences

between the tunneling rates for different m, one should also expect the barrier

height to change abruptly as a function of Hx. A comprehensive theory of

the transition rate has been developed by Garanin and Chudnovsky [17, 18],

using the formalism of density matrix theory. In this thesis I will present some
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of our new experimental results and numerical simulations that challenge our

expectation of purely thermal process for the off-resonance condition, and that

at the same time confirm the existence of abrupt changes in the relaxation rate

(consequently barrier height) as Hx is increased.
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Chapter 3

Experimental Methods

In this chapter I will describe in detail the techniques used in this experiment.

Basically, we measure the magnetization of our samples using a Hall magne-

tometer which, as the name suggests, makes use of nothing else but the Hall

effect. The essential equipment is an off-the-shelf Quantum Design Physical

Property Measurement System (PPMS): a liquid helium refrigerator that can

go as low as 1.8 K. The PPMS (Fig. 3.1) also contains a 9T superconducting

magnet, with the field fixed along the z-axis. Using the Horizontal Rotator

(Fig. 3.2) option for the system we can rotate our experiment along the polar

angle (on the z-x plane). The difficulty in performing the experiments comes

from its size. The automation of the PPMS allows students who are not very

familiar with cryogenics to cool down anything that will fit inside the system.

Designing and building an experiment for the small dimensions is, however, a

very interesting experimental challenge. I will try to describe all phases of the

experiment in enough detail for the reader to understand how we obtained the

results presented on the next chapter, but I will try to keep this chapter brief

in an attempt to keep the non experimentalist interested.
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Figure 3.1: Quantum Design Physical Property Measurement System (PPMS)
- temperature range is 1.8 K to 400 K, and contains a 9 T Magnet.

A

C

B

B

Figure 3.2: Horizontal Rotator - (A) full length of the probe, (B) enlarged
view of the spring system, and (C) board with Hall sensor (not visible) and
AC susceptibility coil.
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3.1 Hall Sensor

The Hall sensors used in this experiment are provided by Prof. Eli Zeldov’s

group at the Weizmann Institute in Israel. The Hall sensor is a square semicon-

ductor chip (0.2′′ sides) with several contact pads on the outside (see Fig. 3.3).

The Hall Bar is located at the center of the chip. The outside pads are elec-

trically connected to several areas of the Hall bar. In essence, the Hall bar

measures the normal component of incident magnetic fields. The classical Hall

effect is applicable, as long as we are confined to fields below 1 T (104 Oe).

We apply a current along the length of the Hall Bar and any magnetic fields

perpendicular to the current will induce a voltage differential along the width

of the sensor (Fig. 3.4).

Most experiments were realized using a Hall current of 50 µA, although

sometimes we have pushed it to 100µA. A larger current could potentially

warm up any crystals mounted on top of the Hall sensor. We have character-

ized the field response of the Hall sensors in this experiment and the result

can be seen in Fig. 3.1. The straight line for fields below 1 T is the classical

Hall effect. Above 1 T we see the Hall resistance increasing in a series of steps,

which is nothing else but the Quantum Hall Effect. We perform our experi-

ments away from the nonlinear region and we have found the sensitivity of the

Hall sensor to be independent of temperature between 2 K and 10 K.

To prepare the Hall sensor for experiment we first have to fix it, using

varnish, on top an insulating board (see Fig. 3.6) that fits on the Horizontal

Rotator (Fig. 3.2(C)). We connect the pads on the Hall sensor to the pads

on the board using a Kulicke and Soffa Model 4124 Thermosonic Gold Ball
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Hall Bar

Figure 3.3: Hall Sensor — the Hall bar is located at the center. The current is
along the horizontal coordinate and the voltage is measured across the width
of the Hall bar. Some leads between the outside pads and the Hall bar are
visible.
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Figure 3.4: Hall Effect – Current is applied along the horizontal axis. The
magnetic field (into the page) induces a voltage difference across (vertical axis)
the width of the Hall bar.
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Figure 3.5: Hall resistance versus applied magnetic field at 3.21(1) K– below
1 T the Hall resistance increases linearly with field.
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Bonder1. The Hall sensor, now fixed on the insulating board, is clamped to

Hall Sensor

Figure 3.6: Hall sensor fixed on top of the insulating board.

the workholder and heated to approximately 120 �. A golden wire, 1 mil in

diameter, is fed through a capilary. In the end of the capilary, a high voltage

is applied to the wire, initiating a spark that cuts it and leaves a ball in the

end of the hanging piece. The ball is slightly pressed against one of the Hall

sensor pads (too much force could damage the pad) followed by an ultrasound

pulse that forces the surfaces together. The next bond is made onto the board

and it is accomplished essentially in the same way as the first bond, except

that it has no ball in the end. After the second bond, a wire connecting the

Hall sensor to the board is left behind, a new ball is created and the bonder

1Before briefly describing its operation, I cannot resist mentioning that going through
the experience of using this machine requires a lot of patience. Although we would like to
believe otherwise, the calibration of this machine is not sensible and putting it to work can
be regarded as an art. Once it is operational, however, this machine is an essential part of
the lab.
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is ready for work again.

In our setup we have to make six bonds: two leads to measure the voltage

across the Hall Bar at the position where our Mn12-tBuAc crystal will be

mounted. Another pair is necessary to measure the voltage across the Hall bar

at a position far from the first pair; this is our control pair. In this manner, we

can electronically subtract this background voltage from the signal collected

by the first pair, in order to isolate the signal coming purely from the Mn12-

tBuAc crystal. A third pair is connected to ends of the Hall bar and is used

to feed the current through the Hall Bar.

The bonds are very delicate and must be tested. Sometimes a visually good

bond can present a Schottky Effect. The Schottky barrier is a term usually

linked to the energy barrier a charge must overcome in the interface of two

semiconductors. In our case, we use this term to refer to the energy barrier on

the interface of a semiconductor (the pad on the Hall sensor) and a conductor

(the gold ball in the end of the wire). We measure the resistance of the bond

in the dark and under room lighting. A bad bond exhibits a large resistance

in the dark (in the order of 1 MΩ) and a smaller resistance under the light

(in the order of 100 kΩ) due to photoexcited electrons having more energy

to overcome the Schottky barrier. It is hard to say what causes this kind

of anomalous behavior but my guess would be that, in ninety percent of the

cases, the Hall sensor’s pad was damaged by excessive force during the wire

bonding process. If this is indeed the case, it becomes quite possible that the

connection pads and adjacent pads are forever damaged. There are two more

ways in which I have observed bad bonds. One happens when paratone-N oil,

discussed in the next section, reaches the contact pads. The other way is the

obvious one: breaking the wire.
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3.2 Sample Manipulation

We receive our Mn12-tBuAc samples from our colleagues in the Christou Group

at the University of Florida. As soon as they are prepared they are sent to us

via the fastest courier service available, at which time we immediately store

them below 0�. The samples have been grown as single crystals. They ideally

have a needlelike shape which serves as an indicator of the z-axis orienta-

tion (the crystallographic easy-axis). They are kept inside their mother liquor

because they are very sensitive to any contact with the air. Because Mn12-

tBuAc is much more sensitive to the environment than Mn12-Ac, we had to

develop a new way of handling these crystals. To prevent the crystal from

having any contact with the air, we use a cryogenic oil commercially known as

paratone-N2. The crystals are pulled out of the mother liquor using a spatula

containing paratone-N on one of its tips. This way the samples become im-

mersed in the oil and are not placed in contact with the environment. Then

they are placed on a glass plate that contains some paratone-N oil. At this

stage these samples are still protected from the environment. Under the mi-

croscope we look for some key characteristics. First, the sample should have

the needlelike shape mentioned before. Second, it should have sharp edges and

corners; ideally our sample looks like a parallelepiped (see Fig. 3.7). Third,

we want a small sample (300 µm× 50µm× 50µm). One would initially think

that a large sample (1.5 mm× 300µm× 300µm) would be preferable since it

would allow an easier coupling to the Hall bar. Although true, in the summer

of 2006 we found out that a large sample can be a huge liability. We were

performing high transverse-field experiments on Mn12-Ac using large samples.

After loosing the signal a few times we realized that our samples were break-

2Sold by Hampton Research.
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ing apart after applying the transverse-field. In the presence of such a field,

the sample tends to torque around it. In one control experiment we placed

a large sample, surrounded by an excessive amount of paratone-N oil, sitting

horizontally on a test board. After cooling down the sample below 3 K, a

transverse magnetic field of 2.5 T was applied. We then warmed up the sam-

ple to room temperature and found out that the sample had rotated to the

vertical position. Half of its structure had been ripped out and could not be

found anywhere in sight.

Ideal ShapeReal Crystal

Easy Axis

Figure 3.7: Real Mn12-tBuAc single crystal (left) and its ideal shape (right).

On the glass board and inside the paratone-N oil it is necessary to move

the sample around to inspect its geometry. I use a wooden stick applicator

(Fig. 3.6) broken in half so that its tip is very sharp. The paratone-N oil has a

very high viscosity, so any attempts to push the sample will not be successful.

Touching or poking it could break it. Instead, it is preferable to pull the oil

around the sample, creating, therefore, a track to be followed by the sample.

32



After identifying the correct sample, one must move it to an area on the glass

plate that contains no oil. The sample will still be protected because it dragged

some oil with. Then using the wooden tip with a very small droplet of oil we

pick up the sample and move it to the top of the Hall Sensor. This next stage

is very delicate and it must be realized as fast as possible. Because there is not

much oil around the sample, it could come in contact with the environment.

The least amount of oil is desired, because, as discussed in the end of the last

section, paratone-N can damage the gold wire contacts on the Hall sensor.

Once the sample is on top of the Hall sensor, we move it into place. The

best position is perpendicular to the Hall bar. Any field lines just exiting the

crystal along the easy-axis will be maximally detected if the sample has one

of its ends just next to the Hall bar (see Fig. 3.8). And we want the sample

positioned right next to the part of the Hall bar that is connected to the

desired voltage pair (see last section). It turns out that the coupling between

the sample and the Hall bar is much more critical for a good signal-to-noise

ratio than the size of the sample.

Figure 3.8: Different schematic views of the Mn12 crystal (red) on top of the
Hall sensor – when the crystal is just next to the Hall bar (green) the field
lines (purple) due to crystal’s magnetization (yellow) induce a voltage across
the width of the Hall bar.
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3.3 Measuring the Magnetization

There are two ways in which we can measure the magnetization of Mn12-

tBuAc. One is to use the Hall sensor to measure the magnetization of the

sample as a function of time. An alternating current (50 µA and 37 Hz) is

applied to the current leads in the Hall bar. To achieve this current we just

apply 5 V through a 100 kΩ resistor in series with the Hall bar. We then collect

the voltage signals from the pair connected close to the sample (Vsample) and

the one away (Vcontrol), and amplify both signals by 100. After amplification,

Vcontrol is subtracted from Vsample through an electronic subtraction circuit.

The signal is then sent to a SRS SR830 DSP Lock-in Amplifier. The wiring

can be seen in Fig. 3.9.

A AS

Lock‐in ComputerAC‐CS

VControlVsample

Hall Current

Figure 3.9: Schematic of electric signals as explained in the text – A = Am-
plifier, AC-SC = AC Current Source, S = Subtraction Circuit.

To measure the relaxation rate of the Mn12-tBuAc sample, we set the

temperature and then apply a magnetic field using the PPMS superconducting
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magnet. We then rotate the sample to A (see Fig. 3.10), an angle where the

the easy-axis is aligned with the field. This first step tilts the potential and

populates the lower well. Then the sample is rotated to B, where there is

a large component of the field transverse to the easy-axis and a very small

component of the field along the easy-axis. For each measurement the total

field, HT , is adjusted to meet the desired components ofHx (transverse) andHz

(longitudinal). This requires nothing more than simple trigonometry: tan(θ−

θ0) = Hz/Hx and H2
T = H2

z + H2
x, where θ0 is the angle at which Hz = 0.

During the rotation, and just before arriving at the final angle, a voltage is

sent to the trigger input of the lock-in. This signal initiates the data storage

in the lock-in buffer. The data is then transfered to a text file in the computer.

This entire process has been automated using the LabView control interface:

it requires just the push of a button.

Applied 
Magnetic 
Field

A

(A)

Applied 
Magnetic 
Field

θ

B

(B)

Figure 3.10: Measuring the relaxation rate – sample is rotated to position A,
(populating the lower well) then rotated to B (allowing the relaxation process
to occur).

This technique has its limitations. First, the relaxation rate must be slow
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compared to the angular speed of the horizontal rotator (11.97 degrees per

second). Second, the lock-in acquisition rate is bounded above by 512 Hz.

This turns out not to be a problem because the rotator condition breaks down

before a fast acquisition rate is required3. Our technique has worked remark-

ably well for temperatures between 2.87 K and 3.32 K. It could in principle

work at lower temperatures as well, but the relaxation time increases dramat-

ically. This is due to the exponential Arrhenius factor in Eq. (2.7). Taking the

barrier height to be ≈ 70 K the Arrhenius exponent changes by two orders of

magnitude between 2.5 K and 3.0 K.

One method to quantify the height of the barrier is to measure the re-

laxation for different temperatures and perform a linear regression using the

equation

ln(Γ) = −E
T

+ ln(ω0), (3.1)

and 1/T as the free variable. Equation (3.1) is just the Arrhenius Law

(Eq. (2.7)) rewritten after algebraic manipulation. The problem is that, in

the temperature range of this technique, 1/T only varies from .30 to .34. To

overcome this problem we have to use the AC Susceptibility measurement

technique as described in the next section.

3.4 AC Susceptibility

In essence, the AC Susceptibility (ACS) measurement is just a relaxation ex-

periment where the variable has been changed from time to frequency. Assume

3In an earlier version of the experiment we did not use the lock-in for data storage, instead
we triggered an oscilloscope (Tektronix TDS 210) to take a trace of the magnetization and
then uploaded that trace to the computer. This presented problems because of a digitization
effect that represented the relaxation in a series of decreasing steps as a function of time.
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that all molecules are identical. This implies that the total magnetization of

the system, M , is decaying exponentially. The dynamical equation describing

this process is:

τ
dM

dt
+M = 0. (3.2)

If we now add an oscillating magnetic field the RHS of Eq. (3.2) will no longer

be zero. This is equivalent to adding a driving force to a simple harmonic

oscillator. The dynamical equation is

τ
dM

dt
+M = χ0H0cos(ωt), (3.3)

where χ0 is the magnetic susceptibility in the presence of a nonoscillating

magnetic field (i.e. ~M = χ0
~H) and H0cos(ωt) is the oscillating field. One

could guess that the solution for M is

M = χRH0cos(ωt) + χIH0sin(ωt), (3.4)

where we now allow the susceptibility to have real (in-phase) and imaginary

(out-of-phase) components, χR and χI , respectively. We expect that in the

limit of slow oscillations the magnetization should be able to follow the oscil-

lating field which means that χR = χ0 and χI = 0. We also expect that in

the limit of large ω the average field seen by particles is zero and both χR and

χI should be zero. We can plug Eq. (3.4) into Eq. (3.3). After some algebraic

manipulations we obtain:

sin(ωt)[χI − (ωτ)χR] + cos(ωt)[χR + (ωτ)χI − χ0] = 0 .

For the last equation to be true, we require the cosine and sine terms to vanish

for all ωt. These conditions give a system of two variables and two equations

which can be easily solved to obtain expressions for χR and χI :

χR = χ0
1

1 + (ωτ)2
, (3.5)

χI = χ0
ωτ

1 + (ωτ)2
. (3.6)
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Figure 3.11: AC Susceptibility – real (solid) and imaginary (dashed) curves
intersect at ω = 1/τ .

The solutions for τ = 1, 1/10, 1/100, 1/1000 seconds are plotted in Fig. 3.11.

The imaginary component peaks at the frequency value corresponding to 1/τ

which is the relaxation rate of the magnetization.

To perform ACS experimentally, we put a small coil on top of the Hall

Sensor, and parallel to the sample. This way, the field lines emanating from

the ends of the coil will wrap around themselves, and the magnetic field felt by

the crystal will roughly be along the easy-axis (see Fig. 3.4). We can apply a

DC current through the Hall bar and an alternating current through the coil.

To measure the susceptibility, we use the relation ~M(ω) = χ(ω)~H(ω), where

ω is the frequency. So, we can use the coil current as the lock-in reference and

by measuring the in-phase (χR) and out-of-phase (χI) components of the Hall

voltage we should obtain the susceptibility.

Since the coil is parallel to the sample, and we apply large magnetic fields
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Figure 3.12: ACS – field outside the coil is roughly along the easy-axis of the
single crystal.

(on the order of 1 T ) perpendicular to the sample, the coil could torque around

the field. Although the coil is firmly attached to the top of the insulating

board, the board is on the horizontal rotator. So, a large transverse-field

could possibly torque the board, and therefore the sample. To avoid these

kinds of problems we constructed a gradient coil (Fig. 3.13). From top to

bottom in the figure there are N turns counter-clockwise, 2N clockwise, and

finally N turns counter-clockwise. Since the coil is confined to a region where

the applied magnetic field (from the PPMS magnet) will be uniform, it will

not torque since its dipole moment will be zero. In our design, the coil holder

is made of G-10 and it can accommodate 7 layers and N = 19. At room

temperature the field outside the coil (at the expected position of the sample)

was measured to be 10 Oe.
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Figure 3.13: Gradient coil — top to bottom there are N turns counter-
clockwise, 2N clockwise, and finally N turns counter-clockwise.
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Chapter 4

Experimental Results

In this chapter I will present the results of several measurements done on

a Mn12-tBuAc crystal. We performed measurements from June of 2007 to

December of 2007 on the same sample. The results will be presented in

three parts. First, I will discuss the experiments done near the zero-field

resonance using the real-time relaxation method to measure the relaxation

rate of magnetization. We analyze both the longitudinal- and transverse-field

dependences of the relaxation rate. From that data we are able to extract

the off-resonance and on-resonance relaxation rates. The relaxation rates as

a function of transverse-field suggest abrupt changes in the effective barrier

height for Mn12-tBuAc. Second, we do a similar analysis of the data from the

ACS method. Third, I will present data for real-time relaxation measurements

near the N = 1 resonance.

The first step to know if we have a working crystal, is to take a hystere-

sis loop. If the sample is a single crystal we should be able to observe the

characteristic steps at temperature independent values of the field (Fig. 1.3

for Mn12-Ac). The hysteresis loops for Mn12-tBuAc are displayed in Fig. 4.1
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for different temperatures. Unfortunately, in January of 2008, this sample
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Figure 4.1: Hysteresis loops for different temperatures.

no longer presented these characteristics, prompting us to declare its death.

Considering the high sensitivity to environment, present in Mn12-tBuAc crys-

tals, this sample performed well for a long period of time. During the following

months, seven samples were mounted, but either they did not show the desired

characteristics in the hysteresis loops, or the PPMS had temperature control

issues. That is unfortunate, because we believe that the problems have now

been partially fixed, and the automation of the experiment should allow for

large sets of data to be taken uninterruptedly. These problems prevented more

data to be taken from the ACS measurements and for the N = 1 experiments.
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4.1 Relaxation Near the Zero-field Resonance

— Real-time Relaxation Measurements

After setting the desired temperature, longitudinal- and transverse-fields, we

observe the time-evolution of the magnetization. Figure 4.2 shows three decay

curves, two of which are off-resonance and one which is on resonance. We
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Figure 4.2: Relaxation of magnetization on- and off-resonance at a transverse-
field of 4800 Oe and 3.21(3) K.

observe the decay rates to be smaller for the off-resonance curves. We fit these

curves to exponential decay functions and extract the value of the decay rate,

which we interpret to be the relaxation rate, Γ, of the magnetization. The

numerical fits are very good, as it can be seen in Fig. 4.3. A detailed analysis

of the residuals, however, indicates that the relaxation is not really a pure

exponential, and an example of the residuals can be seen in Fig. 4.4. We find

that the skewed residuals effect seen in Fig. 4.4 is much more pronounced at

the near-resonance relaxations (Fig. 4.5). We tried to use more complicated

functions for the fitting routine. Examples of these functions are stretched
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Figure 4.3: Exponential fit (dashed line) for relaxation of magnetization off-
resonance (Hz = 500 Oe) – 3 K, 6000 Oe transverse-field.
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Figure 4.4: Residuals from best fit in Fig.4.3.
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Figure 4.5: Exponential fit (dashed line) for relaxation of magnetization on-
resonance (Hz = 20 Oeleft) and residuals(right) – 3 K, 6000 Oe transverse-
field.
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exponentials, double exponentials and a convolution of exponentials. The last

two produced better fits, but that is probably because they have an extra

fitting parameter. And, although the fits were better, the skewed residuals

remained. A double exponential decay would occur if there two different re-

laxation mechanisms, one for the initial relaxation and one for the long-time

time evolution. We don’t have a physical picture that justifies the use of a

double exponential. In appendix B, I discuss the reason why a convolution of

integrals could be the correct fit and why we abandoned this model. In the

end, however, an exponential seemed to be a better candidate to, at least, give

a measure of the relaxation.

For a fixed transverse-field we take the relaxation curves for several values

of longitudinal field (Fig. 4.6). We find the shape of the curve to fit well

to a Lorentzian function but not well to a Gaussian function (Fig. 4.7).
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Figure 4.6: Longitudinal-field dependent relaxation rates at 3.21(3) K and
4600 Oe transverse-field.

This suggests that the peak in the relaxation rate curve is not due to some
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Figure 4.7: Longitudinal-field dependent relaxation rates at 3.21(3) K and
4600 Oe transverse-field. Lorentzian fit (left) and Gaussian fit (right).

kind of statistical distribution. The latter could happen, for example, due to

crystalline disorder of the easy-axes of the spin in the lattice structure [13].

The Lorentzian fit is
(a− b)

1 + (Hz−d
c

)2
+ b, (4.1)

where there are four fitting parameters (a,b,c,d) and Hz is the free variable.

From each Lorentzian fit, we extract the relaxation rates for Hz = 0 (on-

resonance, a) and in the limit of very large |Hz| (off-resonance, b), and the

width of the distribution at half maximum (c). These values are presented in

Figs. 4.8, 4.9 and 4.10 as a function of transverse field.

We can observe the existence of plateaus and steps on both the on-resonance

and off-resonance relaxation curves. We also observe oscillations in the widths

of the resonance. Let us first focus on the on-resonance data. There is a simple

way in which we can interpret the existence of the plateaus and the steps. It

was predicted by Friedman [16], and Garanin, and Chudnovsky [17, 18], that

the effective height of the barrier should decrease as a function of transverse-

field. In the absence of a magnetic field, a molecule will have to relax to the

other well by climbing the entire anisotropy barrier (Fig. 4.11(a)). Suppose
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Figure 4.8: Relaxation rate on-resonance as a function transverse field for
different temperatures.
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Figure 4.9: Relaxation rate off-resonance as a function transverse field for
different temperatures.
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Figure 4.10: Lorentzian widths as a function transverse field for different tem-
peratures.

that for a given value of transverse field, the spin has to climb the poten-

tial barrier to a given level, tunnel and then decay to the opposite ground

state (Fig. 4.11(b)). Also note that the tunneling for a given pair of states

on opposite sides of the barrier depends strongly on the perturbation to the

Hamiltonian, in this case the transverse-field. If the transverse-field is in-

creased, the tunneling between the next lower pair of states becomes relevant.

That is when a step occurs in Fig. 4.8, and both pairs of resonant levels are

used in the relaxation path of the spin (Fig. 4.11(c)). If we continue to increase

the transverse-field, the next pair becomes the dominant resonant pair and we

observe another plateau (Fig. 4.11(d)).

The oscillations in the width also agree with this interpretation. In Fig. 4.12

we plot the longitudinal-field dependent curves for several transverse-fields.

We interpret the oscillations to happen due to the simultaneous presence of
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Figure 4.11: Barrier height for different transverse-field (yellow arrow). In
the absence of field the molecule must overcome the entire anisotropy barrier
(a). For a given transverse-field a dominant tunneling (blue arrow) resonance
determines the height of the barrier (b). As the transverse-field is increased, a
new tunneling resonant becomes relevant to the relaxation process (c). And for
a higher transverse-field, the new tunneling resonance becomes the dominant
tunneling pair (d).
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Figure 4.12: Longitudinal-field dependent relaxation rates for different
transverse-fields (in Oe) at 3.21(3) K.

tunneling resonances. Suppose that at a certain transverse-field there exists

a dominant tunneling resonance. In Figs. 4.13, 4.14 and 4.15, we make the

connection between Fig. 4.12 and Fig. 4.11. As the transverse-field is increased,

a new resonance becomes relevant to the dynamics, superimposing, therefore, a

sharp Lorentzian on top of the old one (Fig. 4.14). But once the new resonance

becomes the dominant resonance, a further increase of the transverse-field will

also increase the slightly off-resonance transitions, which will, consequently,

broaden the distribution and increase the width (Fig. 4.15). In chapter 5 we

will present numerical calculations that support this interpretation. Although

we do not observe the appearance of a new superimposed peak in our data,
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we interpret the decrease of the width of the Lorentzian to be evidence of a

new tunneling resonance becoming relevant to the dynamical process at hand.

We speculate that a double Lorentzian is not observed due to inhomogeneous

broadening caused, for example, by crystalline disorder [13].

-10
-9 9

10

Thermal

Activation

Figure 4.13: We link the first group of Lorentzians (red circle) to a dominant
tunneling resonant pair of levels. See text for further explanation.

However, in this simple picture of a transverse-field dependent relaxation

process, it should be expected that, since tunneling is much less probable off-

resonance, the relaxation rates should not depend so strongly, if at all, on

the transverse-field. Following this interpretation one would predict that the

steps should not occur in the off-resonance data. This puzzle was the primary

incentive for some numerical and theoretical explorations, described in the

next chapter, in which we produce a more in-depth analysis of the relaxation

process. In the analysis, we observe off-resonance steps that occur for values

of longitudinal-field that are similar to the the steps in the off-resonance data

in Fig. 4.9.
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Figure 4.14: We link the second group of Lorentzians (red circle) to the ap-
pearance of a second dominant tunneling resonant pair of levels. See text for
further explanation.

4.2 ACS Measurements

As explained in the previous chapter, one could use, in principle, the Arrhenius

law (Eq. (3.1)) to determine the effective height of the barrier. In an attempt

to achieve a higher temperature range, we performed ACS measurements at

4 K. We point out that the data presented in this section is, by no means,

complete. Further measurements are required in order to better understand

the differences between the ACS and real-time measurements.

For a fixed value of temperature, and transverse- and longitudinal-field we

measure the frequency dependent magnetic susceptibility (Fig. 4.16). Fitting

the imaginary and real Eqs. (3.5) components of the susceptibility, we can

extract the value of the relaxation rates. As we did in the real-time relaxation

experiments, we perform the ACS measurement for different longitudinal- and

transverse-fields. For a fixed transverse-field we find that the longitudinal-field

distribution fits well to a Lorentzian (Fig. 4.17). There are a few difficulties in
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Figure 4.15: We link the third group of Lorentzians (red circle) to a new
dominant resonant pair of tunneling levels. See text for further explanation.

performing ACS. The biggest problem is time. To capture the relaxation rate

for an exponential in the real-time measurement, all we need to do is monitor

the magnetization as a function of time. So, the time it takes to acquire that

data point is, minimally, four to seven times the relaxation rate. To acquire

the same data point using ACS, we have to map the entire frequency depen-

dence. Plus, to measure each point in Fig. 4.16, we first apply the hall current

one way, measure the susceptibility signal, reverse the current, measure the

susceptibility again, and finally subtract both signals. Furthermore, we have

to use a large integration time in the lock-in, usually in the order of 1 second,

which requires at least 7 seconds to stabilize the signal. In practice, however,

we have to wait an extra 30 seconds for the signal to stabilize. Considering

the time it takes for each phase of the measurement to take place, the ACS

method takes much longer than the real-time method. It does, however, allow

us to measure faster relaxation rates over a wider range of temperatures.

The on-resonance data for the ACS method is plotted in Fig. 4.18. The
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Figure 4.16: ACS measurement at 4.32(3) K, 3600 Oe transverse-field and
zero longitudinal-field. Solid lines are best fit curves.
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Figure 4.17: Longitudinal-field dependence of the relaxation rate for 3600 Oe
transverse-field and 4.32(3) K.
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steps that were present in Fig. 4.8 seem to have been washed out, perhaps by

the higher temperatures. However, another hypothesis is that the ACS method

measures an average of the relaxation rate for all molecules in a crystal. Sup-

pose, for example, that there is a distribution of molecules, some which relax

faster than others. If so, it is plausible that in the real-time measurements, we

would observe a fast relaxation period, followed by a slower relaxation period.

If there are more molecules relaxing fast than molecules relaxing slowly, for ex-

ample, fitting the data to a single exponential will yield a faster relaxation rate,

which is one possibility for the non-exponential behavior in Fig. 4.5. In the

ACS method, we measure how the total magnetization follows the oscillating

magnetic field and we look for the frequency at which Im(χ) and dRe(χ)/dω

are both maximum. We would like to perform more ACS measurements to
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Figure 4.18: Transverse-field dependent on-resonance relaxation rates ex-
tracted via ACS measurements.

find out if we would be able to observe the same steps that can be seen in the

real-time measurements.
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4.3 N = 1 Resonance Experiments

The key to the N = 1 experiments, is the existence of the fourth order

anisotropy term. As discussed in chapter 1, the fourth order anisotropy

changes the resonance condition for different levels (see Fig. 1.5). If the height

of the barrier is dominated by a pair of resonant levels, and if the longitudinal-

field value for resonance varies from one pair of levels to the other, it is ex-

pected that an abrupt change in the height of the barrier should translate into

an abrupt change of the longitudinal-field value for which a peak in the relax-

ation rate appears. Table 4.1 shows the possible N = 1 resonances with their

respective longitudinal-field values. We performed real-time relaxation mea-

surements and some of the Lorentzian distributions can be seen in Fig. 4.19.

As usual, we plot the relaxation rates on-resonance and off-resonance, as

m,n Resonant Longitudinal-Field (Oe)
2,−1 4272
3,−2 4344
4,−3 4452
5,−4 4597
6,−5 4777
7,−6 4994
8,−7 5246
9,−8 5535
10,−9 5860

Table 4.1: N = 1 resonances with their respective longitudinal-field values.

well as the widths, all as a function of transverse-field in Figs. 4.20, 4.21 and

4.22. The extra information that the N = 1 resonance can supply us is

the longitudinal-field value of the center peak. The transverse-field dependent

values of the center of the Lorentzians can be seen in Fig. 4.23. Although

the longitudinal-field value for the central peak increases, no abrupt changes
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Figure 4.19: Longitudinal-field dependent relaxation rates for different
transverse-fields at 2.87(3) K.
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Figure 4.20: On-resonance relaxation rates as a function of transverse-field for
the N = 1 resonance at 2.87(3) K.
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Figure 4.21: Off-resonance relaxation rates as a function of transverse-field for
the N = 1 resonance at 2.87(3) K.
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Figure 4.22: Lorentzian widths as a function of transverse-field for the N = 1
resonance at 2.87(3) K.
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Figure 4.23: Transverse-field dependent values of the center of the Lorentzians
at 2.87(3) K.

can be seen. The reliability of these data points is also questionable since

we performed systematic tests that indicate that the rotator angle, for which

the zero-resonance occurs, changes over different data acquisition runs. There

is one obvious way to make sure the longitudinal-field is set correctly. For

each sweep of the longitudinal-field near the N = 1 resonance, one could first

calibrate the rotator by identifying the peak in the zero-field resonance.

4.4 Summary of Experimental Data

The most important experimental result of this section is, undoubtably, the

appearance of steps in both the on-resonance and off-resonance transverse-

field-dependent relaxation measurements. We interpret the steps to be due

to abrupt changes in the dominant tunneling resonances for Mn12-tBuAc.
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Our interpretation is corroborated by the oscillations in the widths of the

longitudinal-field-dependent relaxation rate distributions. We emphasize, how-

ever, that a better understanding of the off-resonance relaxation dynamics is

necessary.

In chapter 5 we hope to answer some key questions. Do we have a theory

that explains the appearance of the steps, both on- and off-resonance? Does

the theory agree with our interpretation of the data? And, why are the steps

sharper for the off-resonance relaxation rates than for the on-resonance rates?

While, in the next chapter, we answer “yes” to the first two, we have not yet

reached a solution to the third question.
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Chapter 5

Theoretical Results

The motivation for the calculations presented in this chapter was the difficulty

in understanding the appearances of plateaus and steps in the off-resonance

relaxation data (Fig. 4.9). One semi-intuitive view of the barrier reduction

process implies that, on-resonance, the height of the barrier can be defined as

the energy difference between the ground state and where tunneling is occur-

ring sufficiently fast1. Because the tunneling rate between any two resonant

levels changes abruptly, one would expect resonant tunneling to be necessary

for the observed transverse-field dependence of relaxation rates. This intuition

does not, however, make sense in the off-resonance case, where resonant tun-

neling is much decreased and almost nonexistent. In order to gain a better

understanding of the dynamical processes that would take the spins from one

side of the barrier to the other, we follow a density matrix formalism approach,

similar to the one employed by Garanin and Chudnovsky [17, 18], and, later

on, Leuenberger and Loss [23, 24] with a few caveats. We use the energy

eigenbasis instead of the m basis. This makes the application of Garanin’s for-

1See section 2.2 and Eq. (2.14).
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mula (Eq. (2.12)) for the near resonance tunnel splitting more difficult. This is

not, however, an impediment for the off-resonance calculations since we don’t

expect resonant tunneling to occur. Notice that I am being careful about

referring to the kind of tunneling caused by the oscillatory solutions due to

the tunnel splitting as resonant tunneling. The reason for this distinction is

that, as we will see in this chapter, defining what tunneling is can be hard

and ambiguous. So, another instance where we differ from the aforementioned

studies, is that we do not insert the resonant tunneling rate from m to m′,

induced by the tunnel splitting, in our calculations.

I will first introduce the density operator (sometimes called the statistical

operator) and some of its key properties but I will, by no means, fully develop

density matrix theory2.

5.1 Density Matrix Theory [1]

5.1.1 The Density Operator and the Density Matrix

In quantum mechanics a given system is represented as a state vector |ψ〉

which can be written as a linear superposition of eigenstates |φn〉 of a given

operator Q (or a set of operators Qi):

|ψ〉 =
∑
n

an |φn〉 . (5.1)

2Since most results in the next section are from Blum’s book on Density Matrix Theory,
it seemed more appropriate to reference the entire section instead of particular results.
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We will also assume the eigenstates to be orthonormal and complete:

〈φn|φm〉 = δmn , (5.2)∑
n

|φn〉 〈φn| = 1 . (5.3)

Consequently, the an coefficients are given by an = 〈φn|ψ〉. And we can also

normalize the states by ∑
n

|an|2 = 1 . (5.4)

In this representation, |an|2 gives the probability of finding the system in the

nth state.

Suppose the observable Q for which |ψ〉 is not an eigenstate. A measure-

ment of Q can collapse the state into any of its eigenstates |φn〉. If we per-

formed the measurement on a large ensemble of particles, all prepared in the

|ψ〉 state, and then averaged over the values, we would obtain the expectation

value 〈Q〉 for the observable:

〈Q〉 = 〈ψ|Q|ψ〉 . (5.5)

The statistical nature of this expectation value is a prediction of quantum me-

chanics3. There is another way statistics can come into play when considering

an ensemble of particles. Suppose that each particle can be in a different |ψn〉

with classical probability Wn. To obtain 〈Q〉 for a mixture of particles in dif-

ferent quantum states, we will have to properly treat both statistical natures

of the system. The value of the expectation value is therefore:

〈Q〉 =
∑
n

Wn〈ψn|Q|ψn〉 . (5.6)

3It may be due to perturbation of the system caused by a measurement, although this
is part of the measurement problem, and is open for debate.
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This second type of averaging is the kind that is done in statistical mechanics

and it leads to the density matrix operator (sometimes called the statistical

operator), defined by:

ρ =
∑
n

Wn |ψn〉 〈ψn| . (5.7)

It is much more convenient to express the operator in matrix form. Using

an appropriate basis |φm〉, we can write each element of the mixture as:

|ψn〉 =
∑
m′

a
(n)
m′ |φm′〉 (5.8)

〈ψn| =
∑
m

a(n)∗
m 〈φm| . (5.9)

The next step is to insert Eqs. (5.8) and (5.9) into Eq. (5.7) to get

ρ =
∑
nm′m

Wna
(n)∗
m a

(n)
m′ |φm′〉 〈φm| , (5.10)

and then take the matrix elements, making use of the orthonormality condi-

tions, to obtain

〈φi|ρ|φj〉 =
∑
n

Wna
(n)∗
j a

(n)
i . (5.11)

This is the density matrix, and it operates on the space spanned by the |φn〉

basis.

Since the probability of finding the state in |ψn〉 is given by Wn and the

probability of finding |ψn〉 in the basis-state |φm〉 is |a(n)
m |2, we find that

ρmm =
∑
n

Wn|a(n)
m |2 (5.12)

gives the probability of finding the system in state |φm〉.

The density matrix has several other properties but I will only mention

them if necessary. The interested reader is encouraged to seek a more detailed

approach elsewhere [1, 25].
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5.1.2 Time Evolution of the Density Matrix

The time evolution of a quantum state is described by the Schröndinger equa-

tion (SE):

i~
∂ |ψ(t)〉
∂t

= H |ψ(t)〉 . (5.13)

And it is a standard textbook result that if H is time independent, the state

will evolve according to

|ψ(t)〉 = e−(i/~)Ht |ψ(0)〉 , (5.14)

where the exponential operator is well defined by its Taylor expansion:

e−(i/~)Ht = 1− i

~
Ht− 1

2~2
H2t2 − · · · . (5.15)

The SE equation is not sufficient to describe the time evolution of a mix-

ture. Suppose that at t = 0 the density operator is

ρ(0) =
∑
n

Wn |ψ(0)n〉 〈ψ(0)n| . (5.16)

We know that the states |ψ(t)n〉 vary according to the SE (Eq. (5.13)), which

implies that the density operator is also time dependent:

ρ(t) =
∑
n

Wn |ψ(t)n〉 〈ψ(t)n|

=
∑
n

WnU(t) |ψ(0)n〉 〈ψ(0)n|U(t)†

= U(t)ρ(0)U(t)†. (5.17)

Here, U(t) is the time evolution operator (|ψ(t)〉 = U(t) |ψ(0)〉), and if we plug

this last expression back in Eq. (5.13) we obtain

i~
∂U(t)

∂t
= H(t)U(t) and (5.18)

−i~∂U(t)†

∂t
= U(t)†H(t). (5.19)
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Differentiation of Eq. (5.17), together with Eqs. (5.18) and (5.19), yields

i~
∂ρ(t)

∂(t)
= i~

∂U(t)

∂t
ρ(0)U(t)† + i~U(t)ρ(0)

∂U(t)†

∂t

= H(t)U(t)ρ(0)U(t)† − U(t)ρ(0)U(t)†H(t)

= [H(t), ρ(t)], (5.20)

where in the last step we made use of Eq. (5.17) to obtain the so called Liouville

equation (Eq. (5.20)). The dynamic equations for the observables are found

as simultaneous solutions to Eqs. (5.13) and (5.20).

5.1.3 Master (Rate) Equations

In the last two sections I have tried to develop the basic properties of the

density matrix. Hopefully this brief treatment will give the reader who is not

familiar with the subject, an intuition of the basic theory. The key ideas I hope

the reader will keep in mind are, one, that the density matrix is a statistical

operator, and, two, it operates on the basis of the system of interest, decoupled

from the thermal bath. Keeping these properties in mind, I will now make a

large leap in reasoning and discuss one of the most useful results of the theory:

the Pauli master equation.

If the system is not closed, but, instead, in contact with a large reservoir,

with which it exchanges energy, then, we must consider the Hamiltonian of

the system, plus the Hamiltonian of the reservoir, and also the interaction

Hamiltonian. We want to be able to determine the dynamics of a system that

starts in a nonequilibrium state and then evolves, via an irreversible process,

into an equilibrium state that is defined by external conditions. This is a very

general behavior of a system, and is called a relaxation process. The problem

with the fundamental dynamical equations (Eqs. (5.13) and (5.20)) is that
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they are reversible and would not be able to describe a relaxation process

which is inherently irreversible.

In order to obtain irreversible dynamic equations we will have to impose

two restrictions. First, we will assume that the reservoir (R) has so many

degrees of freedom that any interactions with the system (S) will not have any

effects on it (R), and will therefore not act back on the system (S). We assume

the transformation

ρ(t)S+R −→ ρ(t)Sρ(0)R, (5.21)

in which we have factored out the density matrix of the reservoir, and as-

sumed it to be time independent. This is the basic condition for irreversibility.

Secondly, we will assume that the past history of the system’s dynamics is

destroyed by damping caused through its contact with the reservoir4.

With these two assumptions and the necessary Markoff approximation5,

we find the very useful rate equation

ρ̇(t)mm =
∑
n6=m

ρ(t)nnWmn − ρ(t)mm
∑
n6=m

Wnm. (5.22)

This is the Pauli master equation. From our previous discussion (see Eq. (5.12)),

we know that ρ(t)mm gives the probability of measuring the system in a given

basis state |φm〉. We can interpret this equation as follows. The first term on

the RHS of Eq. (5.22) gives all the transitions that will increase the population

of the |φm〉 state. It is obtained by the product of the population of another

4Damping is usually related to loss of information. Think of a particle undergoing free fall
under the influence of viscous friction. It will achieve a final velocity that does not depend
on the initial conditions of the system. It is therefore impossible to trace the particle’s
motion back to its initial state: information has been lost.

5The Markoff Approximation and details are discussed by Blum [1]. It basically consists
of a “coarse-grained” derivative taken over time intervals ∆t long compared to the time of
free oscillations of the system.
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level, n, with the rate Wmn for the transition from |φn〉 to |φm〉, summed over

all n. The second term is due to all the processes that will decrease the pop-

ulation of the |φm〉 state: it is just the population of the |φm〉 state times the

rates (Wnm) for transitions taking particles from the |φm〉 to |φn〉, summed

over all n. Thus, the key to understand the dynamics of the system is to

find the parameters Wmn, which represent the probability per unit time that

a transition between the basis states will occur due to the interactions with

the reservoir. Notice that Eq. (5.22) is a matrix equation:

~̇ρ = W̃ ~ρ(t), (5.23)

where ~ρ is a column vector representing the relative populations of a given

state, and W̃ is called the rate matrix.

5.2 Numerical Simulations

We have performed several numerical calculations to better understand the

relaxation dynamics of Mn12-tBuAc. I will separate the calculations under

three sections. First, I will describe the calculations to find the relaxation rate

of magnetization as a function of transverse field. Secondly, I will address the

longitudinal field (Hz) dependence on the relaxation rate. Thirdly, I will show

calculations that determine the height of the anisotropy barrier by finding the

path of highest probability for a molecule starting at the left well and relaxing

to the ground state in the right well.

Because of the lack of time, we were not able to fit our numerical cal-

culations to the experimental data. Furthermore, we have only done these

calculations for T = 3 K, and it shall be assumed that all results shown from

now on have been calculated for 3 K.
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5.2.1 The Transition Coefficients

The key to all these calculations is the rate matrix in Eq. (5.23). We calculate

the Wmn transition coefficients using the expressions obtained by Garanin and

Chudnovsky [17] (given in the m basis):

Wm±1,m =
D2s±1

12πρc5~4

(εm±1 − εm)3

eβ(εm±1−εm) − 1
, (5.24)

where s±1 = (s∓m)(s±m+1)(2m±1)2, ρ = 1.93×103 kg/m3 [5] is the mass

density for Mn12, εm is the energy of the |m〉 state, and c = 1.40×103 m/s [23]

is the speed of sound in Mn12. This result is for the |m〉 basis6. To perform

our calculations we have to change Eq. (5.24) from the |m〉 basis to the energy

basis, |Ei〉.

To adapt Eq. (5.24) to the energy basis, |Ei〉, we can follow the derivation

presented by Leuenberger and Loss [23]7 and identify where the sm−1,m terms

come from. We find that

s±1 = |〈s,m± 1|(S+Sz + SzS+ + S−Sz + SzS−)|s,m〉|2 , (5.25)

which the reader can check and see that it agrees with the result in the |m〉

basis. The action of the raising and lowering operators is

S± |s,m〉 =
√

(s∓m)(s±m+ 1) |s,m± 1〉 . (5.26)

The εi terms are replaced by the eigenenergies and are easily computed in the

energy basis by 〈Ei|H|Ei〉.

6Leuenberger and Loss [23] also calculated a ∆m = 2 transition rate, but an error in
their calculations was pointed out by Chudnovsky and Garanin [26]. The topic has been
under debate [27], but there have been experimental results [28] against the existence of this
∆m = 2 phonon transition. In all our calculations we have discarded the use of Wm±2,m.

7Although, as mentioned before, Eq. (5.24) and its derivation was first presented by
Garanin and Chudnovsky in [17].
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The Hamiltonian in Eq. (1.8) is

H = −DS2
z −BS4

z − gµB ~H · ~S . (5.27)

For Hx 6= 0, H and Sz will not commute and the energy basis will differ

from the m basis. But that does not prevent us from writing the elements of

the energy basis in terms of the m basis:

|En〉 =
∑
m

anm |m〉 . (5.28)

This freedom to choose a basis allows us to freely operate S± on the |En〉

states.

We have all the information we need to write the W̃ rate matrix. The

transition coefficients Wij
8 are

Wij =
D2 |〈Ei|(S+Sz + SzS+ + S−Sz + SzS−)|Ej〉|2

12πρc5~4

(Ei − Ej)3

eβ(Ei−Ej) − 1
, (5.29)

where Ei is the energy of the |Ei〉 state.

In our Mathematica code, we construct the matrix representation of the

Hamiltonian and find its eigenvalues and eigenstates, which we use as our

basis. The Hamiltonian (Eq. (1.8)) is dependent on the magnetic field ~H and

we therefore have to construct a basis set for each value of field for which we

want to do the calculation. We then construct the W̃ rate matrix according

to Eq. (5.29).

8The Wij coefficients are not the elements of the rate matrix, but from those it becomes
trivial to write W̃ using Eq. (5.22).
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5.2.2 Relaxation Rates

To find the dominant relaxation rate, we diagonalize the rate matrix W̃ and

identify the lowest nonzero eigenvalue. We find it to be far removed from

the other eigenvalues by several orders of magnitude. Considering that, for

Mn12-tBuAc, W̃ operates on a 21 dimensional space, this is not a very hard

computational problem. The general solution to the system of equations is

a sum of exponentials. In all solutions we find one of the eigenvalues to be

zero. This is because one of the eigenvectors of W̃ is a vector ~ρ(∗) representing

the sum of the populations of all states. But since the total population is

a conserved quantity, 0 = ~̇ρ(∗) = W̃ ~ρ(∗), yielding the existence of the zero

eigenvalue. All other decays occur at their characteristic rates and one is much

slower than the others, leading to an exponential decay after some initial fast

dynamics. Figure 5.1 shows the relaxation rate as a function of transverse-

field at Hz = 5 Oe, close to resonance and at Hz = 1000 Oe and Hz =

500 Oe, off-resonance. A nonzero value for Hz is necessary when calculating

the elements of W̃ , otherwise the matrix element Mathematica numerically

evaluates, between two near degenerate states would blow up. For Hz = 0,

and levels near degeneracy, the denominator in Eq. (5.29) is exp(ε/β) − 1 ≈

ε/β, where we let the energy difference between the two states be ε. So the

dependence of Eq. (5.29) becomes ε3/ε = ε2. But when we do this calculations,

Mathematica numerically evaluates a vanishing denominator and the matrix

element blows up (although we know it should converge).

On-resonance, we interpret the plateaus to occur for transverse fields where

the height of the barrier is well defined by resonant levels in opposite wells. As

mentioned in the beginning of this chapter, this interpretation does not seem

to be valid for the off-resonance measurements. However, we do observe the
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Figure 5.1: Transverse-field dependent relaxation rate for different
longitudinal-fields — on-resonance (5 Oe) and off-resonance (500 Oe and 1000
Oe). The 1000 Oe is plotted on a separate scale (right) for clarity.
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plateaus and steps on the off-resonance numerical curves in Fig. 5.1, where we

note that the features are very weak in the 1000 Oe data.

Through these calculations we can also observe the longitudinal field (Hz)

dependence of the relaxation rates. Figure 5.2 shows the longitudinal-field

dependent distributions of relaxation rates for different transverse fields. In
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Figure 5.2: Longitudinal-field dependent relaxation rates for different
transverse-fields (Oe).

Fig. 5.1 we can see the same behavior presented in our data (Fig. 4.12).

The steps on-resonance (Fig. 5.1) can be associated with the superposition

of Lorentzians as the transverse field is varied (Fig. 5.2). Figure 5.3 shows

the transverse-field dependent relaxation rates, on-resonance, for a smaller

range and the Lorentzian curves (inset). The appearance of steps at HT =

73



1400, 3400, and 6200 Oe coincides with the appearance of a sharp superim-

posed peak on top of the next lower Lorentzian.

Figure 5.3: Transverse-field dependent relaxation rate on-resonance, and
longitudinal-field dependent relaxation rates for different transverse-fields (Oe)
(inset).

These results qualitatively agree with our measurements but it is worth

noting that as we go off-resonance in the simulations, the steps become less

sharp. The opposite behavior is seen in the experimental data.
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5.2.3 Dominant Relaxation Paths

To determine the dominant relaxation path a spin can take to rotate its ori-

entation from up to down, we need a way to quantify how probable a given

transition is. So, we construct the probability currents [29] for transitions

between |Ei〉 and |Ej〉:

Ji,j = PjWij − PiWji, (5.30)

where Pi is the population of the |Ei〉 state. This equation can be inter-

preted as the gain in Pi due to transitions from |Ej〉 minus the loss in Pi

due to transitions to |Ej〉. We already know how to calculate the elements of

the rate matrix; to find the populations we can use the Pauli Master equa-

tion (Eq. (5.22)), which determines the relative population of each state. For

Mn12-tBuAc, this vector equation consists of a system of 21 first order linear

differential equations, which is not a hard task for Mathematica to solve. Our

simple set of initial conditions is to have the lower ground state fully populated

(i.e. P1 = 1) and all the other levels depopulated (Pj = 0 ∀j : 2 ≤ j ≤ 21).

Numerical solutions for the time dependent populations are calculated using

the NDSolve routine in Mathematica. In principle, this set of 21 differential

equations could be solved analytically, but the analytical solutions would not

add any insight to the problem at hand, and would demand more computa-

tional power9. From the population, not only can we construct the probability

currents, but we can also find the magnetization (M) and the rate of change

in magnetization (Ṁ) as follows:

M =
∑
n

Pn〈En|Sz|En〉 (5.31)

Ṁ =
∑
n

Ṗn〈En|Sz|En〉. (5.32)

9Or manpower!
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We observe the magnetization to decay exponentially (Fig. 5.4), in accordance

with experiments.

Figure 5.4: Decay of M and Ṁ . M and |Ṁ | appear as straight lines on a log
scale (inset), which suggests exponential decay.

We have all the information we need to calculate the probability currents,

but what properties do they have? Suppose we have a simple four state system,

two ground states (|E1〉 and |E2〉) and two excited states (|E3〉 and |E4〉).

Figure 5.5 shows two possible transition paths. The first path (1) is a direct

transition path between the ground states. The second path (2) consists of a

particle on the first level being excited to |E3〉 and then transitioning to the

other ground state. Other possible paths are not shown in the figure. There

is one simple rule these probability currents must follow. In the steady state,

the sum of all incoming currents must equal the sum of all outgoing currents

for a given level. This rule [23] is analogous to Kirchoff’s current law and it is
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Figure 5.5: Two possible transition paths for a simple four-state system.

summarized in the following equation:∑
m

Jn,m = 0. (5.33)

The initial dynamics of the system is fairly complicated, since the entire

population starts at the lowest energy level in the left well, and then it takes

some initial time to spread out to other levels. We dismiss the initial dynamics

and analyze the probability currents in the long-time domain. We numerically

find the time τM for which the magnetization, M , has decayed by a factor of

e. And we then define the long time domain to be 7τM .

We divide the currents by Ṁ in the long-time domain, since they both

have units of 1/[time]. We find that the range of values that Jm,n/Ṁ takes

is independent of transverse-field. This means that a fast probability current

for a given transverse-field is also a fast current for a different transverse-

field, which makes their comparison easy. We construct a long-time domain,
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time-independent, probability current

J̄m,n =
Jm,n(τM)

Ṁ(τM)
, (5.34)

and, from now on, whenever I refer to probability currents, it shall be assumed

that I mean J̄m,n.

Once all these calculations are done, our Mathematica code draws a dia-

gram with all the energy levels and relevant currents (see Fig. 5.6). A lower

bound for the probability currents that are allowed to be drawn in the dia-

grams has been chosen empirically. In the diagrams, the color of the arrows

represents the relative value of the probability current. The intensity of the

transition can be translated from the logarithmic scale (see Fig. 5.7)10 on the

right bottom corner.

The levels are chosen to be displayed on the left if they have expectation

value 〈Ei|Sz|Ei〉 ≥ 0.2, on the right if 〈Ei|Sz|Ei〉 ≤ 0.2, or in the middle

otherwise. The expectation values for each energy level are displayed on the

diagrams. For some energy levels, the expectation values are still pretty close

to the m eigenvalues of the Sz operator. If the transverse field Hx is zero, then

H and Sz commute and the energy basis is the |m〉 basis. We can imagine

that in the limit of Hx ≫ Hz, the HxSx Zeeman coupling term will dominate

the dynamics and the eigenstates of Sx will form a basis that commutes with

H: the “good” basis. In this case 〈Ei|Sz|Ei〉 ≈ 〈mx|Sz|mx〉 = 0, where |mx〉

are the eigenstates of the Sx operator. Because of the second and fourth order

anisotropy terms, the Zeeman coupling term will dominate the dynamics for

levels close to the top of the barrier (small m2 and m4) before it dominates

10Despite new improvements in version 6, Mathematica is not an ideal software for gen-
erating graphics, and plotting the numerical scale with the legend (and all the arrows) on
the same graph turned out to be a hard task.
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Figure 5.6: Probability currents for Hz = 5 Oe and T = 3K. HT = 6200 Oe
as indicated on the top of the diagram. The color of the arrows represent the
relative intensity of the currents, according to the legend on the bottom right
corner. The central vertical axis gives the energy, in kelvins, relative to the
top of the anisotropy barrier.
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Figure 5.7: Color scale for the intensity of the currents for all diagrams to
appear in thesis.

levels close to the ground state.

The expectation values of Sz give valuable information about the eigen-

states of H. It gives the degree to which a level is mixed. If 〈Ei|Sz|Ei〉 ≈ m,

then |Ei〉 is also well described as an eigenstate of Sz. But if not, then the |Ei〉

state is better described as a superposition of |m〉 states. When the expecta-

tion value is zero, the |Ei〉 state is in a superposition of |±m〉 for 0 ≤ m ≤ 10

(i.e. |Ei〉 is well described by an eigenstate of Sx). We say that a given level

is delocalized when its expectation value becomes close to zero, and localized

when 〈Ei|Sz|Ei〉 ≈ m. Accordingly, if a level is delocalized, its corresponding

energy level is drawn in the middle of the diagram, since it cannot be identified

with either well.

In Fig. 5.6 we observe some transitions that seem to have ∆m 6= 1. This

can be a little troublesome, especially because when we constructed the rate

matrix, we only allowed the ∆m = 1 transitions. But the values displayed

in the diagrams are just average values of 〈Sz〉. Since we are working in the
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energy basis, |Ei〉 is a superposition of |m〉 states. A transition from |Ei〉 to

|Ej〉 on opposite sides of the barrier does not actually violate conservation of

angular momentum. What happens is a transition from one |m± 1〉 state to a

|m〉 state, but we only see the transitions between the energy basis states. We

can see why the matrix element between different energy eigenstates can be

nonzero by writing |Ei〉 =
∑10

n=−10 a
(i)
n |i〉 (i.e. a superposition of |m〉 states)

and inspection of the matrix element in Eq. (5.29):

〈Ei|S∗|Ej〉 =

(
10∑

n=−10

a(i)
n 〈n|

)
S∗

(
10∑

m=−10

a(j)
m |m〉

)
, (5.35)

where S∗ = S+Sz +SzS+ +S−Sz +SzS−. Since all terms in S∗ contain raising

and lowering operators, only products between 〈m| and S∗ |m± 1〉 will survive

(using the orthogonality of the basis). But as long as a
(i)
n and a

(j)
n±1 are nonzero,

the 〈Ei|S∗|Ej〉 matrix element should also be nonzero.

As an example look at Fig. 5.6, notice the transitions that go from a lo-

calized state (〈SZ〉 = 5.86) to a slightly delocalized state (〈SZ〉 = −4.45). In

this case we will assume, for the sake of argument, that the initial state has

m = 6, which is a very likely scenario since 5.86 is close to 6. Then, the spin

can transition to the |m = 5〉 state, for example, via a phonon transition. But

notice that the |E∗〉 state, identified by 〈SZ〉 = −4.45, must be in a superpo-

sition of |m〉 states, one of which is |m = 5〉. In turn, |m = 5〉 must be in a

superposition of |Ei〉 states, one of which must be the |E∗〉 state on the oppo-

site side of the barrier. Notice that this is a transition that takes the spin to

the opposite side of the barrier, even though it does not have enough energy

to overcome the potential barrier. We will call this tunneling.

This kind of tunneling transition is caused by the mixing of states due to

a perturbation induced by a transverse-field. This is a sort of instantaneous
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tunneling: once the spin transitions to a |Ei〉 state that is in a superposition of

|m〉 states, it has tunneled instantaneously between the |m〉 states. Imagine a

four-state system with two ground states |±2〉. Suppose that, near resonance,

a transition takes the spin to an excited state that is in a superposition of

|m = 1〉 and |m = −1〉 states. This will be similar to the two state problem

described in chapter 2. Recall that the perturbation splits the degenerate

levels into (Eq. (2.4))

|+〉 =
1√
2

(|+1〉+ |−1〉)

|−〉 =
1√
2

(|+1〉 − |−1〉) ,

which are eigenstates of the Hamiltonian, with their respective energies E+ =

E + ∆/2 and E− = E −∆/2. Suppose a phonon transition from |+2〉 to |−〉

occurs, followed by a transition from |−〉 to |−2〉. The missing step, which

is not taken into account in the rate matrix, is the tunneling between |+1〉

and |−1〉. This is schematically represented in Fig. 5.8. We know that the

probability of tunneling between the |±1〉 states goes as sin2( t∆
2~ ). If the split-

ting between the |+〉 and |−〉 states is very large, then the oscillations occur

too fast in comparison to the phonon transitions. Therefore, not adding the

resonant tunneling terms to the master equation (Eq. (5.22)) is a valid ap-

proximation off-resonance. This is not, however, a correct way of analyzing

the on-resonance case (Fig. 5.8), in which the splitting is small and the oscil-

latory tunneling transitions may happen slowly in comparison to the phonon

transitions. This is a defect of the Pauli formalism in Eq. (5.22). The master

equations do not take into account the off-diagonal elements of the density ma-

trix. One way to deal with this problem, is to add, by hand, correction terms

to Eq. (5.22), like a tunneling term between quasi-degenerate states. This is

much easier to be done in the |m〉 basis, as explained earlier in the beginning

of this chapter. But, presumably, the off-diagonal elements would account for
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Figure 5.8: Thought experiment on a four-state system on-resonance. See text
for explanation.

transitions where a phonon took a molecule to a superposition of |Ei〉 states.

In our four-state system example, the off-diagonal elements would recognize

transitions that took the molecule from |m = 2〉 to a superposition of |+〉 and

|−〉. This would, presumably, take resonant tunneling into consideration.

Determining the most probable path is a more intense computational prob-

lem than drawing the diagrams. One way to do it would be to construct all the

possible paths starting at one ground state and ending in the other. Then, one

could, in principle, test all these paths and find the one of highest probability.

The number of all possible paths increases exponentially with the number of

nodes. It goes as 2n−2, where n is the number of nodes. A simple proof by

strong induction is provided in appendix C. One can see that for n = 21 there

will be 219 possible paths and computing all of them would be a very difficult

computational problem. To decrease the number of paths to be checked, we
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can first identify the lowest levels on the left and right wells for which a tun-

neling transition appears on the diagrams. Then we can focus on the levels

that are above these two, identifying all such ones that have transitions shown

in the diagram. Essentially, we identify all the levels that have arrows and are

above the lowest levels involving tunneling transitions (see Fig. 5.9). These

are usually no more than ten, and 28 = 256 cases is within the computational

power of most personal computers.

Figure 5.9: Inside purple box are the levels that have arrows and are above
the highest levels not involving tunneling transitions.

But how does a molecule decide which path to take, and with what prob-

ability? At a given level, we normalize the probability currents. Suppose

for example, that there are two outgoing currents from a given Ei level (see
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Fig. 5.10). The probability that it will take path 1 is p1 = J̄1/(J̄1 + J̄2), and

Path 1
Path 2

Figure 5.10: Two possible paths a molecule at Ei can take.

p2 = J̄2/(J̄1 + J̄2) that it will take path 2. We can generalize, and define the

probability of choosing a given path to be

pi,j = J̄i,j

 ∑
j,forJ̄i,j>0

J̄i,j

−1

. (5.36)

The probability that a molecule will take the (−10, a1, a2, . . . , an, 10) path is

p(−10,a1,a2,...,an,10) = p−10,a1

(
n−1∏
k=1

pak,ak+1

)
pan,10. (5.37)

In the diagrams (see Fig. 5.6) the levels involved in the most probable path

are circled.

5.2.4 Transverse-field Dependence of the Most Proba-
ble Relaxation Path

This thesis is accompanied by a CD that can be found in the inside of the back

cover. It contains video simulations of the path diagrams as the transverse-

field is increased. To access the information on the CD, you will have to use
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a computer. The video files in the CD are in the standard AVI format and

should be easily accessed by most personal computers today. At this point

I would ask the reader to have the videos ready to be played11. Because the

diagrams contain a lot information you may want to go back and observe parts

of the videos in slow motion or frame by frame. As I point out characteristics

of a given diagram or of a given transition, particular frames will be displayed

in this document.

On-resonance

Although we mentioned that the on-resonance transitions are not accurate, we

can still gain information about the relaxation process. Notice, for example,

the steps in Fig. 5.3. I ask the reader to play the “ON-RESONANCE” video.

The first key observation is that as the transverse-field is increased, the inter-

well transitions present in the most probable relaxation path moves to lower

levels. We can identify the transitions with the steps we observe in Fig. 5.1.

For the sake of brevity and simplicity I will identify each diagram by its

corresponding transverse-field and I will omit the units, which are Oersteds

for all cases. And, I will identify the levels by their 〈Sz〉 expectation value.

The first transition should happen around HT = 1400. If we look at the 1100

diagram (Fig. 5.11) we will see a small current (yellow) from 2.94 to −3.98.

The dominant path goes through a delocalized state, in the middle-top of the

diagram. As HT is increased to 1200, the (2.94 → −3.98) arrow becomes

green, and at 1300 it becomes light blue (Fig. 5.12). Notice that at 1300 the

dominant path now includes the 2.81 to −3.98 transition and the delocalized

11If you are accessing an electronic version of this thesis on the internet, the video files
should also be available. I will refer to the videos by their file names.
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Figure 5.11: Probability currents for Hz = 5 Oe and T = 3K. HT = 1100 Oe
as indicated on the top of the diagram. Observe a small current (yellow) from
2.94 to −3.98. See text for further explanation.
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Figure 5.12: Probability currents for Hz = 5 Oe and T = 3K. HT = 1300 Oe
as indicated on the top of the diagram. The (2.94 → −3.98) arrow becomes
the dominant “top” path. See text for further explanation.
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top of the barrier is no longer part of the path. In the absence of HT these

levels should be 3 and −4 respectively, which means that the new path includes

a tunneling transition. Effectively, the height of the barrier has been reduced,

since the spin does not have to climb as high as it did before.

Let us analyze another step in Fig. 5.1. Let us focus on the step from 3000

to 4000. At 2800 the dominant path is a typical delocalized top-of-the-barrier

path which characterizes the plateau from 2000 to 3000. At 2900, a new tran-

sition appears (light green), from 3.84 to −4.95 (Fig. 5.13). Considering the

expectation values, this looks like a tunneling transition. At 3000, it becomes

the dominant path (dark green). Then, from 3000 to 4000 the intensity of

the dominant current increases very fast, from dark green to almost purple at

4000. Let’s stop for a second and rephrase what happened. A new tunneling

transition became relevant and quickly overpowered the previous inter-well

transition. But this is exactly what the Lorentzians in Fig. 5.2 suggest. Then,

from 4000 to 5000 the diagrams don’t change much. The top transition level

becomes more and more delocalized and the intensity of the top transition

does not change much.

Now look at the 5100 diagram (Fig. 5.14). At this point the dominant

path changed from (· · · 5.91→ 4.83→ 0.36→ −4.83→ −5.91 · · · ), which we

call path A, to (· · · 5.91 → −0.311 → −5.91 · · · ), which we call path B. But

if we look in Fig. 5.1 we don’t see anything happening at HT = 5100. But

we should not. During the transition from path A to path B, the relaxation

rates for both paths must be roughly the same. This is what a crossover

between paths means: at 5000 path A was more probable than path B, but

at 5100 path B became more probable, which implies that for some field value

5000 < Hx < 5100 the rate for path A was the same as the rate for path B.
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Figure 5.13: Probability currents for Hz = 5 Oe and T = 3K. HT = 2900
Oe as indicated on the top of the diagram. A new transition appears (light
green), from 3.84 to −4.95. See text for further explanation.
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Figure 5.14: Probability currents for Hz = 5 Oe and T = 3K. HT = 5100 Oe
as indicated on the top of the diagram. (· · · 5.91 → −0.311 → −5.91 · · · ) is
the new dominant transition. See text for further explanation.

91



Then, as Hx increases, the color of the top arrow (5.91 → −0.311) does not

change much. We have to train our eyes to look, not for a transition between

dominant paths, but for changes in the transverse-field dependence of path B

compared to path A, which is exactly what we did when analyzing the 3000

transition.

Similar analysis can be done for other steps in Fig. 5.1 with the aid of the

diagrams. By defining the barrier as the difference between the ground state

and the energy of the highest level in the dominant path, we can calculate its

transverse-field dependence (Fig. 5.15).
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Figure 5.15: Transverse-field dependence of the barrier height for Mn12-
tBuAc on-resonance (black crosses) and transverse-field dependent relaxation
rates on-resonance (red).
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Another feature of the 5100 diagram (Fig. 5.14) that I would like to discuss

is the double level transition between −0.311 and −5.91. Notice that there

is another possible, but less probable, path: (−0.311 → −4.82 → −5.91).

From the expectation values, we know that −4.82 is mixed, but consider-

ing that −4.82 ≈ −5 there is a very large chance that we would collapse

this state to |m = −5〉 if we measured 〈Sz〉. Similarly, −5.91 is almost −6.

Since only ∆m = 1 transitions are allowed in the calculations, it would

be intuitive to expect that the (−4.82 → −5.91) is so probable that the

(−0.311 → −4.82 → −5.91) would be the dominant path. In the dia-

gram we see that the (−0.311 → −5.91) is light blue (weak), while the

(−0.311 → −4.82) is blue (strong) and the (−4.82 → −5.91) is purple (very

strong). The reason why this light blue transition dominates, goes back to

the (Ei − Ej)3 coefficients in the rate matrix elements (Eq. 5.24), which rep-

resents a strong dependence on the energy difference between any two levels,

and the 1/(eβ(Ei−Ej)−1) term in Eq. 5.24, which is the occupation number for

Bose-Einstein statistics. The combination of both terms is the phonon energy

density [30]:
ω3

eβω − 1
, (5.38)

where ω is the phonon energy.

To see how this affects the possible transitions I will sketch a brief example

of the two-phonon Orbach process as illustrated in [30]. Let us analyze the

three level system in Fig. 5.16.

State |a〉 and state |b〉 are very very close together, energetically, and |c〉 is

at a much greater separation. In the two-phonon Orbach process, the indirect

relaxation of the population in |b〉 to the population in |a〉, via |c〉, gives a

much faster relaxation path than the direct |b〉 → |a〉 transition. The reason
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Figure 5.16: Possible relaxation processes from |b〉 to |a〉. Two-phonon Orbach
process (left) and direct process (right).

is the higher phonon density at transition energies close to Ω than close to ν.

Figure 5.17 shows the phonon energy density for 3 K. Notice from Fig. 5.17

that the number of phonons is largest for energies around 10 K. But that

is roughly the energy separation between −0.311 and −4.82. This explains

why p−0.311,−5.91 beats the product of p−0.311,−4.82 and p−4.82,−5.91, even though

p−0.311,−5.91 < p−0.311,−4.82 and p−0.311,−5.91 < p−4.82,−5.91.

The phonon energy distribution is also the reason why we do not see any

cross-well phonon-induced transitions between quasi-degenerate levels. In-

stead, the molecule has to be excited to a higher level and then relax to the a

level on the opposite well, in an analogous way to the two-phonon Orbach pro-

cess. This is where a proper treatment of resonant tunneling could change the

dominant relaxation paths. Having a full density matrix formalism, where the

off-diagonal elements are included in the calculations, could lead to oscillations

between nearly degenerate energy levels. And the decay of these oscillations
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Figure 5.17: Phonon energy distribution (arbitrary units) at 3 K as a function
of energy (in K).

would, presumably, lead to a population transfer between wells. This kind of

tunneling could be, maybe, slow enough that it would decrease the relaxation

rates. It is hard to say what effects this could have in our results. It could,

for example, decrease the transverse-field dependence of some transitions and

consequently smooth out the on-resonance steps in Fig. 5.1.

Having observed the main features of the relaxation on-resonance, and

keeping in mind that these diagrams do not take into account resonant tun-

neling, I will now discuss the dynamics off-resonance.

Off-resonance

For the off-resonance discussion, there are two videos. OFF-RESONANCE

1000 (Hz = 1000 Oe) is the one we will discuss in this section, but I also

included OFF-RESONANCE 500 (Hz = 500 Oe) for the interested reader.

They both show similar behavior. So, I ask the reader to have the OFF-
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RESONANCE 1000 file ready for visualization.

The transverse-field dependent relaxation rate for Hz = 1000 Oe (Fig. 5.1)

is reproduced in Fig. 5.18 for a narrower range of HT . Because, off-resonance,
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Figure 5.18: Transverse-field dependent relaxation rate for Hz = 1000 Oe.

the sharpness of the steps is much decreased, it becomes harder to define where

they begin and where they end. We produce a similar kind of analysis as the

one we did for the on-resonance diagrams.

In the 3600 diagram we observe the transition (3.80→ −0.197→ −3.84),

which defines the top of the barrier. Then at 3700 we observe a crossover to a

new dominant path (4.91→ 1.95→ −3.83). This last path does not last long,
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and at 3800 (Fig. 5.19) the dominant transition becomes (4.90 → 1.85 →

−4.91). Notice that the (1.85 → −4.91) transition looks like a tunneling

Figure 5.19: Probability currents for Hz = 1000 Oe and T = 3K. HT = 3800
Oe as indicated on the top of the diagram. The dominant transition becomes
(4.90→ 1.85→ −4.91). See text for further explanation.

transition: −4.91 is close to −5 and 1.85 is not entirely delocalized. Fur-

thermore, the intensity of this transition increases quickly as Hx is increased.

This characterizes a step in Fig 5.18. The transverse-field dependence of the

(1.85 → −4.91) transition is not as high as the ones that defined a step in

the on-resonance cases. And, this last fact is completely consistent with the

on-resonance steps being sharper than the off-resonance steps in Fig. 5.1.

At 4700 we observe a slight drop in barrier height. The highest state in

the most probable path changes from being 1.03 at 4600 to −1.31 at 4700.

Notice, however, that there is not much change in the intensity of the highest

transition. And we, therefore, do not observe a step in Fig. 5.18. At 4600
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Figure 5.20: Probability currents for
Hz = 1000 Oe and T = 3K. HT =
4600 Oe as indicated on the top of the
diagram. The (1.03 → −4.87) transi-
tion is light blue. See text for further
explanation.

Figure 5.21: Probability currents for
Hz = 1000 Oe and T = 3K. HT =
4700 Oe as indicated on the top of the
diagram. The (4.84 → −1.31) transi-
tion is light blue. See text for further
explanation.
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(Fig. 5.20), (1.03 → −4.87) was light blue, and, at 4700 (Fig. 5.21), (4.84 →

−1.31) is also light blue, remaining this way until 6500. At 6600 the dominant

path becomes (5.84→ 2.87→ −5.85). This is quite a change from the previous

dominant path, which was (4.69 → −0.441 → −4.73) at 6500. And this

crossover corresponds to a step in Fig. 5.18. The new “top” transition becomes

(2.87→ −5.85). As we increase the transverse field, the color of the transition

increases quickly from light green at 6600 to light blue at 7500. If we count,

starting at the bottom, the states on the left well, one would expect that in the

absence of a transverse-field the 2.87 state would have 〈Sz〉 = +4. Although,

this state is not really localized, it is not quite delocalized either. We conclude

that the steps in Fig. 5.18 are associated with the appearance of a tunneling

transition (notice that −5.85 is pretty close to 6.) that quickly overpowers the

previous dominant path, and shows a strong transverse-field dependence from

then on.

We can, as was done for the on-resonance case, determine the height of

the barrier as the highest energy level in the most probable path (Fig. 5.22).

Although the off-resonance case shows more abrupt changes in the barrier

height than the on-resonance case, the number of steps in the relaxation rate

does not increase. Both cases, however, show the same behavior: a crossover

between dominant paths, where a “tunneling” transition (strongly dependent

on Hx) appears in the new path. Whether or not this transition should be

called tunneling is up for discussion. But we do reemphasize that we call it

tunneling becuase it is a transition that takes a molecule, without enough

energy to overcome the anisotropy barrier, to the opposite well.
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Figure 5.22: Transverse-field dependence of the barrier height for Mn12-
tBuAc off-resonance (black crosses) and transverse-field dependent relaxation
rates off resonance (red).
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5.3 Summary of Theoretical Results

We conclude this section by reaffirming that the current theory reproduces the

appearance of steps in the transverse-field relaxation rates, both on-resonance

and off-resonance. The interpretation that the steps in the relaxation rates

is directly related to barrier reduction seems to be correct. Although, one

should be careful in formulating this correlation. We observe a reduction in

the effective barrier height, due to a crossover between dominant relaxation

paths. It should not be thought, however, that a decrease in barrier height,

caused by a transverse-field, automatically implies a step in the relaxation

rate. It is the transverse-field dependence of the new dominant path that will

determine whether a step appears in the relaxation rate versus transverse-field

data.

The diagrams produced in the videos contain a lot of information about the

relaxation processes, and we feel that they have much more to teach us than

we have presented in this chapter. It seems that when tunneling transitions

become part of the dominant relaxation path, the relaxation rates quickly

increase with the transverse-field.

One task in which we were not successful, was to understand why the

experiments show sharper steps off-resonance than on-resonance. Also, in the

Pauli formalism, resonant tunneling is not properly treated. It is possible that

the effects of the non-diagonal terms of the density matrix could have strong

results in the on-resonance relaxation processes.

101



Chapter 6

Conclusions and Directions for
Future Research

First, it is important to give Mn12-tBuAc its due credit. Its true axial sym-

metry seems to have contributed a major role in producing some of our ex-

perimental results. Perhaps its symmetry is not perfect and some crystalline

disorder may be responsible for inhomogeneous broadening. This could be a

possible answer to why we do not observe sharp superimposed peaks in the

longitudinal-field distributions of the relaxation rate. On the other hand, it

is also possible that the reason why we observe the widths to oscillate, is the

higher symmetry Mn12-tBuAc has over the Mn12-Ac SMM.

We also believe that the real-time relaxation technique has proved itself to

be very successful. Looking at the time-evolution of the magnetization is a

direct way of measuring it, and, quite possibly, a lot of information about the

dynamics of the system is lost when doing ACS measurements, which measures

how fast the magnetization can follow an oscillating field.

Experimentally, our strongest results are the series of plateaus and steps of
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the transverse-field dependent magnetic relaxation rates, and the transverse-

field induced oscillations of the widths of the longitudinal-field distribution of

the the relaxation rates. These two effects seem to be well described by the

current theory, which is based on the the Pauli rate equation (Eq. (5.22)).

In this formalism, the off-diagonal elements of the density matrix are not

taken into account, which leaves our rate calculations for the on-resonance

case incomplete.

We also find that the path diagrams contain a lot of information that still

needs to be extracted. Due to the lack of time, we have not yet been able

to study the temperature dependence of the diagrams. Furthermore, it would

be interesting to fit the theoretical curves to the experimental data, which is

something we plan to do very soon.

There are still many measurements to be taken. The good news is that

a lot of the measurements can be performed very soon and most of the data

acquisition, and data analysis, has been automated. In particular, the N = 1

resonance experiments could potentially yield a lot of useful information. In

Fig. 6.1 we show the theoretical calculations for the longitudinal-field depen-

dence of the relaxation rates near the N = 1 resonance. Due to the fourth-

order anisotropy, the appearance of the new peaks, presumably due to a new

tunneling resonance, occurs off-center to the previous resonance. This may

facilitate the detection of these peaks. And, the position of the peaks would

give us enough information to determine what the pair of tunneling levels is.

This would lead to a direct measure of the barrier height. The other way we

could measure the barrier height would be by taking ACS measurements of

the relaxation rates for different temperatures, and then using the Arrhenius

law to extract the barrier height.
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Figure 6.1: Longitudinal field dependence of the relaxation rate of magnetiza-
tion for different transverse-fields (in Oe) and at 3 K.
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One puzzle is left unsolved. Why are the transverse-field dependent steps

of the relaxation rate sharper off-resonance than on-resonance? This last ob-

servation is in direct contradiction with our simulations. We believe that the

answer to this puzzle could lead to a better understanding of the physics be-

hind the thermally-assisted relaxation processes in SMMs.
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Appendix A

Spatial Tunneling and Barrier
Penetration

Let us assume the potential in equation (A.1), which represents an energy

barrier between x = 0 and x = a.

V (x) =

{
V0, for 0 ≤ x ≤ a;

0, for x < 0 and a < x;
(A.1)

Imagine, then, a beam of particles incident from the left (x < 0), all of them

with energy E < V0. Classically these particles will all be reflected and none

will traverse to the right side of the barrier (x > a). The general solutions to

the SE are,

ψ1(x) = Aeik1x +Be−ik1x, x < 0

ψ2(x) = Ce−αx +Deαx, 0 < x < a (A.2)

ψ3(x) = Feik1x +Ge−ik1x, x > a

where k1 =
√

2mE/~ and α =
√

2m(V0 − E)/~ . The first and third solutions,

ψ1 and ψ2 in (A.2) are oscillatory under all conditions since k2
1 ≥ 0, always.

The second solution, ψ2, can be either oscillatory or a real exponential func-

tion. In our case of interest, E < V0 (α > 0), ψ2 involves real exponentials
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only. Since we restricted the beam to come from the left, we can set G=0.

Furthermore the remaining five (A,B,C,D, F ) unknown constants can be re-

duced to only one (A) by applying the continuity conditions on ψ and dψ/dx.

And A will be determined by the initial conditions, particle density in this

case. I will leave the intermediate steps to the reader. The important result is

that the wave function decays exponentially in the classically forbidden region

and at x = a, ψ 6= 0. The continuity of ψ ensures that the amplitude of the os-

cillatory solution, ψ3, for x > a will not have zero amplitude. This means that

there is a nonzero probability that the particle can be found on the right side

of the barrier. This phenomenon is known as tunneling or barrier penetration.
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Appendix B

Analysis of Relaxation Decay
using a Convolution of
Exponentials

We assume that each molecule in a Mn12-tBuAc crystal decays exponentially,

but that the decay rate for each molecule is different:

Mi = M0e
−Γit (B.1)

We also assume that the probability that a given molecule will decay with Γ

is given by a Gaussian distribution

1

σ
√

2π
e−

(Γ−Γ̃)2

2σ2 , (B.2)

centered about Γ̃, and where σ is the standard deviation. The total magneti-

zation becomes

M =
M0

σ
√

2π

∫ +∞

0

e−Γte−
(Γ−Γ̃)2

2σ2 dΓ. (B.3)

As long as σ is small compared to Γ, we can change the lower limit of the

integral to −∞. Gaussian integrals are easier to evaluate over the entire real

line. This is a good approximation since we would expect that the number of
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molecules relaxing with Γ too close to zero should be negligible, and we should

expect the number of molecules with exponentially increasing magnetization

to be zero. The data is fit to

M =
M0

σ
√

2π

∫ +∞

−∞
e−Γte−

(Γ−Γ̃)2

2σ2 dΓ + c, (B.4)

where there are four fitting parameters: M0, σ, c and Γ̃. This is not an easy

function to fit but after some adjustments, Mathematica was able to do it1.

A fitting code for this function can be found in appendix D. The function in

(B.4) generates a better fit, but the residuals are also skewed (Fig. B.1). The

fourth fitting parameter is the probable reason for the improvement in the fit.

We were not successful in this kind of fit because small adjustments in the σ

parameter, compensated for the fitted value of Γ̃ (see exponent in Eq. (B.4)).

After many frustrated attempts to reproduce consistent fitting parameters, for

different initial guesses of σ, we decided to abandon this model.
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Figure B.1: Fit for convolution of exponentials function (dashed line) for the
relaxation of magnetization on-resonance (left) and residuals(right) – 3 K,
6000 Oe transverse-field.

1Thanks to Andy Anderson for helping with the code.
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Appendix C

Number of All Possible Paths:
Proof by Strong Induction

Let n be the number of nodes and N be the number of all the possible paths.

If n = 2, there is only one possible path. This will be our base case. The

inductive hypothesis is that for all n ≤ k, N = 2n−2. If we add another node,

the number of paths becomes

2k−2 + 2k−3 + 2k−4 + · · · 2k−(k−1) + 1 + 1.

The first term appears as a result of adding an extra node to all paths that

previously existed (kth case). The second term appears as a result of adding

a node to all paths existent in the k − 1 case. The penultimate term (+1) is

due to adding a node to the base case and the last term (+1) is the case of a

transition going through all nodes. After some manipulation the sum becomes

2k−2

(
1 +

1

2
+ · · ·+ 1

2k−2

)
+ 1

= 1 + 2k−2

(
1−

(
1
2

)k−2+1
)

1− 1
2

= 2k−1, (C.1)
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which completes the proof1.

1Thanks to Ben Dickman for pointing out the simplicity of the proof and making me do
it.
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Appendix D

Mathematica Code for
Exponential Fit and
Convolution of Exponentials Fit
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angleStep

+ 1;

DataPoints = Table@0, 8length + 1<, 89<D;
DataPoints@@1DD = :" Angle" , " a" , " error" ,

" Relaxation Rate H1�sL" , " error" , " c" , " error" , " sigma" , " error" >;

Run
ForBi = 0, i < length, i++,

angle = initialAngle + i*angleStep;
angleString = ToString@SetAccuracy@angle, 3DD;
Data = ImportBfilePrefix <> angleString <> " .txt" , " Table" F;
Data = Drop@Data, 1D;
ExpFit = FindFitB

, :a *

* * >,
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TableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 1, 512* KInitialParTime+ skipO>F, :a 
Exp@-G *xD

2* Π

*

ExpB
s 2 x2

2
F *

Π

2
* NormalBSeriesB 1 + ErfB

1

s 2
I-s 2 x + GM

2

F , 8x, G �s, 5<FF >,

88a, Data@@1DD@@2DD<, G, c, s<, x, MaxIterations ® 1000F;

ExpFit2 = FindFitBTable@8Data@@nDD@@1DD, Data@@nDD@@2DD<, 8n, 1, 512*TotalTime<D,

:a 
Exp@-G *xD

1
+ c>, 88a, Data@@1DD@@2DD<, 8G, .01<, c<, x, MaxIterations ® 1000F;

PrintB" Exponential at " <> angleStringF;

PrintBShowBPlotBa 
Exp@-G *xD

1
+ c �. ExpFit2,

:x, skip, TotalTime>, PlotRange ® All, PlotStyle ® :Red, Dashed, Thick >F,

ListPlotBTableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 512*skip, 512*TotalTime>F,

PlotRange ® All, PlotStyle ® PointSize@0.003DF, AxesOrigin ® 80, -5*10^-7<FF;

residualsExp = ApplyBFunctionB8x, y<, EvaluateB:x, y - a 
Exp@-G *xD

1
+ c �. ExpFit2>FF,

TableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 512*skip, 512*TotalTime>F, 1F;

ExportB" C :\ Data\ Exp" <> angleString <> " .pdf" , ShowBPlotBa 
Exp@-G *xD

1
+ c �. ExpFit2,

:x, skip, TotalTime>, PlotRange ® All, PlotStyle ® :Red, Dashed, Thick >F,

ListPlotBTableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 512*skip, 512*TotalTime>F,

PlotRange ® All, PlotStyle ® PointSize@0.003DF,

AxesOrigin ® 80, -5*10^-7<, AxesLabel ® :" TimeHsL" , " Magnetization Ha.u.L" >FF;

PrintBListPlotBresidualsExpFF;

ExportB" C :\ Data\ ExpRes" <> angleString <> " .pdf" ,

ListPlotBresidualsExp, AxesOrigin ® 80, 0<, AxesLabel ® :" TimeHsL" , " Residuals Ha.u.L" >FF;

aInit = a �. ExpFit;
GInit = G �. ExpFit;
sInit = GInit�5;
FIT =

NonlinearRegressBTableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 512*skip, 512*TotalTime>F,

a 
Exp@-G *xD

2* Π

*ExpB
s 2 x2

2
F *

Π
2

 KSuperFunctionA1�x, G, s EO

1
+ c,

88a, aInit<, 8G, GInit<, 8c, 1<, 8s, sInit<<, x, Gradient ® " FiniteDifference" ,

, , F;
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88a, aInit<, 8G, GInit<, 8c, 1<, 8s, sInit<<, x, Gradient ® " FiniteDifference" ,

MaxIterations ® 10000, RegressionReport ® ParameterTable, PrecisionGoal ® ¥F;

DataPoints@@i + 2DD = 8angle, FIT@@1DD@@2DD@@1DD@@1DD@@1DD,
FIT@@1DD@@2DD@@1DD@@1DD@@2DD, FIT@@1DD@@2DD@@1DD@@2DD@@1DD,
FIT@@1DD@@2DD@@1DD@@2DD@@2DD, FIT@@1DD@@2DD@@1DD@@3DD@@1DD, FIT@@1DD@@2DD@@1DD@@3DD@@2DD,
FIT@@1DD@@2DD@@1DD@@4DD@@1DD, FIT@@1DD@@2DD@@1DD@@4DD@@2DD<;

Print@angleStringD;
Print@aInitD;
Print@FIT@@1DD@@2DD@@1DD@@1DD@@1DD + FIT@@1DD@@2DD@@1DD@@3DD@@1DDD;

PrintBShowBPlotB a 
Exp@-G *xD

2* Π

*ExpB
s 2 x2

2
F *

Π
2

 KSuperFunctionA1�x, G, s EO

1
+ c �.

8a ® FIT@@1DD@@2DD@@1DD@@1DD@@1DD, G ® FIT@@1DD@@2DD@@1DD@@2DD@@1DD,
c ® FIT@@1DD@@2DD@@1DD@@3DD@@1DD, s ® FIT@@1DD@@2DD@@1DD@@4DD@@1DD<,

:x, skip, plotTime>, PlotStyle ® :Red, Dashed, Thick >, PlotRange ® AllF,

ListPlotBTableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 512*skip, 512*10>F,

PlotStyle ® PointSize@0.001DF, PlotRange ® All, AxesOrigin ® 80, -5*10^-7<FF;

ExportB" C :\ Data\ Conv " <> angleString <> " .pdf" ,

ShowBPlotB a 
Exp@-G *xD

2* Π

*ExpB
s 2 x2

2
F *

Π
2

 KSuperFunctionA1�x, G, s EO

1
+ c �.

8a ® FIT@@1DD@@2DD@@1DD@@1DD@@1DD, G ® FIT@@1DD@@2DD@@1DD@@2DD@@1DD,
c ® FIT@@1DD@@2DD@@1DD@@3DD@@1DD, s ® FIT@@1DD@@2DD@@1DD@@4DD@@1DD<,

:x, skip, plotTime>, PlotStyle ® :Red, Dashed, Thick >, PlotRange ® AllF,

ListPlotBTableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 512*skip, 512*10>F,

PlotStyle ® PointSize@0.001DF, PlotRange ® All,

AxesOrigin ® 80, -5*10^-7<, AxesLabel ® :" TimeHsL" , " Magnetization Ha.u.L" >FF;

residuals = ApplyBFunctionB8x, y<, EvaluateB

:x, y - a 
Exp@-G *xD

2* Π

*ExpB
s 2 x2

2
F *

1

1
 

Π

2
 HSuperFunction@1�x, G, sDL + c �.

8a ® FIT@@1DD@@2DD@@1DD@@1DD@@1DD, G ® FIT@@1DD@@2DD@@1DD@@2DD@@1DD,
c ® FIT@@1DD@@2DD@@1DD@@3DD@@1DD, s ® FIT@@1DD@@2DD@@1DD@@4DD@@1DD<>FF,

TableB8Data@@nDD@@1DD, Data@@nDD@@2DD<, :n, 512*skip, 512*10>F, 1F;

PrintBListPlotBresiduals, PlotRange ® All, AxesOrigin ® 80, 0<FF;

ExportB" C :\ Data\ ConvRes" <> angleString <> " .pdf" , ListPlotBresiduals,

PlotRange ® All, AxesOrigin ® 80, 0<, AxesLabel ® :" TimesHsL" , " Residuals Ha.u.L" >FF;

F
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ExportB" C :\ Our Documents\ Eduardo" <> " \ H =" <>

ToString@fieldD <> " Oe test 2 minus 1s" <> " .txt" , DataPoints, " TSV " F;
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Mathematica Code for
Longitudinal-Field Dependent
Relaxation Rate of
Magnetization

113



Clear@T, g0, g02D
T = 3

3

precision = 24;

S = 10;

s = 10;

d = SetPrecision@0.55, precisionD;
b = SetPrecision@1.17*10^-3, precisionD;
d = SetPrecision@d, precisionD;
a = 0.000015*0;
c = -2.9*10^H-5L;
c = SetPrecision@c, precisionD;
e = 0.046;

e = SetPrecision@e, precisionD;
theta = 90�180*Pi;
theta = SetPrecision@theta, precisionD;
phi = 90�180*Pi;
phi = SetPrecision@phi, precisionD;
g = 2;

Mb = 5.788*10^H-9L;
Kb = 8.617*10^H-5L;
hbar = 6.582*10^H-16L;
T2 = 0.55*10^-10;

H1 = 1.3 � Sqrt@T2�0.85�10^-10D;
Ν = 117.566;

pht = JH1^2*g^2* Mb^2*T2N � H2*hbar^2L
p = 1.92*10^H3L;
Cs = 1400;

ph1 = Jg0^2* H1.602*10^H-19LL *Kb^5N � J48*Pi* p*Cs^5*hbar^4N;

ph2 = Jg02^2* H1.602*10^H-19LL *Kb^5N � J32*Pi* p*Cs^5*hbar^4N;
Msat = 1192�10^4;
Aloop = 60*200* H10^-6L^2;
g0 = 2.60;

g02 = 0;

DeltafuncBi_, j_F := IfBi � j , 1, 0F;

Sz = TableBi*DeltafuncBi, j F, 8i, -s, s<, :j , -s, s>F;

Sx = 1�2*TableBSqrt@Hs - iL * Hs + i + 1LD *DeltafuncBj , i + 1F +

Sqrt@Hs + iL * Hs - i + 1LD *DeltafuncBj , i - 1F, 8i, -s, s<, :j , -s, s>F;

Sy = 1 � 2 ä *TableBSqrt@Hs - iL * Hs + i + 1LD *DeltafuncBj , i + 1F -

Sqrt@Hs + iL * Hs - i + 1LD *DeltafuncBj , i - 1F, 8i, -s, s<, :j , -s, s>F;
Splus = Sx + I*Sy;
Sminus = Sx - I*Sy;
Splusz = Splus.Sz ;



Szplus = Sz .Splus;

Sminusz = Sminus.Sz ;

Szminus = Sz .Sminus;

Splus2 = Splus.Splus;

Sminus2 = Sminus.Sminus;

Sn = JSz *Cos@thetaD + Sx*Sin@thetaD *Cos@phiD + Sy*Sin@thetaD *Sin@phiDN;

cmatrix = MatrixPower@Sx + I*Sy, 4D + MatrixPower@Sx - I*Sy, 4D;
ematrix = MatrixPower@Sx, 2D - MatrixPower@Sy, 2D;
22216.6

Hmin = 1000;

Hmax = 10000;

Hstep = 400;

HzMin = 4000;

HzMax = 5500;

HzStep = 20;

TimingB

DoB

H0BHz_F := SetPrecisionB-d *Sz ^2 - b*Sz ^4 - g* JMb � KbN *Hz *Sz -

g* JMb � KbN *Sin@thetaD *H * JSx*Cos@phiD + Sy*Sin@phiDN, precisionF;

egsyst = TransposeBTableBEigensystemBH0BHz FF, :Hz , HzMin, HzMax, HzStep>FF;

DoBEvalueBHz , iF = ChopBegsystBB1, JHz - HzMinN � HzStep + 1, iFFF,

:Hz , HzMin, HzMax, HzStep>, 8i, 1, 2*s + 1<F;

DoBEstateBHz , iF = ChopBegsystBB2, JHz - HzMinN � HzStep + 1, iFFF,

:Hz , HzMin, HzMax, HzStep>, 8i, 1, 2*s + 1<F;

DoB

SxelementBHz , i, k F = AbsBKConjugateBEstateBHz , iFF.Sx.EstateBHz , k FOF^2;

S1elementBHz , i, k F = AbsBKConjugateBEstateBHz , iFF.ISplusz + SzplusM.EstateBHz , k FOF^

2 + AbsBKConjugateBEstateBHz , iFF.ISminusz + SzminusM.EstateBHz , k FOF^2;

S2elementBHz , i, k F = AbsBKConjugateBEstateBHz , iFF.Sminus2.EstateBHz , k FOF^2 +

AbsBKConjugateBEstateBHz , iFF.Splus2.EstateBHz , k FOF^2;

Boltz BHz , i, k F = ExpBKKEvalueBHz , k F - EvalueBHz , iFOO � TF,

8i, 1, 2*s + 1<, :k , 1, 2*s + 1>, :Hz , HzMin, HzMax, HzStep>

F;
ph2 = 0;

DoBRateBHz F = SetPrecisionB
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DoBRateBHz F = SetPrecisionB

TransposeB

TableB

IfB

i � j ,

SumB

IfBk � i, 0, -KKKph1*S1elementBHz , i, k F * KKEvalueBHz , k F - EvalueBHz , iFO^3OO *

KK1 � KBoltz BHz , i, k F - 1OOOO + KKph2*S2elementBHz , i, k F * KKEvalueBHz , k F -

EvalueBHz , iFO^3OO * KK1 � KBoltz BHz , i, k F - 1OOOOOF, :k , 1, 2*s + 1>

F,

KKph1*S1elementBHz , i, j F * KKEvalueBHz , j F - EvalueBHz , iFO^3OO *

KK1 � KBoltz BHz , i, j F - 1OOOO + KKph2*S2elementBHz , i, j F *

KKEvalueBHz , j F - EvalueBHz , iFO^3OO * KK1 � KBoltz BHz , i, j F - 1OOOO

F

, 8i, 1, 2*s + 1<, :j , 1, 2*s + 1>

F

F, precision

F, :Hz , HzMin, HzMax, HzStep>

F;

ExportB" C :\ Data\ N=1 relaxation vs Hz T=" <> ToString@TD <> " HT=" <> ToStringBH F <>

" .txt" , TableB:Hz , SetPrecisionBSortBAbsBEigenvaluesBRateBHz FFFF@@2DD, precisionF>,

:Hz , HzMin, HzMax, HzStep>F, " TSV " F;

Relaxation = ListLogPlotB:TableB:Hz , SetPrecisionBSortBAbsBEigenvaluesBRateBHz FFFF@@2DD,

precisionF>, :Hz , HzMin, HzMax, HzStep>F>, PlotRange ® All,

LabelStyle ® DirectiveAFontSize ® 24E, AxesOrigin ® 80, .001<, AxesLabel ®

:StyleB" Hz HOeL" , FontSize ® 28, BoldF, StyleB" G H1�sL" , FontSize ® 28, BoldF>F;

ExportB" C :\ Data\ Figures\ N=1 Mn12-tBuAc relaxation vs Hz HT=" <>

ToStringBH F <> " T=" <> ToString@TD <> " .JPEG" , Relaxation, ImageSize ® 500F

, :H , Hmin, Hmax, Hstep>

F

F

:5511.39, Null >
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<< Combinatorica`

Clear@T, g0, g02D
T = 3

3

precision = 24;

S = 10;

s = 10;

d = SetPrecision@0.55, precisionD;
b = SetPrecision@1.17*10^-3, precisionD;
d = SetPrecision@d, precisionD;
a = 0.000015*0;
c = -2.9*10^H-5L;
c = SetPrecision@c, precisionD;
e = 0.046;

e = SetPrecision@e, precisionD;
theta = 91�180*Pi;
theta = SetPrecision@theta, precisionD;
phi = 90�180*Pi;
phi = SetPrecision@phi, precisionD;
g = 2;

Mb = 5.788*10^H-9L;
Kb = 8.617*10^H-5L;
hbar = 6.582*10^H-16L;
T2 = 0.55*10^-10;

H1 = 1.3 � Sqrt@T2�0.85�10^-10D;
Ν = 117.566;

pht = JH1^2*g^2* Mb^2*T2N � H2*hbar^2L
p = 1.92*10^H3L;
Cs = 1400;

ph1 = Jg0^2* H1.602*10^H-19LL *Kb^5N � J48*Pi* p*Cs^5*hbar^4N;

ph2 = Jg02^2* H1.602*10^H-19LL *Kb^5N � J32*Pi* p*Cs^5*hbar^4N;
Msat = 1192�10^4;
Aloop = 60*200* H10^-6L^2;
g0 = 2.60;

g02 = 0;

DeltafuncBi_, j_F := IfBi � j , 1, 0F;

Sz = TableBi*DeltafuncBi, j F, 8i, -s, s<, :j , -s, s>F;

Sx = 1�2*TableBSqrt@Hs - iL * Hs + i + 1LD *DeltafuncBj , i + 1F +

Sqrt@Hs + iL * Hs - i + 1LD *DeltafuncBj , i - 1F, 8i, -s, s<, :j , -s, s>F;

Sy = 1 � 2 ä *TableBSqrt@Hs - iL * Hs + i + 1LD *DeltafuncBj , i + 1F -

Sqrt@Hs + iL * Hs - i + 1LD *DeltafuncBj , i - 1F, 8i, -s, s<, :j , -s, s>F;
Splus = Sx + I*Sy;



Sminus = Sx - I*Sy;
Splusz = Splus.Sz ;

Szplus = Sz .Splus;

Sminusz = Sminus.Sz ;

Szminus = Sz .Sminus;

Splus2 = Splus.Splus;

Sminus2 = Sminus.Sminus;

Sn = JSz *Cos@thetaD + Sx*Sin@thetaD *Cos@phiD + Sy*Sin@thetaD *Sin@phiDN;

cmatrix = MatrixPower@Sx + I*Sy, 4D + MatrixPower@Sx - I*Sy, 4D;
ematrix = MatrixPower@Sx, 2D - MatrixPower@Sy, 2D;
22216.6

Hmin = 500;

Hmax = 20000;

Hstep = 100;

Hz = -5;

H0BH_F := SetPrecisionB-d *Sz ^2 - b*Sz ^4 - g* JMb � KbN *Hz *Sz -

g* JMb � KbN *Sin@thetaD *H * JSx*Cos@phiD + Sy*Sin@phiDN, precisionF

TimingBegsyst = TransposeBTableBEigensystemBH0BH FF, :H , Hmin, Hmax, Hstep>FF;F

:16.1535, Null >

DoBEvalueBH , iF = ChopBegsystBB1, JH - HminN � Hstep + 1, iFFF,

:H , Hmin, Hmax, Hstep>, 8i, 1, 2*s + 1<F;

DoBEstateBH , iF = ChopBegsystBB2, JH - HminN � Hstep + 1, iFFF,

:H , Hmin, Hmax, Hstep>, 8i, 1, 2*s + 1<F;

EIGENVALUES
DoB:OEvalBH , iF = SortBTableBEvalueBH , xF, 8x, 1, 2 s + 1<FF@@2*s + 2 - iDD>,

:H , Hmin, Hmax, Hstep>, 8i, 1, 2*s + 1<F

DoBL@iD = TableB:H , OEvalBH , iF>, :H , Hmin, Hmax, Hstep>F, 8i, 1, 2*s + 1<F
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TimingB

DoB

SxelementBH , i, k F = AbsBKConjugateBEstateBH , iFF.Sx.EstateBH , k FOF^2;

S1elementBH , i, k F = AbsBKConjugateBEstateBH , iFF.ISplusz + SzplusM.EstateBH , k FOF^2 +

AbsBKConjugateBEstateBH , iFF.ISminusz + SzminusM.EstateBH , k FOF^2;

S2elementBH , i, k F = AbsBKConjugateBEstateBH , iFF.Sminus2.EstateBH , k FOF^2 +

AbsBKConjugateBEstateBH , iFF.Splus2.EstateBH , k FOF^2;

Boltz BH , i, k F = ExpBKKEvalueBH , k F - EvalueBH , iFOO � TF,

8i, 1, 2*s + 1<, :k , 1, 2*s + 1>, :H , Hmin, Hmax, Hstep>

F;

F

:335.367, Null >

ph2 = 0

0
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TimingB

DoBRateBH F = SetPrecisionB

TransposeB

TableB

IfB

i � j ,

SumB

IfBk � i, 0, -KKKph1*S1elementBH , i, k F * KKEvalueBH , k F - EvalueBH , iFO^3OO *

KK1 � KBoltz BH , i, k F - 1OOOO + KKph2*S2elementBH , i, k F * KKEvalueBH , k F -

EvalueBH , iFO^3OO * KK1 � KBoltz BH , i, k F - 1OOOOOF, :k , 1, 2*s + 1>

F,

KKph1*S1elementBH , i, j F * KKEvalueBH , j F - EvalueBH , iFO^3OO *

KK1 � KBoltz BH , i, j F - 1OOOO + KKph2*S2elementBH , i, j F *

KKEvalueBH , j F - EvalueBH , iFO^3OO * KK1 � KBoltz BH , i, j F - 1OOOO

F

, 8i, 1, 2*s + 1<, :j , 1, 2*s + 1>

F

F, precision

F, :H , Hmin, Hmax, Hstep>

F

F

:5.49217, Null >

Rates
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RelaxationPlot =

ListLogPlotB:TableB:H , SetPrecisionBSortBAbsBEigenvaluesBRateBH FFFF@@2DD, precisionF>,

:H , Hmin, Hmax, Hstep>F>, PlotRange ® ::0, Hmax>, All>,

LabelStyle ® DirectiveAFontSize ® 24E, AxesOrigin ® 80, .001<,

AxesLabel ® :StyleB" HT HOeL" , FontSize ® 28, BoldF, StyleB" G H1�sL" , FontSize ® 28, BoldF>F

5000 10 000 15 000 20 000
0.001

0.01

0.1

1

10

100

1000

G H1�sL

ExportB" �home�class08�edasilvaneto08�Relaxation vs HT T=" <> ToString@TD <>

" Hz =" <> ToStringBHz F <> " .tiff" , RelaxationPlot, ImageSize ® 50F;

ExportB" �home�class08�edasilvaneto08�relaxation vs HT T=" <>

ToString@TD <> " Hz =" <> ToStringBHz F <> " .txt" ,

TableB:H , SetPrecisionBSortBAbsBEigenvaluesBRateBH FFFF@@2DD, precisionF>,

:H , Hmin, Hmax, Hstep>F, " TSV " F;

SUPER RUN
TimingB

DoB

;
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DoB

tmax = J1 � SetPrecisionBSortBAbsBEigenvaluesBRateBH FFFF@@2DD, precisionFN *15;

Alleqns = RateBH F.8p1@tD, p2@tD, p3@tD, p4@tD, p5@tD, p6@tD, p7@tD, p8@tD, p9@tD, p10@tD,
p11@tD, p12@tD, p13@tD, p14@tD, p15@tD, p16@tD, p17@tD, p18@tD, p19@tD, p20@tD, p21@tD<;

eqs = :p1'@tD � PartAAlleqns, 1E, p2'@tD � PartAAlleqns, 2E, p3'@tD � PartAAlleqns, 3E,

p4'@tD � PartAAlleqns, 4E, p5'@tD � PartAAlleqns, 5E, p6'@tD � PartAAlleqns, 6E,

p7'@tD � PartAAlleqns, 7E, p8'@tD � PartAAlleqns, 8E, p9'@tD � PartAAlleqns, 9E,

p10'@tD � PartAAlleqns, 10E, p11'@tD � PartAAlleqns, 11E, p12'@tD � PartAAlleqns, 12E,

p13'@tD � PartAAlleqns, 13E, p14'@tD � PartAAlleqns, 14E, p15'@tD � PartAAlleqns, 15E,

p16'@tD � PartAAlleqns, 16E, p17'@tD � PartAAlleqns, 17E, p18'@tD � PartAAlleqns, 18E,

p19'@tD � PartAAlleqns, 19E, p20'@tD � PartAAlleqns, 20E, p21'@tD � PartAAlleqns, 21E,
p1@0D � 0, p2@0D � 1, p3@0D � 0, p4@0D � 0, p5@0D � 0, p6@0D � 0, p7@0D � 0,

p8@0D � 0, p9@0D � 0, p10@0D � 0, p11@0D � 0, p12@0D � 0, p13@0D � 0, p14@0D � 0,

p15@0D � 0, p16@0D � 0, p17@0D � 0, p18@0D � 0, p19@0D � 0, p20@0D � 0, p21@0D � 0>;

sol = NDSolveBeqs, 8p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17,

p18, p19, p20, p21<, 8t, 0, tmax<, MaxSteps ® 100000, WorkingPrecision ® precisionF;

Magnetization@T, t_D = KKKConjugateBEstateBH , 1FF.Sz .EstateBH , 1FO * p1@tDO +

KKConjugateBEstateBH , 2FF.Sz .EstateBH , 2FO * p2@tDO +

KKConjugateBEstateBH , 3FF.Sz .EstateBH , 3FO * p3@tDO +

KKConjugateBEstateBH , 4FF.Sz .EstateBH , 4FO * p4@tDO +

KKConjugateBEstateBH , 5FF.Sz .EstateBH , 5FO * p5@tDO +

KKConjugateBEstateBH , 6FF.Sz .EstateBH , 6FO * p6@tDO +

KKConjugateBEstateBH , 7FF.Sz .EstateBH , 7FO * p7@tDO +

KKConjugateBEstateBH , 8FF.Sz .EstateBH , 8FO * p8@tDO +

KKConjugateBEstateBH , 9FF.Sz .EstateBH , 9FO * p9@tDO +

KKConjugateBEstateBH , 10FF.Sz .EstateBH , 10FO * p10@tDO +

KKConjugateBEstateBH , 11FF.Sz .EstateBH , 11FO * p11@tDO +

KKConjugateBEstateBH , 12FF.Sz .EstateBH , 12FO * p12@tDO +

KKConjugateBEstateBH , 13FF.Sz .EstateBH , 13FO * p13@tDO +

KKConjugateBEstateBH , 14FF.Sz .EstateBH , 14FO * p14@tDO +

KKConjugateBEstateBH , 15FF.Sz .EstateBH , 15FO * p15@tDO +

KKConjugateBEstateBH , 16FF.Sz .EstateBH , 16FO * p16@tDO +

KKConjugateBEstateBH , 17FF.Sz .EstateBH , 17FO * p17@tDO +

+
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KKConjugateBEstateBH , 18FF.Sz .EstateBH , 18FO * p18@tDO +

KKConjugateBEstateBH , 19FF.Sz .EstateBH , 19FO * p19@tDO +

KKConjugateBEstateBH , 20FF.Sz .EstateBH , 20FO * p20@tDO +

KKConjugateBEstateBH , 21FF.Sz .EstateBH , 21FO * p21@tDOO �. sol;

DMagnetization@T, t_D = KKKConjugateBEstateBH , 1FF.Sz .EstateBH , 1FO * p1'@tDO +

KKConjugateBEstateBH , 2FF.Sz .EstateBH , 2FO * p2'@tDO +

KKConjugateBEstateBH , 3FF.Sz .EstateBH , 3FO * p3'@tDO +

KKConjugateBEstateBH , 4FF.Sz .EstateBH , 4FO * p4'@tDO +

KKConjugateBEstateBH , 5FF.Sz .EstateBH , 5FO * p5'@tDO +

KKConjugateBEstateBH , 6FF.Sz .EstateBH , 6FO * p6'@tDO +

KKConjugateBEstateBH , 7FF.Sz .EstateBH , 7FO * p7'@tDO +

KKConjugateBEstateBH , 8FF.Sz .EstateBH , 8FO * p8'@tDO +

KKConjugateBEstateBH , 9FF.Sz .EstateBH , 9FO * p9'@tDO +

KKConjugateBEstateBH , 10FF.Sz .EstateBH , 10FO * p10'@tDO +

KKConjugateBEstateBH , 11FF.Sz .EstateBH , 11FO * p11'@tDO +

KKConjugateBEstateBH , 12FF.Sz .EstateBH , 12FO * p12'@tDO +

KKConjugateBEstateBH , 13FF.Sz .EstateBH , 13FO * p13'@tDO +

KKConjugateBEstateBH , 14FF.Sz .EstateBH , 14FO * p14'@tDO +

KKConjugateBEstateBH , 15FF.Sz .EstateBH , 15FO * p15'@tDO +

KKConjugateBEstateBH , 16FF.Sz .EstateBH , 16FO * p16'@tDO +

KKConjugateBEstateBH , 17FF.Sz .EstateBH , 17FO * p17'@tDO +

KKConjugateBEstateBH , 18FF.Sz .EstateBH , 18FO * p18'@tDO +

KKConjugateBEstateBH , 19FF.Sz .EstateBH , 19FO * p19'@tDO +

KKConjugateBEstateBH , 20FF.Sz .EstateBH , 20FO * p20'@tDO +

KKConjugateBEstateBH , 21FF.Sz .EstateBH , 21FO * p21'@tDOO �. sol;
pop@1, t_D = Part@p1@tD �. sol, 1D;
pop@2, t_D = Part@p2@tD �. sol, 1D;
pop@3, t_D = Part@p3@tD �. sol, 1D;
pop@4, t_D = Part@p4@tD �. sol, 1D;
pop@5, t_D = Part@p5@tD �. sol, 1D;
pop@6, t_D = Part@p6@tD �. sol, 1D;
pop@7, t_D = Part@p7@tD �. sol, 1D;

;

;

;
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pop@7, t_D = Part@p7@tD �. sol, 1D;
pop@8, t_D = Part@p8@tD �. sol, 1D;
pop@9, t_D = Part@p9@tD �. sol, 1D;
pop@10, t_D = Part@p10@tD �. sol, 1D;
pop@11, t_D = Part@p11@tD �. sol, 1D;
pop@12, t_D = Part@p12@tD �. sol, 1D;
pop@13, t_D = Part@p13@tD �. sol, 1D;
pop@14, t_D = Part@p14@tD �. sol, 1D;
pop@15, t_D = Part@p15@tD �. sol, 1D;
pop@16, t_D = Part@p16@tD �. sol, 1D;
pop@17, t_D = Part@p17@tD �. sol, 1D;
pop@18, t_D = Part@p18@tD �. sol, 1D;
pop@19, t_D = Part@p19@tD �. sol, 1D;
pop@20, t_D = Part@p20@tD �. sol, 1D;
pop@21, t_D = Part@p21@tD �. sol, 1D;
DoB

JC Bi, j , t_F = SetPrecisionBHpop@i, tDL *PartBRateBH F, j , iF -

KpopBj , tFO *PartBRateBH F, i, j F, Hprecision + 8LF, 8i, 1, H2*sL + 1<, :j , 1, H2*sL + 1>

F;

number = FindRootBMagnetization@T, tD - Js � Exp@1DN, 8t, 0.0000007<F;
upperBound = 7*number@@1DD@@2DD;
CurrentMatrix = SetPrecisionB

TableB

-JC Bi, j , upperBoundF � DMagnetization@T, upperBoundD

, 8i, 1, 2*s + 1<, :j , 1, 2*s + 1>

F, Hprecision + 10L

F;

DoBIfB

ConjugateBEstateBH , iFF.Sz .EstateBH , iF ³ 0.2,

Elevel@iD =

ShowB

:

PlotBReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF, 8x, -4, -2<F,

GraphicsB

TextB

StyleB

SetPrecisionBConjugateBEstateBH , iFF.Sz .EstateBH , iF, 3F, FontSize ® 12, BoldF,

:-6, ReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF>

F

F

>
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F

>

F;

, NullF;

IfBConjugateBEstateBH , iFF.Sz .EstateBH , iF £ -0.2,

Elevel@iD =

ShowB

:

PlotBReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF, 8x, 2, 4<F,

GraphicsB

TextB

StyleB

SetPrecisionBConjugateBEstateBH , iFF.Sz .EstateBH , iF, 3F, FontSize ® 12, BoldF,

:6, ReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF>

F

F

>

F;

, NullF;

IfB0.2 ³ ConjugateBEstateBH , iFF.Sz .EstateBH , iF ³ -0.2,

Elevel@iD =

ShowB

:

PlotBReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF, 8x, -1, 1<F,

GraphicsB

TextB

StyleB

SetPrecisionBConjugateBEstateBH , iFF.Sz .EstateBH , iF, 3F, FontSize ® 12, BoldF,

:6, ReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF>

F

F

>

F;

, NullF,
8i, 1, 2*s + 1<

F;

;

;
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F;

MinCurrent = 0.0025;

MaxCurrent = 0.055;

k = 1;

L1 = 8<;
L2 = 8<;
MinSz = 0;

MaxSz = 0;

TopIndex = 0;

DoB

IfB

PartBCurrentMatrix, i, j , 1F ³ MinCurrent,

:

fBConjugateBEstateBH , iFF.Sz .EstateBH , iFF = i;

fBConjugateBEstateBH , j FF.Sz .EstateBH , j FF = j ;

IfBConjugateBEstateBH , iFF.Sz .EstateBH , iF > 0 &&

ConjugateBEstateBH , j FF.Sz .EstateBH , j F < 0,

:

IfBConjugateBEstateBH , iFF.Sz .EstateBH , iF > MaxSz ,

:

MaxSz = ConjugateBEstateBH , iFF.Sz .EstateBH , iF;

>

, NullF;

IfBConjugateBEstateBH , j FF.Sz .EstateBH , j F < MinSz ,

:

MinSz = ConjugateBEstateBH , j FF.Sz .EstateBH , j F;

>

, NullF;

>,
Null

F;

IfBMemberQ@L2, iD,
Null,

:IfBConjugateBEstateBH , iFF.Sz .EstateBH , iF £ MaxSz &&

ConjugateBEstateBH , iFF.Sz .EstateBH , iF > 0,

:
L2 = Append@L2, iD;
L1 = AppendBL1, ConjugateBEstateBH , iFF.Sz .EstateBH , iFF;

>
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L1 = AppendBL1, ConjugateBEstateBH , iFF.Sz .EstateBH , iFF;

>

F;

>

F;

IfBMemberQBL2, j F,
Null,

:IfBConjugateBEstateBH , j FF.Sz .EstateBH , j F ³ MinSz &&

ConjugateBEstateBH , j FF.Sz .EstateBH , j F < 0,

:

L2 = AppendBL2, j F;

L1 = AppendBL1, ConjugateBEstateBH , j FF.Sz .EstateBH , j FF;

>

F;

>

F;

IfBConjugateBEstateBH , iFF.Sz .EstateBH , iF ³ 0.2,

x1 = -4 + Kk � 15O,

IfBConjugateBEstateBH , iFF.Sz .EstateBH , iF £ -0.2,

x1 = 4 - KKk + 1O � 15O,

:

x1 = H-1LTopIndex HHTopIndexL �15L;
TopIndex = TopIndex + 1;

>

F;

F;

IfBConjugateBEstateBH , j FF.Sz .EstateBH , j F ³ 0.2,

x2 = -4 + KKk + 1O � 15O,

IfBConjugateBEstateBH , j FF.Sz .EstateBH , j F £ -0.2,

x2 = 4 - KKk O � 15O,

:

x2 = H-1LTopIndex HHTopIndexL �15L;
TopIndex = TopIndex + 1;

>

F;

F;

;
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F;

F;

DrawArrowBi, j F = True;

CurrentArrowBk F =

GraphicsB:Thick , Dashed, HueBLogBPartBCurrentMatrix, i, j , 1F � JMinCurrent - 0.001NF �

LogBMaxCurrent � JMinCurrent - 0.001NFF,

:Arrowheads ® Large, ArrowB::x1, ReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF>,

:x2, ReBConjugateBEstateBH , j FF.H0BH F.EstateBH , j FF>>F>>F;

maxIndex = k ;

k ++

>

, DrawArrowBi, j F = False;

F

, 8i, 1, 2*s + 1<, :j , 1, 2*s + 1>

F;

L1 = Sort@L1, GreaterD;
SuperL = 8<;
LTemp = 8<;

ForBk = 2, k £ Length@L1D, k ++,

:

LTemp = KSubsetsBL1, k F;

ForBn = 1, n £ Length@LTempD, n++,

IfB

MemberQ@Part@LTemp, nD, Part@L1, 1DD && MemberQ@Part@LTemp, nD, Part@L1, Length@L1DDD,
SuperL = Append@SuperL, Part@LTemp, nDD;
, NullF

F;

>

F;
SuperL2 = 8<;
ForBk = 1, k £ Length@SuperLD, k ++,

:

LTemp = PartBSuperL, k F;
LTemp2 = 8<;
For@n = 1, n £ Length@LTempD, n++,
LTemp2 = Append@LTemp2, f@Part@LTemp, nDDD

D;

>
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D;
SuperL2 = Append@SuperL2, LTemp2D

>

F;

ForBn = 1, n £ Length@L2D, n++,

:
Normalization@Part@L2, nDD = 0;

ForBk = 1, k £ 2*s + 1, k ++,

:

IfBPartBCurrentMatrix, Part@L2, nD, k , 1F > 0,

Normalization@Part@L2, nDD =

Normalization@Part@L2, nDD + PartBCurrentMatrix, Part@L2, nD, k , 1F

F;

>

F

>

F;

ForBk = 1, k £ Length@SuperL2D, k ++,

:

ProdCurrentBk F = 1;

LTemp = PartBSuperL2, k F;

ForBn = 1, n < Length@LTempD, n++,

:

ProdCurrentBk F =

ProdCurrentBk F *
Part BCurrentMatrix, Part BLTemp, nF, Part BLTemp, n + 1F, 1F

NormalizationBPart BLTemp, nFF

>

F;

>

F;

ForBk = 1, k £ Length@SuperL2D, k ++,

:IfBProdCurrentBk F == MaxBTableBProdCurrentBk F, :k , 1, Length@SuperL2D>FF,

MostProbIndex = k , NullF

>

F;

;
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F;

MostProbPathBH F = Part@SuperL2, MostProbIndexD;

MostProbPathSz BH F = TableBConjugateBEstateBH , PartBMostProbPathBH F, iFFF.

Sz .EstateBH , PartBMostProbPathBH F, iFF, :i, 1, LengthBMostProbPathBH FF>F;

BarrierTopBH F = MaxBTableBReBConjugateBEstateBH , PartBMostProbPathBH F, iFFF.H0BH F.

EstateBH , PartBMostProbPathBH F, iFFF, :i, 1, LengthBMostProbPathBH FF>FF;

LowestTransitionLevelBH F = MinBTableBReBConjugateBEstateBH , PartBMostProbPathBH F, iFFF.

H0BH F.EstateBH , PartBMostProbPathBH F, iFFF, :i, 1, LengthBMostProbPathBH FF>FF;

BarrierHeightBH F = BarrierTopBH F - ReBConjugateBEstateBH , 1FF.H0BH F.EstateBH , 1FF;
ScaleFactor = 400;

Legend = ShowBTableBGraphicsB:Thickness@.09D,

HueBLogBx � JMinCurrent - 0.001NF � LogBMaxCurrent � JMinCurrent - 0.001NFF,

Line@888, -70 + ScaleFactor*x<, 88.5, -70 + ScaleFactor*x<<D>F,

:x, MinCurrent, MaxCurrent, JMaxCurrent - MinCurrentN � 10>FF;

ForBn = 1, n £ LengthBMostProbPathBH FF, n++,

:i = PartBMostProbPathBH F, nF;

IfB

ConjugateBEstateBH , iFF.Sz .EstateBH , iF ³ 0.2,

MostProbCircle@nD = GraphicsB:Red, Thick , Dashed,

CircleB:-5, ReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF>, 2F>F;

, NullF;

IfBConjugateBEstateBH , iFF.Sz .EstateBH , iF £ -0.2,

MostProbCircle@nD = GraphicsB:Red, Thick , Dashed,

CircleB:5, ReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF>, 2F>F;

, NullF;

IfB0.2 ³ ConjugateBEstateBH , iFF.Sz .EstateBH , iF ³ -0.2,

MostProbCircle@nD = GraphicsB:Red, Thick , Dashed,

CircleB:0, ReBConjugateBEstateBH , iFF.H0BH F.EstateBH , iFF>, 2F>F;

, NullF

>

F;

CircIndex2 = 0;

ForBn = 1, n £ 2 s + 1, n++,

:

IfBConjugateBEstateBH , nFF.Sz .EstateBH , nF > MaxSz ,
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IfBConjugateBEstateBH , nFF.Sz .EstateBH , nF > MaxSz ,

CircIndex2 = CircIndex2 + 1;

MostProbCircle2BCircIndex2F = GraphicsB:Red, Thick , Dashed,

CircleB:-5, ReBConjugateBEstateBH , nFF.H0BH F.EstateBH , nFF>, 2F>F;

, NullF;

IfBConjugateBEstateBH , nFF.Sz .EstateBH , nF < MinSz ,

CircIndex2 = CircIndex2 + 1;

MostProbCircle2BCircIndex2F = GraphicsB:Red, Thick , Dashed,

CircleB:5, ReBConjugateBEstateBH , nFF.H0BH F.EstateBH , nFF>, 2F>F;

, NullF;

>

F;

Circles = ShowBTableBMostProbCircle@nD, :n, 1, LengthBMostProbPathBH FF>FF;

Circles2 = ShowBTableBMostProbCircle2@nD, :n, 1, CircIndex2>FF;

CurrentDiagramBH F =

ShowB

:

Circles2, Circles, Legend, TableBCurrentArrowBk F, :k , 1, maxIndex>F,

ShowBTableB:Elevel@iD>, 8i, 1, 2*s + 1<F, PlotRange ® AllF

>,
Axes ® 8False, True<, AspectRatio ® 1.5,

PlotLabel ® StyleBH , Large, BoldF, PlotRange ® 8-70, 5<

F;

ExportB" �home�class08�edasilvaneto08�Figures�Mn12-tBuAc Current Diagam T=3 Hz =" <>

ToStringBHz F <> " HT=" <> ToStringBH F <> " .JPEG" , CurrentDiagramBH F, ImageSize ® 500F;

, :H , Hmin, Hmax, Hstep>

F

F

ListPlotB:TableB:H , BarrierHeightBH F>, :H , Hmin, Hmax, Hstep>F>, PlotRange ® AllF

play 14 Hz=-5 compact  for thesis print.nb  15



10 000 15 000 20 000

40

45

50

55

60

65

16  play 14 Hz=-5 compact  for thesis print.nb



ListPlotB:TableB:H , LowestTransitionLevelBH F>, :H , Hmin, Hmax, Hstep>F,

TableB:H , BarrierTopBH F>, :H , Hmin, Hmax, Hstep>F>F

5000 10 000 15 000

- 50

- 40

- 30

- 20

- 10

ALL GRAPHS
DoBGCurrentBi, j F =

ListPlotBTableB:H , PartBCurrentMatrixBH F, i, j , 1F>, :H , Hmin, Hmax, Hstep>F,

PlotStyle ® PointSize@.02D, PlotRange ® AllF

, :H , Hmin, Hmax, Hstep>, 8i, 1, 2*s + 1<, :j , 1, 2*s + 1>F
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GCurrent@1, 5D

4000
6000 8000
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0.0010

0.0015

DoBPrintB:i, j > F;

PrintBGCurrentBi, j FF,

8i, 1, 2*s + 1<, :j , 1, 2*s + 1>

F

Make Video
TimingB

ExportB" �home�class08�edasilvaneto08�Videos�Current Diagams Hz =" <>

ToStringBHz F <> " T=" <> ToString@TD <> " .avi" ,

TableBCurrentDiagramBH F , :H , Hmin, Hmax, Hstep> F, ImageSize ® 500, " FrameRate" ® 2F

F;

DoBHClassicalBH , x_F = -d * Js*Cos@xDN^2 - b* Js*Cos@xDN^4 -

g* JMb � KbN * JHz *s*Cos@xD *Cos@phiD + H *s*Sin@xD *Sin@phiDN, :H , Hmin, Hmax, Hstep>F;

DoBClassicalBarrierBH F = PartBFindMaximumBHClassicalBH , xF, 8x, Pi�2<F, 1F -

PartBFindMinimumBHClassicalBH , xF, 8x, 0<F, 1F, :H , Hmin, Hmax, Hstep>F;

ListPlotB:TableB:H , BarrierHeightBH F>, :H , Hmin, Hmax, Hstep>F,

TableB:H , ClassicalBarrierBH F>, :H , Hmin, Hmax, Hstep>F>, PlotRange ® AllF
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ExportB" �home�class08�edasilvaneto08�Barrier Height T=" <> ToString@TD <> " Hz =" <>

ToStringBHz F <> " .txt" , TableB:H , BarrierHeightBH F>, :H , Hmin, Hmax, Hstep>F, " TSV " F;

ExportB" �home�class08�edasilvaneto08�Classical Barrier Height T=" <>

ToString@TD <> " Hz =" <> ToStringBHz F <> " .txt" ,

TableB:H , ClassicalBarrierBH F>, :H , Hmin, Hmax, Hstep>F, " TSV " F;
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