Professional and Biographical Information

Submitted by Ethan R. Graf on Thursday, 8/31/2017, at 6:47 PM


Ph.D., Washington University in St. Louis (2005)

B.A., Kalamazoo College (1999)


Courses Taught

Biology 191:  Molecules, Genes, and Cells

Biology 291:  Cell Structure and Function

Biology 301:  Molecular Neurobiology 

Neuroscience 226:  Introduction to Neuroscience



Synapses are complex molecular machines that transfer information from one cell to another via the highly regulated release of neurotransmitter from presynaptic axon terminals. Following release, neurotransmitter activates receptors on the membrane of the associated postsynaptic cell, completing the process of communication. The multifaceted nature of the synapse and its ability to change over time requires numerous developmental and modulatory mechanisms to control its formation and function.

To investigate questions of synapse development, we utilize molecular, genetic, biochemical, and imaging tools available in Drosophila to study the larval neuromuscular junction (NMJ) as a model synapse. We have previously identified the protein Rab3 as playing a novel role in the formation and distribution of the presynaptic release machine among the hundreds of potential vesicle release sites that comprise an NMJ. In the rab3 mutant, visualization of essential protein components of the release apparatus reveals that release machinery is concentrated at a small fraction of available release sites. This results in the formation of a small number of “super sites” where vesicle release is enhanced while leaving the majority of sites devoid of proteins required for efficient vesicle release

The mechanism by which Rab3 performs this function remains unclear. Thus, current work in my laboratory revolves around an exploration of how Rab3 functions at the Drosophila NMJ.



National Institute of Health, R15 AREA Grant (2014-2018): Molecular Mechanisms of Active Zone Formation at Drosophila Synapses


Recent Publications

Underlined = Amherst College undergraduate co-author

Bae H., Chen S., Roche J.P., Ai M., Wu C., DiAntonio A., and Graf E.R.  (2016) Rab3-GEF Controls Active Zone Development at the Drosophila Neuromuscular Junction. eNEURO 3(2) e0031-16.2016, 1-19.

Chen S., Gendelman H.K., Roche J.P., Alsharif P., and Graf E.R.(2015)Mutational Analysis of Rab3 Function for Controlling Active Zone Development at the Drosophila Neuromuscular Junction. PLoS One 10:e0136938.

Graf E.R., Valakh V., Wright C.W., Wu C., Liu Z., Zhang Y.Q., and DiAntonio A. (2012) RIM Promotes Calcium Channel Accumulation at Active Zones of the Drosophila Neuromuscular Junction. Journal of Neuroscience 32:16586-96.

Graf E.R., Heerssen H.M., Wright C.W., Davis G.W., and DiAntonio A. (2011). Stathmin is Required for Stability of the Drosophila Neuromuscular Junction. Journal of Neuroscience 31:15026-34.

Graf E.R., Daniels R.W., Burgess R.W., Schwarz T.L., and DiAntonio A. (2009). Rab3 dynamically controls protein composition at active zones. Neuron 64:663-77.