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Abstract

This footnote unrolls the circular mathematics from the vinyl records of the album Geometry and Algebra Merry-go-
round to traditional rectangular pages with more words.
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1 Side A: The dot product

Geometric Definition. Given vectors a, b in R𝑛, let |a|, |b| be their lengths and \ their anglea. Then

a · b := |a| |b| cos \.
aStrictly speaking, \ is only defined when both a and b are nonzero. In the case that one of them is 0, we let a · b = 0,

which is consistent with the above definition in the sense that a · b is continuous in both a and b. In our later discussion
of the dot product, cross product, and scalar triple product, the special case when any vector is 0 will be omitted. It can be
checked that all statements hold for this special case.

Algebraic Definition. Given vectors a = ⟨𝑎1, · · · , 𝑎𝑛⟩, b = ⟨𝑏1, · · · , 𝑏𝑛⟩ in R𝑛,

a · b := 𝑎1𝑏1 + · · · + 𝑎𝑛𝑏𝑛.

1.1 From geometry to algebra

Figure 1: Dot product: from geometry to algebra

Assume the geometric definition of a · b. Define the unit vectors e𝑖 = ⟨0, · · · , 1, · · · , 0⟩, where the only
1 is the 𝑖th entry. Then the angle \ between e𝑖 and e 𝑗 , where 𝑖 ≠ 𝑗 , is 𝜋/2, as a natural generalization from
dimensions 2 and 3 to general 𝑛. Thus, e𝑖 · e 𝑗 = 0 if 𝑖 ≠ 𝑗 and e𝑖 · e 𝑗 = 1 if 𝑖 = 𝑗 . These conditions can be
summarized by saying that the vectors e𝑖 , 1 ≤ 𝑖 ≤ 𝑛, form an orthonormal basis of R𝑛.

Proposition. Dot product is bilinear.

Proof. We will show that dot product is linear in the first entry. As dot product is commutative from its
geometric definition, it will also follow that dot product is linear in the second entry.

Consider 𝑐a and b. The angle between them is either \ or 𝜋 − \, depending on whether 𝑐 > 0 or 𝑐 < 0.
Using the geometric definition of scalar product, if 𝑐 > 0, then we have (𝑐a) ·b = |𝑐a| |b| cos \ = 𝑐 |a| |b| cos \,
and if 𝑐 < 0, then we have (𝑐a) · b = |𝑐a| |b| cos(𝜋 − \) = −𝑐 |a| |b| (− cos \) = 𝑐 |a| |b| cos \. Both are 𝑐(a · b).

Consider a1, a2, and b. Let the angle formed between b and each of a1, a2, and a1 + a2 be \1, \2 and
\, respectively. Then by the geometric definition of vector addition, |a1 + a2 | cos \ = |a1 | cos \1 + |a2 | cos \2.
Therefore, (a1 + a2) · b = |a1 + a2 | |b| cos \ = |a1 | |b| cos \1 + |a2 | |b| cos \2 = a1 · b + a2 · b. □



Using the bilinearity above, we have

a · b =

𝑛∑︁
𝑖=1

𝑎𝑖e𝑖
𝑛∑︁
𝑗=1

𝑏 𝑗e 𝑗 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑎𝑖𝑏 𝑗e𝑖 · e 𝑗 =

𝑛∑︁
𝑖=1

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 · · · + 𝑎𝑛𝑏𝑛.

1.2 From algebra to geometry

Figure 2: Dot product: from algebra to geometry

Starting from the algebraic definition of a · b, we can show that

Algebraic Properties of Dot Product

1. a · a = |a|2

2. a · b = b · a

3. (a + b) · c = a · c + b · c

4. (𝑐a) · b = 𝑐(a · b) = a · (𝑐b)

The law of cosine applied to the triangle with the edge a − b opposite to the angle \ is

|a − b|2 = |a|2 + |b|2 − 2|a| |b| cos \.

Using the above algebraic properties, we have

a · a − 2a · b + b · b = a · a + b · b − 2|a| |b| cos \.

Thus,
a · b := |a| |b| cos \.



2 Side B: The cross product

As opposed to dot product, cross product is typically only defined when 𝑛 = 3. In the last section, we will
see that it can also be defined for 𝑛 = 1, 7, but those will be it: dot product does not exist in dimensions other
than 1, 3, and 7.

Geometric Definition. Given vectors a, b in R3, let |a|, |b| be their lengths and \ their angle. Then
a × b is defined to be the vector whose direction and length are given as follows:

• a × b is perpendicular to both a and b. More specifically, a, b, a × b in this order satisfy the
right-hand-rule.

• |a × b| = |a| |b| sin \, the area of the parallelogram spanned by a and b.

Algebraic Definition. Given vectors a = ⟨𝑎1, 𝑎2, 𝑎3⟩, b = ⟨𝑏1, 𝑏2, 𝑏3⟩ in R3,

a × b := ⟨𝑎2𝑏3 − 𝑎3𝑏2, 𝑎3𝑏1 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑎2𝑏1⟩.

2.1 From geometry to algebra

Figure 3: Cross product: from geometry to algebra

Assume the geometric definition of a × b. Let i = e1, j = e2, and k = e3. Then

i × i = 0 i × j = k i × k = −j
j × i = −k j × j = 0 j × k = i
k × i = j k × j = −i k × k = 0

Same as dot product, cross product is linear in both entires.

Proposition. Cross product is bilinear.

Proof. Using its geometric definition, cross product is antisymmetric, i.e., b × a = −a × b. Thus, if we can
show × is linear in the first entry, then it is also linear in the second.

Let 𝑐 be real. If 𝑐 > 0, then (𝑐a) × b has the same direction as a × b, which in turn has the same
direction as 𝑐(a × b). Furthermore, | (𝑐a) × b| = |𝑐a| |b| sin \ = 𝑐 |a| |b| sin \ = 𝑐 |a × b| = |𝑐(a × b) |.
Therefore, (𝑐a) × b = 𝑐(a × b). If 𝑐 < 0, then (𝑐a) × b has the opposite direction as a × b, which in turn
has the opposite direction as 𝑐(a × b). Thus, (𝑐a) × b has the same direction as 𝑐(a × b). Furthermore,



| (𝑐a) × b| = |𝑐a| |b| sin(𝜋 − \) = −𝑐 |a| |b| sin \ = −𝑐 |a × b| = | (−𝑐) (a × b) | = |𝑐(a × b) |. Therefore,
(𝑐a) × b = 𝑐(a × b).

Now consider a1, a2, and b. Let the three vectors start from the same point, and orient them in such a
way that b is perpendicular to the page and points out of it. Then a1 and a2 appear as the their projected
images a⊥1 and a⊥2 on the page, and b appears as a single point 0. Consider the parallelogram spanned by a⊥1
and a⊥2 , then its diagonal starting at 0 is the projection of a1 + a2 on the page. Now turn this parallelogram
clockwise by 𝜋/2 and stretch it in all directions by a factor of |b| at 0. Then in this new parallelogram, the
two edge vectors starting from 0 are a1 × b and a2 × b, and the diagonal starting at 0 is (a1 + a2) × b, which
is also a1 × b + a2 × b as the sum of the two edge vectors. □

Using the multiplication table and bilinearity above, a × b = (𝑎1i + 𝑎2j + 𝑎3k) × (𝑏1i + 𝑏2j + 𝑏3k) =
(𝑎2𝑏3 − 𝑎3𝑏2)i + (𝑎3𝑏1 − 𝑎1𝑏3)j + (𝑎1𝑏2 − 𝑎2𝑏1)k. Thus,

a × b := ⟨𝑎2𝑏3 − 𝑎3𝑏2, 𝑎3𝑏1 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑎2𝑏1⟩.

2.2 From algebra to geometry

Figure 4: Cross product: from algebra to geometry

Starting from the algebraic definition of a×b, we have |a×b|2 = (𝑎2𝑏3−𝑎3𝑏2)2+(𝑎3𝑏1−𝑎1𝑏3)2+(𝑎1𝑏2−
𝑎2𝑏1)2 = (𝑎2

1+𝑎
2
2+𝑎

2
3) (𝑏

2
1+𝑏

2
2+𝑏

2
3) − (𝑎1𝑏1+𝑎2𝑏2+𝑎3𝑏3)2 = |a|2 |b|2− (a ·b)2 = |a|2 |b|2− |a|2 |b|2 cos2 \ =

( |a| |b| sin \)2. Thus, |a × b| = |a| |b| sin \, which is the area of the parallelogram spanned by a and b.

Then, from (a × b) · a = (𝑎2𝑏3 − 𝑎3𝑏2)𝑎1 + (𝑎3𝑏1 − 𝑎1𝑏3)𝑎2 + (𝑎1𝑏2 − 𝑎2𝑏1)𝑎3 = 0 and (a × b) · b =

(𝑎2𝑏3 − 𝑎3𝑏2)𝑏1 + (𝑎3𝑏1 − 𝑎1𝑏3)𝑏2 + (𝑎1𝑏2 − 𝑎2𝑏1)𝑏3 = 0, we see that a×b is perpendicular to both a and b.

Finally, we show a, b and a × b, in this order, when a and b are linearly independent, satisfy the
right-hand-rule. First, there must be one of the coordinate planes 𝑥 = 0, 𝑦 = 0 or 𝑧 = 0, which is not
perpendicular to the plane containing a and b. Without loss of generality, due to the cyclic symmetry, say it’s
the 𝑧 = 0 plane. Consider the projections a⊥ = ⟨𝑎1, 𝑎2, 0⟩ and b⊥ = ⟨𝑏1, 𝑏2, 0⟩ of a and b onto 𝑧 = 0. Then
the handedness of a, b, and a×b is the same as the handedness of a⊥, b⊥, and a⊥ ×b⊥ = ⟨0, 0, 𝑎1𝑏2 − 𝑎2𝑏1⟩.
Writing a⊥ = 𝑎⟨cos \, sin \, 0⟩ and b⊥ = 𝑏⟨cos 𝜙, sin 𝜙, 0⟩, where \ and 𝜙 are the angles from i to a⊥ and
b⊥, respectively, we have a⊥ × b⊥ = ⟨0, 0, 𝑎𝑏 sin 𝛾⟩, where 𝛾 = 𝜙 − \ is the angle from a to b. Thus, viewed
from above, if a is to the right of b, then sin 𝛾 > 0 and thus a⊥ × b⊥ points up, and if a is to the left of b,
then sin 𝛾 < 0, and thus a⊥ × b⊥ points down. In both cases, a⊥, b⊥, and a⊥ × b⊥ satisfy the right-hand-rule.
Therefore, so do a, b, and a × b. This proof was learned from Eric Thurschwell, An Even Simpler Proof of
the Right-Hand Rule, College Mathematics Journal, Vol. 46, No. 3 (2015), pp. 215-217.



3 Side C: The scalar triple product

Geometric Definition. Given vectors a, b, and c in R3, the scalar triple product T(a, b, c) is defined
to be the signed volume of the parallelepiped spanned by a, b, and c, where the sign ± is determined
by whether a × b forms an acute or obtuse angle with c.

Algebraic Definition. Given vectors a = ⟨𝑎1, 𝑎2, 𝑎3⟩, b = ⟨𝑏1, 𝑏2, 𝑏3⟩, and c = ⟨𝑐1, 𝑐2, 𝑐3⟩ in R3, the
scalar triple product T(a, b, c) is defined to be the following determinant.������ 𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

������
3.1 From geometry to algebra

Figure 5: Scalar triple product: from geometry to algebra

Assume the geometric definition. First of all, for 𝑝, 𝑞, 𝑟 ∈ {1, 2, 3}, T(e𝑝, e𝑞, e𝑟 ) = 0 if any two of
𝑝, 𝑞, 𝑟 are equal. Otherwise, it is the sign of the permutation 1 ↦→ 𝑝, 2 ↦→ 𝑞, 3 ↦→ 𝑟 . Furthermore, we also
have the following.

Proposition. Scalar triple product is antisymmetric, i.e., (1) T(b, a, c) = −T(a, b, c), (2) T(a, c, b) =
−T(a, b, c), and (3) T(c, b, a) = −T(a, b, c).

Proof. For (1), if we interchange a with b, then the direction of their cross product is reversed. Thus, the
angle between the cross product and c changes to its complementary angle, resulting the sign change.

For (2), a × b and a × c are both perpendicular to a, each of which is also perpendicular to b and c,
respectively. Viewing all the aforementioned vectors projected onto the plane perpendicular to a, we see that
if the angle between a × c and b is acute, then the angle between a × b and c is obtuse, and vice versa.

(3) can be proved similarly to (2). □

Proposition. Scalar triple product is multi-linear.



Proof. As T is antisymmetric, it suffices to show T is linear in the last entry.

First of all, T(a, b, 𝑘c) = 𝑘T(a, b, c) as the rescaling of c by 𝑘 has the effect of multiplying the volume
by |𝑘 | and keeping and reversing the sign depending on if 𝑘 > 0 or 𝑘 < 0.

Then, similarly to the proof that dot product is distributive, if we recognize that the signed volume
T(a, b, c) is the area of the base spanned by a and b multiplied by the projection of c onto a × b, then we see
that T(a, b, c1) + T(a, b, c2) = T(a, b, c1 + c2), as the projection of c1 + c2 is the sum of the projections of c1
and c2 onto a × b. The sign also carries through. □

Therefore, by the above two results,

T(a, b, c) = T(
3∑︁

𝑝=1
𝑎𝑝e𝑝,

3∑︁
𝑞=1

𝑏𝑞e𝑞,
3∑︁

𝑟=1
𝑐𝑟e𝑟 ) =

3∑︁
𝑝=1

3∑︁
𝑞=1

3∑︁
𝑟=1

𝑎𝑝𝑏𝑞𝑐𝑟T(e𝑝, e𝑞, e𝑟 ) =
∑︁
𝜎∈𝑆3

sign(𝜎)𝑎𝜎 (1)𝑏𝜎 (2)𝑐𝜎3,

which is the determinant in the algebraic definition of the scalar triple product.

3.2 From algebra to geometry

Figure 6: Scalar triple product: from algebra to geometry

Assume the algebraic definition of T(a, b, c). Note that it is (a × b) · c, which is |a × b| |c| cos \, where
\ is the angle between a × b and c. Thus, |c| cos \ is the signed distance from the opposite face to the
parallelogram face spanned by a and b in the parallelepiped spanned by a, b, and c. Thus, |a × b| |c| cos \
is the volume of the parallelepiped spanned by a, b, and c, and it’s positive if \ is acute and negative if \ is
obtuse.



4 Side D: Cross product in dimensions 1, 3, and 7

We have defined cross product in R3, but it also exists in dimensions 1 and 7. In order to describe these
structures as well as to understand the uniqueness of these dimensions in which cross product exists, we will
formulate cross product in R3 using quaternions, from which we will also see that, same as in scalar triple
product, cross product and dot product are intertwined.

We write a vector in R𝑛+1 by ⟨𝑎0, 𝑎1, · · · , 𝑎𝑛⟩ = 𝑎0e0 + 𝑎1e1 + · · · + 𝑎𝑛e𝑛, which is also written 𝑎0 + a
where 𝑎0 means 𝑎0e0 and a = 𝑎1e1 + · · · + 𝑎𝑛e𝑛.

Consider R4 = R ⊕ R3. Let i, j and k be e1, e2 and e3 so that any element (called a quaternion) of R4 is
of the form 𝑎0 + a, where a = 𝑎1i + 𝑎2j + 𝑎3k lives in the three dimensional subspace {0} × R3. Quaternion
multiplication is defined as follows: i, j, k multiply the same way as their R3 counterparts: ij = −ji = k,
jk = −kj = i and ki = −ik = j, except that now i2 = j2 = k2 = −1, instead of 0. General multiplication is
obtained by multi-linearity.

Then one can check that ab = −a · b + a × b. Thus,

a × b = a · b + ab.

In general, we have

(𝑎0 + a) (𝑏0 + b) = 𝑎0𝑏0 − a · b + 𝑎0b + 𝑏0a + a × b,

which is the prototype of the construction used to pass cross product on R𝑛 to 𝐻-space structure on 𝑆𝑛 in
Section 4.2.1.

Figure 7: Cross product exists in R𝑛 iff 𝑛 = 1, 3, 7.

From now on, we relax the definition of cross product as follows.



Definition 4.1. The binary operation · × · : R𝑛 × R𝑛 → R𝑛 is a cross product if

• a × b is continuous in (a, b).

• a × b is perpendicular to both a and b, i.e., (a × b) · a = (a × b) · b = 0.

• If a and b are linearly independent, then a × b ≠ 0.

In addition to 𝑛 = 3, we show cross product also exists in dimensions 𝑛 = 1, 7.

4.1 The existence of cross product also in dimensions 1 and 7

As in dimension 𝑛 = 3, when 𝑛 = 1 and 𝑛 = 7, we form R𝑛+1, and define

a × b := a · b + ab,

where a and b are identified with pure imaginary complex numbers in R1+1 and pure octonions in R1+7.
Thus, if 𝑛 = 1, then a × b = 0, which satisfies the three properties of cross product in Definition 4.1,

where the last one is vacuously true as a and b are never linearly dependent.

When 𝑛 = 7, the formula for a × b in terms of coordinates is a little tedious to write out, though one
can still check that the three conditions hold, where it takes the cancellation of 42 terms when verifying each
equality of (2).

4.2 If cross product exists for R𝑛, then 𝑛 = 1, 3, 7

4.2.1. Translation from cross product on R𝑛 to 𝐻-space structure on 𝑆𝑛

Suppose cross product × exists for R𝑛 in the sense of Definition 4.1. First of all, we will modify × to
get a cross product in the usual sense. Following Massey1, let 𝐴(a, b) =

√︁
|a|2 |b|2 − (a · b)2 = |𝑎 | |𝑏 | sin \,

where \ is the angle between a and b. So 𝐴(a, b) is the area of the parallelogram spanned by a and b.
Define 𝑓 (a, b) =

𝐴(a,b)
|a×b | a × b if a × b ≠ 0 and 𝑓 (a, b) = 0 otherwise. Thus defined, 𝑓 (a, b) (1) depends

on a and b continuously, (2) is perpendicular to both a and b as it points along a×b and (3) has length 𝐴(a, b).

Then include R𝑛 into R𝑛+1 as {0} × R𝑛. Define the continuous product ` : R𝑛+1 × R𝑛+1 → R𝑛+1 by

`(𝑎0 + a, 𝑏0 + b) = 𝑎0𝑏0 − a · b + 𝑎0b + 𝑏0a + 𝑓 (a, b).

Then we see that 1 ≡ (1, 0, · · · , 0) is a two-sided identity for `:

`(1, 𝑏0 + b) = 𝑏0 + b and `(𝑎0 + a, 1) = 𝑎0 + a,

and
|`(𝑎0 + a, 𝑏0 + b) |2 = |𝑎0 + a|2 |𝑏0 + b|2,

which holds because of (2), (3), a · a = |a|2 and b · b = |b|2.

Thus, restricted to the unit sphere 𝑆𝑛 in R𝑛+1, ` gives rise to a continuous map ` : 𝑆𝑛 × 𝑆𝑛 → 𝑆𝑛 with
two-sided identity 1, which is called an 𝐻-space structure on 𝑆𝑛.

1W. S. Massey, Cross Products of Vectors in Higher Dimensional Euclidean Spaces, Amer. Math. Monthly 90 (1983), no. 10,
697-701



4.2.2. Using 𝐾-theories and their Adams operations to show 𝑛 = 1, 3, 7

The implication that 𝑛 = 1, 3, 7 if 𝑆𝑛 has an 𝐻-space structure was first proved in Adams2. The proof
was long, using secondary operations of ordinary cohomology. This technique was then also applied in a
related problem3, which was soon completely solved by using primary operations constructed by Adams4 of
topological K-theory, an “extraordinary” cohomology theory introduced by Atiyah and Hirzebruch, adapting
a similar construction by Grothendieck, from algebraic geometry to algebraic topology. Less than half a
decade later, the two innovators, Adams of 𝐾-theory operations, and Atiyah of K-theory itself, produced a
short proof of Adams’ original Hopf invariant one theorem5. This is comparable to the transition from the
geocentric model of the solar system for which epicycles are needed to describe trajectories of other planets
to the heliocentric models for which first order cycles are sufficient (if we ignore mutual influences of planets).6

We will present a brief version of this short proof, in the style of operating a freshly unboxed machine
without the courage to look under the hood yet (in case we wouldn’t be able to reassemble the pieces). Details
can be found in [Aguilar-Gitler-Prieto]7[Atiyah]8 [Hatcher]9[Husemoller]10[Karoubi]11[May]12 [Park]13 and
papers by Atiyah, Bott, Hirzebruch et al.

For any compact Hausdorff space 𝑋 , let Vect(𝑋) be the isomorphism classes of complex vector bundles
over 𝑋 . Then direct sum ⊕ and tensor product ⊗ of vector bundles induce a commutative semiring structure
on Vect(𝐾) where sum is denoted by + and product is denoted by juxtaposition. The complex 𝐾-theory of
𝑋 , denoted by 𝐾 (𝑋), is the best completion of Vect(𝐾) into a commutative ring, which consists of formal
differences 𝐸1 − 𝐸2 of complex vector bundles such that 𝐸1 − 𝐸2 is equivalent to 𝐸 ′

1 − 𝐸
′
2 if 𝐸1 + 𝐸 ′

2 is stably
isomorphic to 𝐸 ′

1 + 𝐸2, i.e., 𝐸1 + 𝐸 ′
2 + 𝜖

𝑛 is isomorphic to 𝐸 ′
1 + 𝐸2 + 𝜖𝑛 for some trivial bundle 𝜖𝑛 of complex

dimension 𝑛 over 𝑋 . The zero element of 𝐾 (𝑋) is 𝐸 −𝐸 for any bundle 𝐸 over 𝑋 . Given continuous function
𝑓 : 𝑋 → 𝑌 , it induces a ring homomorphism 𝑓 ∗ : 𝐾 (𝑌 ) → 𝐾 (𝑋) obtained by pulling back bundles. Indeed,
𝐾 (·) is a functor, satisfying all axioms of the ordinary cohomology theory except the dimension axiom. 𝐾 (·)
is dubbed an “extraordinary” cohomology theory.

Pick a point 𝑥0 ∈ 𝑋 , then we have ring homomorphism 𝐾 (𝑋) → 𝐾 (𝑥0) � Z. Its kernel, denoted by
𝐾 (𝑋), consists of all elements 𝐸1 − 𝐸2 such that 𝐸1 and 𝐸2 have the same dimension. 𝐾 (·) is also a functor,
the reduced complex 𝐾-theory, an “extraordinary” reduced cohomology theory.

Example 0. Let 𝐻 be the Hopf line bundle over 𝑆2, i.e., the tautological line bundle of C𝑃1 and
1 the trivial line bundle over 𝑆2. Then, 𝐾 (𝑆2) � Z[𝐻]/(𝐻 − 1)2 where the relation (𝐻 − 1)2 = 0, i.e.,
𝐻2 + 1 = 𝐻 + 𝐻, holds by examining the clutching matrices diag(𝑧2, 1) and diag(𝑧, 𝑧) of 𝐻2 + 1 and 𝐻 + 𝐻
along the equatorial circle: they are homotopic in 𝐺𝐿2(C). The above isomorphism �, which is part of Bott
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periodicity, is not easy to show. 𝐾 (𝑆2), is additively infinite cyclic, with generator 𝐻 − 1, but with trivial
multiplication, as (𝐻 − 1)2 = 0.

Example 1. 𝐾 (𝑆1) � Z and 𝐾 (𝑆1) � 0 as any complex vector bundle over 𝑆1 is trivial.

Example ∞. By Bott-periodicity, 𝐾 (𝑆2𝑘+1) � 0 while 𝐾 (𝑆2𝑘) � Z, generated by (𝐻 − 1)∗𝑘 :=
(𝐻 − 1) ∗ · · · ∗ (𝐻 − 1), where ∗ is the reduced external product defined by bundle pull back and tensor
product. So 𝐾 (𝑆2𝑘) � Z[𝛼]/(𝛼2) where 𝛼 = (𝐻 − 1)∗𝑘 .

Proposition. If 𝑆𝑛 is an 𝐻-space, then 𝑛 can not be even.

Proof. Suppose 𝑛 is even, then the 𝐻-map ` : 𝑆𝑛×𝑆𝑛 → 𝑆𝑛 induces ring homomorphism `∗ : Z[𝛾]/(𝛾2) →
Z[𝛼, 𝛽]/(𝛼2, 𝛽2) defined by `∗(𝛾) = 1𝛼 + 1𝛽 + 𝑚𝛼𝛽 + 0, for some 𝑚. This is because the injections
𝑖1, 𝑖2 : 𝑆2 → 𝑆𝑛 × 𝑆𝑛 of 𝑆𝑛 into the first and second factors of 𝑆𝑛 induce ring homomorphisms 𝑖∗1 and 𝑖∗2,
sending one of 𝛼, 𝛽 to 0 and the other to 𝛾, which also compose with `∗ to give identity homomorphisms.
However, 0 = `∗(𝛾2) = (`∗(𝛾))2 = (𝛼 + 𝛽 + 𝑚𝛼𝛽)2 = 2𝛼𝛽, which is not 0. Therefore, 𝑛 has to be odd. □

The Hopf construction 𝑔 : 𝑆2𝑛+1 → 𝑆𝑛+1 of ` : 𝑆𝑛×𝑆𝑛 → 𝑆𝑛 is defined by gluing 𝑔+ : 𝜕𝐷𝑛+1×𝐷𝑛+1 →
𝐷𝑛+1

+ and 𝑔− : 𝐷𝑛+1 × 𝜕𝐷𝑛+1 → 𝐷𝑛+1
− along ` : 𝜕𝐷𝑛+1 × 𝜕𝐷𝑛+1 → 𝜕𝐷𝑛+1

± , where

𝑔+(𝑥, 𝑦) =
{
|𝑦 |`(𝑥, 𝑦

|𝑦 | ) 𝑦 ≠ 0
0 𝑦 = 0

and 𝑔− (𝑥, 𝑦) =
{
|𝑥 |`( 𝑥

|𝑥 | , 𝑦) 𝑥 ≠ 0
0 𝑥 = 0

Letting 𝑛 = 2𝑘 − 1, we have 𝑔 : 𝑆4𝑘−1 → 𝑆2𝑘 , which gives a recipe of gluing the boundary of 𝐷4𝑘 to
𝑆2𝑘 , obtaining the mapping cone 𝐶𝑔. Collapsing the 𝑆2𝑘 subspace of 𝐶𝑔 to a point, we get 𝑆4𝑘 . Therefore,
we have 𝑆2𝑘 → 𝐶𝑔 → 𝑆4𝑘 , which produces the following short exact sequence of reduced K-groups:

0 → 𝐾 (𝑆4𝑘) 𝑖−→ 𝐾 (𝐶𝑔)
𝜋−→ 𝐾 (𝑆2𝑘) → 0

Let 𝛼 = 𝑖((𝐻 − 1)∗2𝑘) and 𝜋(𝛽) = (𝐻 − 1)∗𝑘 . Then 𝜋(𝛽2) = (𝜋(𝛽))2 = 0. Thus, 𝛽2 is in the image of 𝑖.
So 𝛽2 = ℎ𝛼 for some ℎ ∈ Z, which is called the Hopf invariant. This doesn’t depend on 𝛽.

Proposition. If 𝑆𝑛 is an 𝐻-space, then the Hopf invariant ℎ = ±1.

Proof. For any map ` : 𝑆𝑛 × 𝑆𝑛 → 𝑆𝑛, its bidgree is (𝑝, 𝑞), where 𝑝 and 𝑞 are the degrees of `(·, 1), `(1, ·) :
𝑆𝑛 → 𝑆𝑛. It can be shown that ℎ = 𝑝𝑞. (See [Aguilar-Gitler-Prieto] and [May].) For us, ` is an 𝐻-map.
Thus, (𝑝, 𝑞) = (±1,±1) and so ℎ = ±1. □

Lastly, consider the Adams operations𝜓𝑘 : 𝐾 (𝑋) → 𝐾 (𝑋), 𝑘 ≥ 0, which are self-ring homomorphisms.
We will use the following properties of 𝜓𝑘 :

1. Each 𝜓𝑘 is natural.
2. 𝜓𝑘𝜓𝑙 = 𝜓𝑘𝑙 .
3. 𝜓𝑝 (𝑥) ≡ 𝑥𝑝 mod 𝑝 for prime 𝑝.
4. 𝜓𝑙 (𝑥) = 𝑙𝑚𝑥 if 𝑥 ∈ 𝐾 (𝑆2𝑚).



Using property 4, we have 𝜓𝑙 (𝛼) = 𝑙2𝑘𝛼. Using properties 1 and 4, we have 𝜋(𝜓𝑙 (𝛽)) = 𝜓𝑙 (𝜋(𝛽)) =
𝑙𝑘𝜋(𝛽) = 𝜋(𝑙𝑘𝛽). Thus, 𝜋(𝜓𝑙 (𝛽) − 𝑙𝑘𝛽) = 0, and so by exactness at 𝐾 (𝐶𝑔), there is 𝑐𝑙 such that
𝜓𝑙 (𝛽) = 𝑙𝑘𝛽 + 𝑐𝑙𝛼.

Now is the magic time. Also using property 2, we have

𝜓6(𝛽) = 𝜓2𝜓3(𝛽) = 𝜓2(3𝑘𝛽 + 𝑐3𝛼) = 3𝑘 (2𝑘𝛽 + 𝑐2𝛼) + 𝑐322𝑘𝛼 = 6𝑘𝛽 + (𝑐23𝑘 + 𝑐322𝑘)𝛼.

and
𝜓6(𝛽) = 𝜓3𝜓2(𝛽) = 𝜓3(2𝑘𝛽 + 𝑐2𝛼) = 2𝑘 (3𝑘𝛽 + 𝑐3𝛼) + 𝑐232𝑘𝛼 = 6𝑘𝛽 + (𝑐32𝑘 + 𝑐232𝑘)𝛼.

Thus, 𝑐32𝑘 (2𝑘 − 1) = 𝑐23𝑘 (3𝑘 − 1), from which we see that 2𝑘
��𝑐2(3𝑘 − 1).

Furthermore, by property 3, 𝜓2(𝛽) ≡ 𝛽2 = ±𝛼 mod 2 and we had 𝜓2(𝛽) = 2𝑘𝛽 + 𝑐2𝛼. Thus, 𝑐2 is odd.
Therefore, 2𝑘

��3𝑘 − 1.

Proposition. If 2𝑘
��3𝑘 − 1, then 𝑘 = 1, 2, 4.

Proof. 2𝑘
��3𝑘 −1 means the number of 2-factors of 3𝑘 −1 is at least 𝑘 . Let’s find all 2-factors of 3𝑘 −1, which

presumably depends on a more detailed presentation of 𝑘 . So let 𝑘 = 2𝑙𝑚, where 𝑚 is odd. Thus,

3𝑘 − 1 = (32𝑙 )𝑚 − 1 = (32𝑙 − 1)
𝑚−1∑︁
𝑖=0

(32𝑙 )𝑖 .

As
∑𝑚−1

𝑖=0 (32𝑙 )𝑖 is the sum of an odd number of odd numbers, all 2-factors of 3𝑘 − 1 comes from 32𝑙 − 1.

If 𝑙 = 0, then 32𝑙 − 1 contains one 2. In this case, 𝑘 = 20𝑚 ≤ 1. Thus, 𝑘 = 1.

If 𝑙 ≥ 1, then by using 𝑎2 − 1 = (𝑎 + 1) (𝑎 − 1) repeatedly, we have

32𝑙 − 1 = (32𝑙−1 + 1) (32𝑙−2 + 1) (32𝑙−3 + 1) · · · (32 + 1) (3 + 1) (3 − 1).

Except 3 + 1, each of the above factors contains one and only one 2, this is because 3 ≡ −1 mod 4 and
thus 3𝑞 + 1 ≡ (−1)𝑞 + 1 = 2 mod 4 if 𝑞 is even. Therefore, 32𝑙 − 1 contains 𝑙 + 2 factors of 2. In this case,
𝑘 = 2𝑙𝑚 ≤ 𝑙 + 2. By plotting the graphs of 𝑚2𝑥 and 𝑥 + 2, we see 𝑚 = 1 and 𝑙 = 1, 2.

In summary, 𝑘 = 2𝑙, where 𝑙 = 0, 1, 2, i.e., 𝑘 = 1, 2, 4. □

To conclude, 𝑛 = 2𝑘 − 1 = 1, 3, 7.
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