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MATH 345 Calendar, Fall 2023

Monday

9:00 SMUD 206

Tuesday Wednesday

9:00 SMUD 206

Thursday Friday

9:00 SMUD 206

Week 1 Sept 4 Sept 5
L0 Hello Math 345!

College classes begin.

Sept 6
L1 I.1, I.2, I.3

Five views of complex 
numbers

Sept 7 Sept 8
L2 I.4

The n-th power and n-th  
root functions

Week 2 Sept 11
L3 I.5, I.6

The exponential and 
logarithmic functions

Sept 12

Hw#1 (L0–L2) due

Sept 13
L4 I.7

Power functions in general

Sept 14 Sept 15
L5 I.8 

Trigonometric functions 
and their inverses

Week 3 Sept 18
L6 II.2

Definition of analytic 
functions

Sept 19

Hw#2 (L3–L5) due

Sept 20
L7 II.3

Equivalence to the Cauchy-
Riemann equations

Sept 21 Sept 22
L8 II.4

Jacobian, IFTs, and 
inverse analytic functions

Week 4 Sept 25
L9 1.II.5

Introduction to harmonic 
functions

Sept 26

Hw#3 (L6–L8) due

Sept 27
L10 II.6

Conformal mappings and 
analytic functions

Sept 28 Sept 29
L11 II.7

Fractional Linear 
Transformations (FLT)

Week 5 Oct 2
L12 III.1, III.2, III.3

Real line integrals and 
harmonic conjugates

Oct 3

Hw#4 (L9–L11) due

Oct 4
L13 III.4

The Mean Value Property

Oct 5 Oct 6
L14 III.5

The Maximum Principle

Week 6 Oct 9

<———Mid-Semester

Oct 10

Break———————>

Oct 11
L15 IV.1

Complex line integrals

Oct 12

Hw#5 (L12–L14) due

Oct 13

Exam 1 (L1 — L14)

Week 7 Oct 16
L16 IV.2

Fundamental Theorem of 
Calculus for f(z)

Oct 17

Your project starts by 
now, at least

Oct 18
L17 IV.3, IV.4

Cauchy’s Theorem & 
Cauchy’s Integral Formula

Oct 19 Oct 20
L18 IV.4

Cauchy’s Integral 
Formula cont’d

Week 8 Oct 23
L19 IV.5

Cauchy Estimates and 
Liouville’s Theorem

Oct 24

Hw#6 (L15–L18) due

Oct 25
L20 IV.6, IV.7

Morera’s Theorem & 
Goursat’s Theorem

Oct 26 Oct 27
L21 IV.8

An elegant notation & 
Pompeiu’s Formula

    Week 9 Oct 30
L22 V.1, V.2

Series of functions in 
general

Oct 31

Hw#7 (L19–L21) due

Nov 1
L23 V.3

Power series
 in particular

Nov 2 Nov 3
L24 V.4

Expansion of analytic 
functions as power series

    Week 10 Nov 6
L25 V.5

Power series at infinity

Nov 7

Hw#8 (L22–L24) due

Nov 8
L26 V.6

Manipulating power series

Nov 9 Nov 10
L27 V.7

Zeros of analytic 
functions and their magic

    Week 11 Nov 13
L28 VI.1

Laurent decomposition 
and Laurent series

Nov 14

Hw#9 (L25–L27) due

Nov 15
L29 VI.2

Classification of isolated 
singularities

Nov 16 Nov 17

Exam 2 (L15 — L27)

    Week 12 Nov 20

<—————————

Nov 21

——————————

Nov 22

— Thanksgiving Break —

Nov 23

—————————

Nov 24

——————————>

    Week 13 Nov 27
L30 VI.3, VI.4

Meromorphic functions 
and PFD on C*

Nov 28

Hw#10 (L28-L29) due

Nov 29
L31 VII.1

The residue theorem

Nov 30 Dec 1
L32 VII.2—7

The residue calculus

    Week 14 Dec 4
L33 VII.2—7

The residue calculus 
cont’d

Dec 5

Hw#11 (L30-L32) due

Dec 6
L34 VIII.1

The argument principle

Dec 7 Dec 8
Paper+video due

L35 VIII.2
Rouche’s Theorem

    Week 15 Dec 11
L36 IX.1, IX.2

Automorphisms of the unit 
disk

Dec 12 Dec 13

L37 Award Ceremony
Hw#12 (L33-L36) due

Dec 14

<——Reading/Study

Dec 15

Period———————>

    Week 16 Dec 18

<———————————

Dec 19

—————Final Exam

Dec 20

Period—————————

Dec 21

—————————>

Dec 22



MATH 345-01, Fall 2023: Functions of a Complex Variable

Class meetings: MWF 9:00 – 9:50 AM @ SMUD 206
Instructor: Yongheng Zhang

O�ce: SMUD 510
O�ce Hours: MW 11:00 – 11:50 AM, 1:00 – 2:50 PM, Th 9:00 – 10:50 AM

Email: yzhang@amherst.edu
Text: Theodore W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics,

Springer, New York, 2001 (corrected printing 2003).
Four copies of the textbook are on reserve in the Science Library.
Also available as an e-book: type “Gamelin complex analysis” in Amherst’s Library Search.

Calendar: See the top of our Moodle page. It lists the exam, project, and homework due dates.
It also lists the daily topic and the corresponding textbook sections.

Topics: “Complex analysis is a splendid realm within the world of mathematics, unmatched
for its beauty and power.” This course will testify this claim of Gamelin. We will study
all core topics in classical complex analysis, including but not limited to holomorphic functions,
harmonic functions, conformal mappings, meromorphic functions, power series and Laurent
series, and the theorems of Cauchy, Riemann, Liouville, Morera, Goursat, Weierstrass,
Casorati, Rouché, Schwarz and many more. We will follow the textbook fairly closely,
covering most sections from Chapter I to Chapter IX, so that the rest can be left to
your self-study and enjoyment in the next many years.

Attendance: You are expected to attend every class and take notes, as Lesson N depends on Lessons i for
all i < N . If you have to miss Lesson N , please make sure you spend double time making up
for it before Lesson N + 1, where 0  N  36. We will take a group photo in Lesson 37.

Project: In addition to attending classes, taking notes, doing homework (more on this soon), you will
also write a paper (no page requirement) and make a video presentation (10 to 12 minutes)
in this class. You can either work independently or form teams with others in class. It’s not
supposed to be a burden but rather to be fun. I will suggest a list of topics but you can also
choose your own. Just anything related to complex analysis you feel an urge to write and
speak about, as long as it seriously explores your chosen topic. Your papers will be made into
an anthology and distributed to the class. Your video presentation will be made available to
everyone in our class to watch. Novel and experimental formats are encouraged. For example,
students wrote poems, programmed online games, made softwares, taught us cool applications
in the past. Some further explored class topics and went quite far. Some presented complete
proofs of di�cult theorems such as the prime number theorem. Paper and video are graded by
completion. I will say more about this after the first Midterm, but you should start to think
about which part of mathematics really means something to you and your project now.

Grading: Your grade will be determined by the weighted scores as follows:
Better Midterm 15%
The other Midterm 10%
Final exam 30% (Yes! We do have a final exam!)
Homework 30%
A project paper on a topic you feel passionate about 10%
Project video presentation 5%

Exams: Midterm 1: Friday, October 13, in class.
Midterm 2: Friday, November 17, in class.
Final exam: Time and location to be announced.
Only pencils/pens, eraser, and notes on a double-sided paper are allowed in exams.
Abide by the Statement of Intellectual Responsibility.
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Homework: Doing homework is the most important part of this class. One can only learn mathematics
by getting hands dirty. There is one assignment sheet for each lesson, which contains five
problems, except Lesson 1, which contains six. Homework are assigned for L0 to L36, so
you will work on 186 homework problems in Math 345 this semester. Each problem may have
several parts. They fill missing steps from class, verify formulas, extend results and explore
new situations. Homework problems are generally hard. However, ample hints, partial solutions,
and sometimes full solutions are provided. Exam problems are much easier, with the final slightly
harder than the midterms.

Problems assigned during a whole week are due in Moodle at 23:59 PM on Tuesday
night the following week. See the calendar for details and a few exceptions. Start working
on the problems early. After attending lecture and taking your notes, reorganize your notes,
annotate them, and see if you can teach the core concepts to yourself and others. Then first
work through the homework problems on your own, and then talking to your friends and working
in groups are highly recommended: we can seek help from each other and we also understand
ourselves better by explaining it to others. Sometimes, we also make collective progress which
is so much fun but not possible if one works alone. Our Math Fellow and I will also hold o�ce
hours to answer your questions. Coming to o�ce hours is an important part of learning.
I encourage you to go to as many as you can, as turning abstract math into precise
verbal communication is one of the secrets of learning math.

However, your homework solution must be totally your own work. That means you must
write down your solution in your own words, without looking at your group members’ work.
Mathematics is ultimately learned by individuals. Copying others’ work spoils all the fun of
learning math. It also violates the Statement of Intellectual Responsibility. Furthermore,
it is a requirement that you must show complete solution to problems. Writing down answers
with insu�cient justification or writing down proofs with big gaps will receive little credit.

As a courtesy to the graders and for your own benefit of developing neat writing styles, please
(1) do the problems in order and label their lesson number and problem number; (2) write in
logical and complete English sentences; (3) write legibly (it will be particularly pleasing to
everyone if you strive for the standard of calligraphy). Once you are done, scan your solution
to the problems as a single pdf file before uploading it to our Moodle site.

Homework sets are due at 11:59 PM ET on Tuesdays. Your graders will then immediately start to
grade it. If you expect illness or emergency will prevent you from submitting your homework on
time, let me know in advance so that I will ask them to extend your homework due date.

In Hindsight: Your notes will actually be your most precious work if you look back after a few years. Treat it
seriously. It’s your journal on which you record your mathematical journey, and document your
thoughts, feelings, and personal growth. You want to admire yourself when you recall this four
months’ learning experience in the future. I’m very fond of my notes when I took Functions of
Several Complex Variables in graduate school on which I found many interesting thoughts.

Prerequisite: Even though MATH 211 is the main prerequisite for this course, MATH 345 is significantly
harder in that this is a proof-based course. If you have insu�cient formal proof experience
before (e.g., ✏�N , ✏� � arguments), you will find this course too challenging. Talk to me if
you feel unprepared. Usually, if you want to see how proof is done, your textbook is a good
resource to turn to. However, Gamelin’s proof style is not what you should mimic at this stage
of education. It is too terse, resulting in outlines of proofs rather than actual proofs. In your
homework and exams, you should supply enough details and make every sentence logical.

Suggestion: How hard should we work? The Four-Hour Rule: (less time  lower quality of learning)
One hour for attentively reviewing your notes.
One hour for doing the problems on your own.
One hour for talking (or typing in emails) to your professor, your TA, and your friends.
One hour for thinking about your notes and your solution on your own again when you
walk to Val, watch movies, take showers, and possibly during sleep.

That’s enough. Keep a balance while pouring energy into learning math!
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Lesson 36 The Schwarz lemma and automorphisms of the unit disk 74



Hello, Math 345 students!

Welcome to Complex Analysis! If you are eager to be at the next level of mathematics and has
been working unusually hard to achieve this goal, then Math 345 is for you!

This course starts from complex numbers. You would likely have heard of i, the mysterious
“number” whose square is �1, so that i is a solution of x2 + 1 = 0. Indeed, some people said
complex numbers originated from our endeavor to create new numbers in order to solve this qua-
dratic equation, but others argued that complex numbers really grew only from solving third degree
polynomial equations. Whatever the historical fact is, the invention of complex numbers is a revo-
lution, not just in math, but in science, society, and culture at large. Not too long after the focus
on solving algebraic equations, mathematicians realized that complex numbers are indispensable
when describing the motion of astronomical bodies. Some questions, such as the famous three-body
problem formulated by Weierstrass, first falsely solved by Poincaré, later nailed by Sundman, used
complex numbers in essential ways. Some advances in complex analysis itself, such as the theorem
of Rouché, which we will learn toward the end of the semester, was inspired by staring into the sky.
You may find complex numbers used in many aspects of everyday life. It is used in safely sending
electricity to your wall socket. It appears in the Schrödinger equation supporting the digital age.
Imagine what the world would be like without the second and third industrial revolutions.

Applications of complex analysis to science, engineering and technology are far more versatile
than previously scratched. In this course, instead, we will focus on the mathematical aspect. One
underlying motif out of many is the surprising solution of di�cult questions about functions of a

real variable. Consider this classical one. The function f(x) =
1

x2 + 1
can be expanded as a Taylor

series at any x0 2 R, and it can be shown that the radius of convergence of this series is
p

x20 + 1,

though this is quite di�cult if you do this by computing the coe�cients f (n)(x0)
n! . Later, we will see

that if we extend the real line to the entire complex plane, this is so merely because ±i are the
zeros of the denominator! Take another example. Many real integrals are inconvenient to solve,

like

Z 1

�1

cosx

x2 + 1
dx,

Z 1

0

x
1
⇡

(1 + x)2
dx,

Z 1

�1

sinx

x
dx and

Z 1

�1
sin(x2)dx, if it’s even possible. Using

complex numbers, they can be done with ease. Another motif is the close connection of complex
analysis to other fields of mathematics. Proof of the prime number theorem uses the Riemann zeta
function ⇣(s) of the complex variable s. The Riemann hypothesis is about ⇣(s) itself. Many kinds of
transforms in analysis use complex numbers. Topological surfaces grew from trying to understand
complex functions, which we will discuss right during the first week. Its higher dimensional versions
properly fall in geometry and algebra.

This course will cover the core of classical complex analysis, by going through the multitude of
topics meticulously. Please read the syllabus and calendar carefully, and do homework problems in
Lesson 0. Their solutions have also been posted so that after comparing yours with them, you know
the level of mathematical writings I expect of you, which you will further develop as we compute,
prove, understand, and discover.

I’m really really excited to see you in class on Wednesday, when we will learn five ways of viewing
complex numbers!

August 28, 2023
Yongheng Zhang (Math 345 instructor)
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Lesson 0 Welcome to MATH 345!

1. The above image is taken from the cover of Gamelin’s Complex Analysis, our textbook to be used
in MATH 345. It consists of two classes of curves, the thinner ones and the thicker ones. What may
be surprising is that, except at the origin, any two curves, one from each class, intersect at a right
angle. We’ll prove this fact in this problem as a way to review multivariable calculus.
(a) Let f : R2

! R be a two-variable function. What does it mean to say f(x, y) is
di↵erentiable at (a, b)?

(b) Prove that at the point (a, b) on the level curve f(x, y) = k, where f(x, y) is di↵eren-
tiable (so the chain rule holds) and k is a constant, if rf(a, b) is not the zero vector,
then it is a normal vector to the curve at (a, b), i.e., it is perpendicular to a tangent
vector of the curve here. You used this fact in the Lagrange multiplier method.

(c) In the image, the thicker curves are C1 : x2 � y2 = k and the thinner ones are C2 :
2xy = h. Show that for any h, k 6= 0, if C1 and C2 intersect at (x, y), then they are
perpendicular at this point, i.e., their tangent vectors are perpendicular. 1

2. A function f : R ! R is said to be Cn if all of its derivatives up to order n exist and are
continuous. Show that f(x) = x|x| is C1 but not C2. 2

3. Use Internet to find a function f : R ! R which is C1 but not analytic, i.e., its Taylor
series expansion at a point exists but it’s not the same as the function itself. No justification
is needed. 3

4. Find two C1 functions f, g : R ! R such that f and g are the same over a small interval in
R but f and g are di↵erent over R. 4

5. Consider the function f : R ! R defined by f(x) = 1
x2+1 .

(a) Show that f is C1.
(b) Show that f is bounded on R. 5

(c) Show that f is not an open mapping. 6

1Use dot product to show the two normal vectors are perpendicular. In Lesson 2, we will learn to generate infinitely
many such pictures with ease. In Lesson 10, we will understand why the angles are 90o.

2In contrast, if a function of a complex variable is C
1 (actually, existence of derivative is enough), then it’s C

1,
i.e., Cn for all n 2 N. We will learn this in Lesson 18. C1 functions are called smooth functions.

3In contrast, if a function of a complex variable is C1, then it’s analytic. We will learn this in Lesson 24.
4In contrast, if two functions of a complex variable are C

1 , and they are equal over a sub-region, then no matter
how small this sub-region is, the two functions are the same function. This means if we know such a function locally,
then we know it globally. It’s as if if you know Amherst, you know the whole world. We will learn this in Lesson 27.

5A function f : R ! R is bounded on R if there is M > 0 such that |f(x)|  M for all x 2 R. In contrast, if a
function of a complex variable is C1 and bounded over the entire complex domain, then f must be a constant. This
is called Liouville’s Theorem 0. We will learn this in Lesson 19. There are three other Liouville’s Theorems which
we will also learn.

6A subset E of R is open if for all x 2 E, there is an open interval (x � ✏, x + ✏) contained in E. A function
f : R ! R is called an open mapping if its image f(R) = {f(x) 2 R : x 2 R} is open. In contrast, if a non-constant
function of a complex variable is C1, then it’s an open mapping. We will learn this in Lesson 27.



Solution to Lesson 0 homework

1. The above image is taken from the cover of Gamelin’s Complex Analysis, our textbook to be used
in MATH 345. It consists of two classes of curves, the thinner ones and the thicker ones. What may
be surprising is that, except at the origin, any two curves, one from each class, intersect at a right
angle. We’ll prove this fact in this problem as a way to review multivariable calculus.

(a) Let f : R2 ! R be a two-variable function. What does it mean to say f(x, y) is di↵er-
entiable at (a, b)?

Solution. According to Stewart, Multivariable Calculus, 8e, f(x, y) is di↵erentiable
at (a, b) means both partial derivatives fx(a, b) and fy(a, b) exist, and there are func-
tions ✏1(x, y) and ✏2(x, y) satisfying lim

(x,y)!(a,b)
✏i(x, y) = 0 for i = 1, 2 such that

f(x, y) = f(a, b) + fx(a, b)(x� a) + fy(a, b)(y� b) + ✏1(x, y)(x� a) + ✏2(x, y)(y� b) for
(x, y) close to (a, b).

(b) Prove that at the point (a, b) on the level curve f(x, y) = k, where f(x, y) is dif-
ferentiable (so the chain rule holds) and k is a constant, if rf(a, b) is not the zero
vector, then it is a normal vector to the curve at (a, b), i.e., it is perpendicular to a
tangent vector of the curve here. You used this fact in the Lagrange multiplier method.

Proof. Let ~r(t) = hx(t), y(t)i be a smooth parametrization 1 of the curve f(x, y) = k
such that ~r(0) = ha, bi. So f(x(t), y(t)) = k. As f is di↵erentiable, the chain rule
holds. Thus, if we take the derivative with respect to t on both sides of f(x, y) = k,
then we have fx(x(t), y(t))x0(t) + fy(x(t), y(t))y0(t) = 0. So,

hfx(x(t), y(t)), fy(x(t), y(t))i · hx0(t), y0(t)i = 0,

i.e., rf(x(t), y(t)) · ~r 0(t) = 0. Plugging in t = 0, we then have rf(a, b) · ~r 0(0) = 0,
showing rf(a, b) is perpendicular to ~r 0(0), the tangent vector to the curve at (a, b).

⇤

1
The condition rf(a, b) 6= h0, 0i guarantees that such a smooth parametrization exist and the tangent vector

~r 0
(0) = hx0

(0), y0
(0)i 6= h0, 0i. Older textbooks on advanced calculus proves this. If you look into what Amherst

College math majors learned in the 1970s, you will find such a book.

1
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(c) In the image, the thicker curves are C1 : x2 � y2 = k and the thinner ones are
C2 : 2xy = h. Show that for any h, k 6= 0, if C1 and C2 intersect at (x, y), then
they are perpendicular at this point, i.e., their tangent vectors are perpendicular.

Proof. Let f(x, y) = x2 � y2 and g(x, y) = 2xy. Suppose C1 and C2 intersect at (x, y),
and we consider rf(x, y) = h2x,�2yi and rg(x, y) = h2y, 2xi. Neither is the zero
vector. (If they were, then x = y = 0, which means k = h = 0, contradicting to the
assumption that h, k 6= 0.) So by (b), rf(x, y) is the normal vector to C1 at (x, y)
and rg(x, y) is the normal vector to C2 at (x, y). Then, as rf(x, y) · rg(x, y) =
h2x,�2yi · h2y, 2xi = 4xy�4xy = 0, these two vectors are perpendicular to each other.
But by (b), for each curve, its tangent vector is perpendicular to its normal vector.
Therefore, the two tangent vectors are perpendicular. (A picture would be helpful for
us to see this more clearly.) ⇤

2. A function f : R ! R is said to be Cn if all of its derivatives up to order n exist and are
continuous. Show that f(x) = x|x| is C1 but not C2.

Proof. The function f(x) is a piecewise function which is x2 if x � 0 and �x2 if x < 0.
Let’s calculate f 0(x) first. When x > 0, f 0(x) = 2x. When x < 0, f 0(x) = �2x. We simply
used the power rule for each branch of this piecewise function away from the origin. At the

origin, we have to use the definition of derivative. f 0(0) = lim
h!0

f(h)� f(0)

h
= lim

h!0

h|h|� 0

h
=

lim
h!0

|h| = 0. Summarizing, f 0(x) = 2|x|, whose graph is a V-shaped “continuous” curve.

Thus, f 0 is continuous, which means f is C1. (We can also use the ✏ � � definition of
continuity.2 We will do it in the future.) However, f is not C2 because f 0(x) = 2|x| has a
sharp corner at the origin, but if (f 0)0 exists, then the graph should be smooth everywhere,

and particularly at the origin. Alternatively, (f 0)0(0) = lim
h!0

f 0(h)� f 0(0)

h
= lim

h!0

2|h|
h

, which

is 2 if h ! 0 from the right and �2 if h ! 0 from the left. This shows (f 0)0(0) does not
exist. ⇤

3. Use Internet to find a function f : R ! R which is C1 but not analytic, i.e., its Taylor
series expansion at a point exists but it’s not the same as the function itself. No justification
is needed.

Solution. After typing “smooth but non-analytic function” into Google (Or use Chat-

GPT?), the wikipedia article suggested the function f(x) defined by e�
1
x if x > 0 and

f(x) = 0 if x  0. Its derivatives not at 0 exist and are continuous up to all orders
as they are derivatives of the 0 function and the composite function e�1/x over (�1, 0)
and (0,1) respectively. Its derivatives at 0 are 0 for all orders. This can be proved
by induction as shown in the wikipedia article. Thus, its Taylor series at the origin
f(0) + f 0(0)x + f 00(0)/2!x2 + f 000(0)/3!x3 + · · · is the 0 function, which is di↵erent from
f(x) to the right of 0. This function is very useful in many areas of mathematics. It’s worth
remembering it.

2
It goes like this. For any a 2 R and any ✏ > 0, let � = ✏/2, which is > 0. Then if |x � a| < �, then

|f 0
(x)� f 0

(a)| = |2|x|� 2|a|| = 2||x|� |a||  2|x�a| < 2✏/2 = ✏. Thus, the function f 0
(x) is continuous at any a 2 R.
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4. Find two C1 functions f, g : R ! R such that f and g are the same over a small interval in
R but f and g are di↵erent over R.

Solution. There are so many such pairs. For example, let f be the function in Problem
3. Let g be the translation of f by 1 unit to the right defined by g(x) = f(x � 1). Then
f(x) = g(x) = 0 over (�1, 0), but f and g are di↵erent over R.

For the same f above, we can also let g(x) = 0 for all x 2 R.

Another choice is to let g(x) = 0 if x < 0 and g(x) = x2 if x � 0.

5. Consider the function f : R ! R defined by f(x) = 1
x2+1 .

(a) Show that f is C1.

Proof. f 0(x) = �2x
(x2+1)2 , which as a rational function with non-vanishing denominator,

is continuous on R. Thus, f is C1. ⇤
(b) Show that f is bounded on R.

Proof. Let M = 1. Then for all x 2 R, |f(x)| = | 1
x2+1 | 

1
1 = M . This shows f is

bounded on R. ⇤
(c) Show that f is not an open mapping.

Proof. By inspecting the bell-shaped graph of f , we see that f(R) = (0, 1]. The point
1 is in this set. However, no interval of the form (1� ✏, 1+ ✏) can be contained in (0, 1].
The part (1, 1 + ✏) is always outside. Therefore, f is not an open mapping. ⇤
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Lesson 1 Five views of complex numbers

1. For any three complex numbers z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3, prove that

(z1z2)z3 = z1(z2z3),

by brute force. 7

2. Define � : C ! M(2⇥ 2,R) by �(x+ iy) =

x y
�y x

�
. Prove that �(z1 + z2) = �(z1) + �(z2)

and �(z1z2) = �(z1)�(z2).
8

3. (a) Prove that |Rez|  |z| for all z 2 C.

(b) Show that for any z, w 2 C, |z + w|2 = |z|2 + |w|2 + 2Re(zw). 9

(c) Use (a) and (b) to show the triangle inequality |z + w|  |z|+ |w|. 10

4. Given a fixed element a 2 C with |a| < 1, show that if |z| = 1, then

|z � a|

|1� az|
= 1. 11

Hint: Write |z � a| as |z � a| and multiply the numerator by |z|.

5. Prove that if |z| < 1, then 1 +
z

1� z
+

z

1� z
=

1� |z|2

|1� z|2
=

1� r2

1� 2r cos ✓ + r2
. 12

6. In this problem, we find the formula for stereographic projection and its inverse between
S2

\{N} and C. Let N = (0, 0, 1) be the north pole on the unit sphere S2 centered at the
origin. Let (X,Y, Z) be any point on S2 but N . Let z = x+ iy be a point on the xy-plane,
so this point is (x, y, 0). By writing down a parametric equation for the line from N to
(X,Y, Z) which intersects the xy-plane at (x, y, 0), show that 13

(a) z =
X

1� Z
+ i

Y

1� Z
.

(b) (X,Y, Z) = (
2Re(z)

|z|2 + 1
,
2Im(z)

|z|2 + 1
,
|z|2 � 1

|z|2 + 1
).

7You have seen that in polar form, or interpreted as a 2⇥2 matrix or a polynomial class, associativity is immediate.
You always get something if you view an object from di↵erent angles.

8From this, we learn that, interpreted as matrices, i2 = �1 corresponds to


0 1
�1 0

�2
= �


1 0
0 1

�
.

9
|z + w|

2 = (z + w)(z + w) = (z + w)(z + w) = zz + zw + wz + ww = zz + zw + zw + ww = · · ·

10This course has another name: Complex Analysis. According to a mathematician, analysis is all about  while
algebra is all about =. This problem helps us to practice analysis.

11The expression (z � a)/(1� az) plays an important role. We will of course come back to it.
12This expression is called the Poisson kernel, the soul of harmonic functions. We will of course come back to it.
13The solution is in I.3 of the textbook.
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Lesson 1 Summary

In this lesson, we were introduced to the notion of complex numbers, from multiple perspectives.

(1) The first is to view C as R2: each complex number z = x + iy is a point (x, y) on
the xy-plane. As each point (x, y) can further be identified as a vector hx, yi as was
done in multivariable calculus, each complex number can be viewed as a vector on the
plane. What distinguishes C from R2 is that C is not merely a vector space of dimen-
sion 2 over R: C has the additional structure of complex number multiplication defined by
(x1 + iy1)(x2 + iy2) := x1x2 � y1y2 + i(x1y2 + x2y1), which also follows from distributivity
and the simpler i2 = �1. With this richer structure, C is a field, containing the smaller field
R as the x-axis on the xy-plane. The constructions of length |z| and conjugate z interact
with complex number multiplication very well, which are important tools we will use quite
often in the next four months.

(2) The second is to consider z = rei✓ where r and ✓ are the same r and ✓ in polar coordinates
we learned in calculus. The peculiar notation ei✓ for now is defined as cos ✓+i sin ✓ and thus
z = r cos ✓ + ir sin ✓, consistent with the polar to rectangular transformation x = r cos ✓,
y = r sin ✓. Later, it will be seen that using ei✓ to mean cos ✓ + i sin ✓ is most natural.
This polar view of complex number makes it clear that complex number multiplication
multiplies lengths and adds angles, the latter consistent with sum angle formula for cosine
and sine. Later we will see that the pleasant inconvenience of nonuniqueness of ✓ opens up
opportunities for us to broaden our conception of shapes.

(3) The third is to view C as the surface S2 of the earth with the north pole N removed.
Conversely, we can view the north pole N as the 1 of C. Here “the” signifies that there is
only one infinity, in contrast to the ±1 for R. Going from S2 to C⇤ := C [ {1} is called
the stereographic projection, which translates things we do on the sphere to the plane and
vice versa. This dual view is quite rich.

(4) The fourth is to view z = x + iy 2 C as a 2 ⇥ 2 matrix

x y
�y x

�
2 C, which defines a field

isomorphism � : C ! C. In particular, �(z1z2) = �(z1)�(z2). As matrix multiplication is
associative, so is complex number multiplication via � and ��1.

(5) The last is to view z = a0 + ia1 as an element of the quotient ring R[X]/(X2 + 1) given by
the isomorphism '(a0 + ia1) = [a0 + a1X], the class represented by a0 + a1X. Essentially,
we are sending i to X and complex multiplication dictated by i2 = �1 is translated to the
law enforcement X2 + 1 = 0, i.e., X2 = �1. As polynomial multiplication is associative, so
is complex number multiplication via ' and '�1.

This last viewpoint generalizes to define Hamilton’s quaternions and Caley’s octonions,
which give R4 and R8 richer structures, respectively. Curiously, no other Rn except R, R2,
R4 and R8 possess similar structures. This is beyond undergraduate mathematics, though
ambitious students would want to start to explore it. It has application as near as calculus.
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Lesson 2 The nth
power and nth

root functions and the emergence of Riemann

surfaces

1. Hand sketch the images of each of the following set under the function f(z) = z2.

(a) the circle |z| = 2
(b) the half line ✓ = ⇡

3
(c) the line Re z = 1
(d) the annular sector 1

2 < r < 2, �⇡/2 < ✓ < ⇡/2
(e) the circle |z � 1| = 1

2. (a) With branch cut taken as (�1, 0], define the principal branch f0(z) and the other

branch f1(z) of f(z) = z
1
2 .

(b) Hand sketch the image of the line Re z = 1 under each of the branches you defined
above.

(c) Describe in pictures and words how you would construct the Riemann surface S of

z
1
2 such that f : S ! C is a continuous function whose restriction to each of the two

constituent C\(�1, 0] on S are f0 and f1, respectively.

3. (a) With branch cut taken as (0,1], define the principal branch f0(z) and the other branch

f1(z) of f(z) = z
1
2 .

(b) Hand sketch the image of the line Im z = 1 under each of the branches you defined
above.

4. Consider the function f(z) = z�1 = 1
z , which is defined on C\{0}. Note that (1) if |z|  1,

then |f(z)| � 1 and if |z| � 1, the |f(z)|  1, so f maps anything inside the circle |z| = 1
to the outside of it and vice versa14, and (2) f(z) = z

zz = 1
|z|2 z, i.e., f(re

i✓) = 1
r e

i(�✓), so

f(z) reflects the angle about the x-axis (and change the radius r to 1
r ).

(a) Hand sketch the image of the circle |z| = 2 under f .
(b) Hand sketch the image of another circle |z � 3| = 1.
(c) Hand sketch the image of the line Re z = 1. 15

(d) Hand sketch the image of the region 0 < |z| < 1
2 .

5. Finally, we can consider other negative powers by combining zn where n 2 N and z�1.

(a) Define f(z) = z�2 := (z�1)2 = (z2)�1. Sketch the image of the half circle |z| = 2,
where Re z > 0, under f .

(b) Define f(z) = z�
1
2 := (z�1)

1
2 = (z

1
2 )�1. So we need to do branch cut in order to

appreciate this function. Using C\(�1, 0] as the domain, define the two branches f0
and f1 of f . Sketch the images of the half circle |z| = 2, where Re z > 0, under f0 and
f1.

14This property of f(z) = 1
z is very useful when we will discover a striking fact of complex analytic functions later.

15Probably, you may suspect that images of these lines and circles are circles. This is indeed the case in general.
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Lesson 2 Summary

We begin our study of complex-valued functions of a complex variable of the form f : A ✓ C ! C
in this lesson, consistent with the title of MATH 345. What such functions do can be appreciated
by drawing where f(z) is on the codomain complex plane for each z in the domain complex plane.
If you put a collection of such points together, you typically get a sophisticated picture of points,

curves and regions, even for functions as simple as f(z) = zn and f(z) = z
1
n .

Even though homework problems were mostly about f(z) = z2 and f(z) = z
1
2 , in class, we

scrutinized f(z) = z3 and f(z) = z
1
3 . For the former function, as f(rei✓) = r3ei3✓, what f does is

to cube its length and triple its angle. This alone can be used to hand sketch the images of many

sets under f . Note that f is three-to-one away from 0: for any w0 6= 0, if f(z0) = w0, then e
i2⇡
3 z0

and e
i4⇡
3 z0 are also mapped to w0. This causes trouble when we consider the latter function: the

inverse f(z) = z
1
3 is multi-valued, in our case, triple valued. This can be solved by simply defining

three inverses f0, f1 and f2. However, another more serious problem is that any such inverse would
be discontinuous on the entire complex plane C. Luckily, this can also be solved by restricting the
domain, i.e., throwing away the trouble-making points. In our case, throwing away any half-curve
starting from the origin, e.g., (�1, 0], would do. So we have three branches f0, f1, f2, each defined
on the slit plane, as the inverses of the cubic power function.

Here is a motivation of Riemann surface: even though we solved the above inverse problem, there
were two regrets: (1) we had three, instead of one inverse. (2) we lost some points in the domain.
To avoid such deficiencies, we can start from three copies of the slit domain C\(�1, 0], with two
intervals (�1, 0) thrown back to the upper edge and lower edge respectively, and then glue the top
edge of copy 0 to the lower edge of copy 1, glue the top edge of copy 1 to the lower edge of copy 2,
and finally glue the top edge of copy 2 to the lower edge of copy 0. The thing we get is called the

16

Riemann surface of z
1
3 . This is a topological space which locally looks like R2 everywhere17. For

each point on C\{0}, including the interval (�1, 0), we have three points on S. So we regained
points on the deleted half line (�1, 0). Furthermore, we can define a continuous f : S ! C whose
restriction to each of the three copies of the slit plane is f0, f1 and f2.

Riemann Surface is a subject in its own, bridging algebra, analysis, number theory, geometry,
and topology. The very last chapter of our textbook is devoted entirely to it. Though a profound
chapter and a decent beginning, it only scratched the surface.

16if you do other branch cuts, the Riemann surface you get is of course di↵erent from this set-wise, but it looks
exactly the same as this, which are dubbed isomorphic.

17The origin 0 is di↵erent, but we have excluded it.
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Lesson 3 The exponential and logarithmic functions

1. Hand sketch the image of each of the following sets under the mapping f(z) = ez.

(a) the half line Re z > 1, Im z = ⇡
4

(b) the line segment Re z = 0, �⇡ < Im z  0
(c) the rectangular region 0 < Re z < ln 2, �⇡

2 < Im z < ⇡
2

2. Prove the usual identity, but for complex numbers:

ez1+z2 = ez1ez2 .

3. Hand sketch the image of each of the following sets under the mapping f(z) = Log z, where
Log z is the principal branch of the multi-valued logarithmic function log z, i.e.,

Log z = ln |z|+ iArg z,

where �⇡ < Arg z < ⇡.

(a) the slit annulus 1 < |z| < e2, and z /2 (�e2,�1)
(b) the upper half plane Im z > 0
(c) the vertical line Re z = e

4. Prove the usual identity, but for complex numbers:

Log (z1z2) = Log z1 + Log z2,

where z1 and z2 are on the right-half plane (Re z1,Re z2 > 0) so that z1z2 is still in the slit
plane C\(�1, 0] for Log (z1z2) to make sense.

5. Define a continuous branch f(z) of log z over C\[0,1) such that f(1 � i) = ln
p
2 + i7⇡4 .

What is f(�i)?



9

Lesson 3 Summary

Continuing our study of complex-valued functions of a complex variable, now we turn to the com-
plex analogues of the real exponential and logarithmic functions, which we learned in single-variable
calculus.

As James Clerk Maxwell unified the study of electricity and magnetism, it is said that Leonard
Euler unified exponential and trigonometric functions via the complex exponential f(z) = eRe zeiIm z,
where the first part is the real exponential function and the second part contains sine and cosine.
What ez does is to wrap the entire complex plane around the origin infinitely many times such that
horizontal lines go to rays converging to the origin (but never touching it) and vertical lines go to
circles centered at the origin each of which is wrapped infinitely often. Note that these image rays
and circles are perpendicular. In fact, if you draw any perpendicular curves on the domain, their
image will be perpendicular. It’s a little hard to see for now, but we will do soon after learning the
miraculous property of complex di↵erentiability in the next chapter.

The complex logarithmic function log z is expected to be inverse of ez, but we run into the same

problem as last time when we studied z
1
n : log z is multi-valued, and it’s not continuous over its do-

main C\{0}. To solve these two problems, we resort to the same technique: branch cut and gluing:
we remove the points in (�1, 0) from C\{0} to get the slit plane C\(�1, 0] and then define the
continuous principal branch Log z of log z by the “obvious” inverse formula Log z = ln |z|+ iArg z,
then we generate infinitely many branches fk(z) = Log z + i2⇡k, k 2 Z over infinitely many copies
of the slit plane C\(�1, 0]. To get a continuous single-valued function f(z), we first construct
the domain Riemann surface S by gluing the top edge of the kth copy of C\(�1, 0] to the bottom
edge of the k+1th copy of C\(�1, 0] and then define f(z) to be fk(z) over each copy of C\(�1, 0].

Same as for z
1
n , we can cut o↵ other half curves, as long as it starts from the origin, to construct

the slit plane.
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Lesson 4 What ii is and complex power functions in general

1. Compute the following complex powers.

(a) i0

(b) iii�i

(c) (1 + i
p
3)1�i

(d) (ii)i

(e) ii·i

2. Prove that z↵1 z
↵
2 = (z1z2)↵, where both sides are considered sets.

3. The following statements are FALSE! Give a counterexample to each of them18.

(a) z↵z� = z↵+�

(b) (z↵)� = z↵�

4. Let f0(z) be the principal branch of zi where the cut is along (�1, 0]. Sketch the image of
the annular sector e�

⇡
2 < |z| < e

⇡
2 , �⇡

2  Arg z 
⇡
2 of f0. Label which edge in the domain

is mapped to which edge in the codomain.

5. In Lesson 5, we will study the complex versions of the trigonometric functions like the cosine
function, which is actually a composition of an exponential function with the following
function

J(z) = z +
1

z
,

which is called the Jourkowsky (Zhukovsky) map, in honor of the mathematician, scientist
and engineer who is a founding father of aerodynamics. Indeed, this map is useful when
studying air flows around airplane wings. In this problem, we explore a basic property of
this map.

(a) Show that J(rei✓) = (r + 1
r ) cos ✓ + i(r � 1

r ) sin ✓.
19

(b) Draw the images of the following counterclockwise oriented circles: |z| = 5, |z| = 3,
|z| = 1, |z| = 1

2 , and |z| = 1
4 under J . Label the direction of your images.

(c) Following similar process, draw the images of these circles under this function K(z) =
z � 1

z , which is slightly di↵erent from J(z), but useful for the sine function next time.

18You have found two already in Problem 1.
19Thus, J maps a circle |z| = r to the ellipse x2

(r+ 1
r )2

+ y2

(r� 1
r )2

= 1 if r 6= 1 and the circle |z| = 1 to the line segment

[�2, 2] traversed twice.
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Lesson 4 Summary

ii doesn’t mean multiplying i copies of the base i together, even though 53 means multiplying
three copies of 5 together. In order to generalize 53 to ii, we rewrite 53 as eln 53 , which is the same as
e3 ln 5. Having learned the complex versions of the exponential and logarithmic functions in Lesson
3, we can now define ii = ei log i. In general,

z↵ = e↵ log z,

where z 6= 0, as we don’t want log z to be not defined.

The function log z is multivalued, so do we expect z↵ to be. However, that’s not always the case,
as the base e may absorb the multivaluedness, depending on what ↵ is. To see this, continuing the
above definition, we have

z↵ = e↵(ln |z|+i(Arg z+2⇡k)) = e↵(ln |z|+iArg z)(ei2⇡↵)k.

So z↵ is multivalued if and only if ei2⇡↵ 6= 1. Thus, z↵ is single-valued precisely when ↵ is an
integer, which is not usually the case. Indeed, this definition overlaps with those of zn, n 2 Z.

Because of the multivalued nature of z↵ in general, familiar identities like z↵z� = z↵+� and
(z↵)� = z↵� do not hold. This is mainly because considered as sets, one side contains more com-
plex numbers than the other.

Complex power functions are useful when use residue calculus to solve some di�cult single
variable integrals problems later in the course.
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Lesson 5 Trigonometric functions and their inverses

1. In class, we proved that cos(z1 + z2) = cos z1 cos z2 � sin z1 sin z2. Now it’s your turn: show
that

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2.

2. Prove that the zeros of sin z are k⇡, k 2 Z.

3. Prove that sin(z + T ) = sin z for all z 2 C if and only if T = 2k⇡, where k 2 Z. 20

4. Let w = sin�1 z.

(a) From sinw = z and the definition of sinw = eiw�e�iw

2i , solve for w to show that

w =
1

i
log(iz ±

p
1� z2).

(b) Let z = x be real and �1  x  1. Show that by letting p be the usual positive
square root, log be the principal branch Log, and choosing + instead of �, w is the
usual inverse trigonometric function arcsin(x) where �

⇡
2  w 

⇡
2 .

5. Define tanw = sinw
cosw , and let w = tan�1 z.

(a) From tanw = z and the definitions of sinw = eiw�e�iw

2i and cosw = eiw+e�iw

2 , solve for
w to show that

w =
1

2i
log(

1 + iz

1� iz
).

(b) Let z = x be real. Show that w is the usual inverse trigonometric function arctan(x)
where �

⇡
2 < w < ⇡

2 , by letting log be the principal branch Log.

Remark. When doing parts (b) for both Problems 4 and 5, draw the right triangles relating
✓ and x. We can certainly do calculations during the last steps, but they can be avoided if
we simply stare at the pictures.

20For the forward direction, letting z be real, then T = 2k⇡ from what we know in calculus. For the backward
direction, given T = 2k⇡, we verify the equality.
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Lesson 5 Summary

Trigonometric and inverse trigonometric functions can also be extended to complex numbers. Their
definitions follow from the real formulas, which has to be the case, as we will see later in the course.
So do familiar trigonometric identities.

In more details, as

cos ✓ =
ei✓ + e�i✓

2
and sin ✓ =

ei✓ � e�i✓

2i
,

we define

cos z =
eiz + e�iz

2
and sin z =

eiz � e�iz

2i
.

Recall from the homework of Lesson 4 that J(z) = z + 1
z and K(z) = z � 1

z . Thus, we can also
write

cos z =
1

2
J(eiz) and sin z =

1

2i
K(eiz).

Since we know what the mappings J , K and e( ) do, and that multiplication by i is counter-
clockwise rotation by ⇡/2, dividing by 2 is radial shrinking by a factor of 2, we have a pretty good
picture of what cos z and sin z do to points on the complex plane.

Also recall that sin z and cos z are periodic functions, with period 2⇡ along the real direction,
and that’s it: there are no period along the imaginary direction. This is guaranteed, as we will
later learn that if a complex analytic function is defined on the entire C and it has periods along
two directions, then it has to be constant! We know sin and cos are not constants, so we never see
things like cos(z + iT ) = cos(z) and sin(z + iT ) = sin(z), where iT is pure imaginary.

Lastly, you may wonder why log appeared in inverse trigonometric functions. Here is the deal:
similar to that complex exponential functions unify real exponential functions and trigonometric
functions, complex logarithmic functions unify real logarithmic functions and inverse trigonometric
functions (The arg z in log z = ln |z|+iarg z is an angle, which is the output of inverse trigonometric
functions). Therefore, it’s expected that complex inverse trigonometric functions have something
to do with complex logarithm.
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Lesson 6 Definition of analytic functions

1. Prove that if u(x, y) is continuously di↵erentiable on a domain (open and path-connected)
D, such that ru := hux, uyi = h0, 0i on D, then u is a constant function on D. 21

2. Consider the function f(z) = z. In this problem, we show that even though f is continuous,
it is not di↵erentiable at any point and thus is not analytic.

(a) Prove that f is continuous on C using the definition of continuity.
(b) Prove that f 0 does not exist at any z 2 C by choosing two directions of �z along which

lim
�z!0

f(z +�z)� f(z)

�z
are not equal. 22

—————————————————————————————————————–
The function

F (z) =

Z 1

0

f(t)

t� z
dt,

where f : [0, 1] ! C is continuous, is the main player in the next three problems. Note that
F is a function from D = C\[0, 1] to C. F itself is not very useful in this course, but it is of
good educational value as some techniques we will use later are contained in the following
exercises.

3. As a warm-up, use definition to show that F is continuous on D. 23

4. Use definition to prove that F 0(z0) =

Z 1

0

f(t)

(t� z)2
dt for all z0 2 D. 24

5. Use definition to prove that F 0(z) is continuous at all z0 2 D. Problems 4 and 5 show that
F is analytic on D. 25

21The proof is on page 38 of the textbook. To fill in more detail, feel free to use the 2D Mean-Value Theorem: if
u(x, y) is di↵erentiable on a domain containing the line from (x0, y0) to (x, y), then there is a point (x1, y1) on this
line such that u(x, y)� u(x0, y0) = ru(x1, y1) · hx� x0, y � y0i

22One choice is on page 43 of the textbook.
23That is, for any z0 2 D, and any ✏ > 0, we need to find � > 0 such that for any z /2 [0, 1], if |z � z0| < �, then

|F (z)� F (z0)| < ✏. For Problems 3, 4 and 5, it is useful to use the estimate |
R 1

0
g(t)� h(t)dt| 

R 1

0
|g(t)� h(t)|dt.

24That is, for any z0 2 D, and any ✏ > 0, we need to find � > 0 such that for any z /2 [0, 1], if 0 < |z � z0| < �,

then
��F (z)�F (z0)

z�z0
�

R 1

0
f(t)

(t�z)2
dt
�� < ✏.

25You may find it useful that the function |t�z0| is continuous where t is on the compact [0, 1] and thus |t�z0| < N

for some N > 0.
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Lesson 6 Summary

When people say that D ✓ C is a domain, they don’t just mean that D can be the domain of a
function f : D ! C. Here, more specifically, D is open and path-connected. Open means at any
point in D, there is an open disk centered at this point which is completely contained in D. So an
open set is a union of open disks. Path-connected means any two points in D can be joined by a
polygonal line segment which is completely contained in D. In this course, most of our functions’
domains are domain in this sense.

Given a function f : D ! C,

(1) lim
z!z0

f(z) = L for some z0 2 D if for any ✏ > 0, there is � > 0 such that if z 2 D and

0 < |z � z0| < �, then |f(z)� L| < ✏.

(2) We say f is continuous at z0 2 D, if lim
z!z0

f(z) = f(z0), where the limit L is the function’s

value f(z0) at z0.

(3) We say f is continuous (on D), if f is continuous at each z0 2 D.

(4) We say f is di↵erentiable at z0 2 D, if lim
z!z0

f(z)� f(z0)

z � z0
exists. This limit is denoted by

f 0(z0). Equivalently, by letting ✏(z) = f(z)�f(z0)
z�z0

� f 0(z0), we have

f(z) = f(z0) + f 0(z0)(z � z0) + ✏(z)(z � z0),

where lim
z!z0

✏(z) = 0.

(5) We say f is di↵erentiable (on D), if f is di↵erentiable at each z0 2 D.

(6) Finally, we say f is analytic on D if f is di↵erentiable on D and f 0 is continuous on D.

Why is it called an analytic function? The delightful property of such functions is that if f is
di↵erentiable once and its derivative is continuous (which actually is implied from the di↵erentia-
bility of f , as we will see later, but it will take a big detour), then f is infinitely di↵erentiable,
which means f 0, f 00, f 000, f 0000, f 00000, ... exist and are continuous. Such functions are dubbed C1.
But more is true: we will see that the Taylor series (power series) of f equals f . In real anal-
ysis/calculus, a function is called analytic if its Taylor series equals the function itself. Same thing
here, but for us, the mere existence of f 0 implies the analyticity of f . To distinguish the consequent
analyticity from its less demanding definition, most people call a function which is di↵erentiable
on D (and whose derivative is continuous on D) a holomorphic function, which means f 0 exists
everywhere on the whole D. I like this name better, also because it’s paired with meromorphic

functions, which we will learn later.
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Lesson 7 Equivalence to the Cauchy-Riemann equations

1. Use the Cauchy-Riemann equations to show that the function f(z) = z we considered last
time is not analytic. How about f(z) = |z|2?

2. Use the Cauchy-Riemann analyticity criterion to show that the following are analytic
functions. Also find a formula for each function in the form of f(z). 26 For example,
x2 � y2 + i(2xy) = z2 because it is (x+ iy)2.

(a) x3 � 3xy2 + i(3x2y � y3)

(b) x
x2+y2 + i �y

x2+y2

(c) 1
2 ln(x

2 + y2) + iArctan( yx) on Re z > 0.

3. In class, we derived the Cauchy-Riemann equations by evaluating the limit of the di↵erence
quotient along the horizontal (�z = �x) and vertical (�z = i�y) directions. Being the
simplest directions, they are not the only directions we can take. In fact, we can choose
any direction. Let’s try another: Prove that if f 0(z) exists, then

f 0(z) =
ux + uy
1 + i

+ i
vx + vy
1 + i

Hint: Let �z = �t+ i�t. 27

4. Show that if both f = u+ iv and f = u� iv are analytic on D, then f is constant. 28

5. Show that if f = u+ iv is analytic on D and |f | is constant, then f has to be constant. 29

26
Hint : These are all familiar functions.

27Further hints. One way to do it is as follows. f
0(z) = lim�z!0

f(z+�z)�f(z)
�z =

lim�z!0
u(z+�z)+iv(z+�z)�u(z)�iv(z)

�z = lim�t+i�t!0
u(x+�t,y+�t)�u(x,y)+i(v(x+�t,y+�t)�v(x,y))

�t+i�t =

lim�t!0
1

1+i
u(x+�t,y+�t)�u(x,y)

�t + lim�t!0
i

1+i
v(x+�t,y+�t)�v(x,y)

�t = 1
1+i

du(x+t,y+t)
dt

��
t=0

+ i
1+i

v(x+t,y+t)
dt

��
t=0

. It

remains to do the last-step calculation by using the chain rule.
28Set up four C-R equations. Show ux = uy = 0, and vx = vy = 0 to conclude that both u and v are constant

using Problem 1 of Lesson 6.
29If |f | is the constant 0, then f = 0. Otherwise (|f | 6= 0 and thus f is never 0), consider the well-defined expression

f = |f |2
f , which is analytic. The connection with Problem 4 should be clear at this moment.
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Lesson 7 Summary

Last time, we defined analytic (holomorphic) functions. Thus, simple power functions zn, poly-
nomials and rational functions are analytic as we can show explicitly that their derivative exist and
are continuous. But what about functions like ez? It’s not immediately clear what (ez)0 is using
definition.

The Cauchy-Riemann Analyticity Criterion saves us. It says that f = u + iv is analytic if and
only u and v are C1 (partial derivatives of u and v exist and are continuous) and they satisfy the
Cauchy-Riemann equations ux = vy and uy = �vx. I really don’t recommend just memorizing
these two equations, but to understand where they came from: along the horizontal and vertical
directions, we have f 0 = ux + ivx = 1

i (uy + ivy).

Using this criterion, we see ez is analytic and using either of the last two formulas above, we
have (ez)0 = ez, the same formula we learned in calculus.

Thus, the C-R equations and the C-R criterion provide us with computable tools to deal with
analytic functions. It’s worth mentioning that this criterion holds, especially in the reverse direc-
tion, because of a miracle to go from the real to the complex.

Some other applications:

(1) If f : D ! C is analytic, and f 0 = 0, then f is a constant on D.
(2) If f : D ! C is analytic, and f is real, then f is a constant on D.
(3) If f : D ! C is analytic, and f is pure imaginary, then f is a constant on D.
(4) Similarly, if f : D ! C is analytic, and the image of f is contained on a smooth 1D curve

F (u, v) = k whose normal vector rF never vanishes, then it’s not hard to believe that f is
a constant on D.30

(5) If both f, f : D ! C are analytic, then f is a constant on D.
(6) If f : D ! C is analytic and |f | is constant, then f is a constant on D. This is a special

case of (4) where the curve is a circle.

All of these are proved using the C-R equations, and Problem 1 of Lesson 6.

Complex analysis is intimately connected with the physical world. This can be seen through
the Cauchy-Riemann equations. If ~F (x, y) = hP (x, y), Q(x, y)i is a 2D vector field, then ~F (x, y) is
divergence-free (incompressible) if Px+Qy = 0 and ~F (x, y) is curl free (irrotational) if Qx�Py = 0.
These two equations are Qx = Py and Qy = �Px, the same as the Cauchy-Riemann equations. If
P and Q also have continuous partial derivatives, then we know Q(x, y) + iP (x, y) is analytic. So
analytic functions store the components of incompressible and irrotational vector fields. This only
reveals the tip of the mysterious iceberg of the connection between complex analysis and real world
applications.

30Indeed, this can shown by noticing that 0 = Fx = rF · hux, vxi = rF · hux,�uyi, 0 = Fy = rF · huy, vyi =
rF · huy, uxi and that if two perpendicular vectors are both perpendicular to a third vector in R2, then these two
vectors are ~0. On the other hand, this result can also be proved using something we will learn in the end (the open
mapping theorem of analytic functions).
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Lesson 8 Jacobian, the inverse function theorem, and inverse analytic functions

1. (a) State the 1D real version of the Inverse Function Theorem (IFT) as we did in class.

(b) Consider the function f(x) = x3 defined on R. Show that (1) it’s C1 and invertible,
but (2) f�1 is not di↵erentiable at one point in R. Which condition does not hold in
the IFT?

(c) Consider the function f(x) defined by f(x) = x+ x2 sin 1
x if x 6= 0 and f(0) = 0. It’s a

fact that no matter how much we zoom into the origin, f is not invertible. To see what
went wrong, (1) Show that f 0(x) = 1 + 2x sin 1

x � cos 1
x if x 6= 0 (using di↵erentiation

rules), and f 0(0) = 1 (using the limit definition of derivative). (2) Prove that f 0(x) is
not continuous at 0 by finding a sequence (xn) ! 0 such that f 0(xn) ! 0, which is not
f 0(0). 31

2. (a) State the 2D real version of the Inverse Function Theorem as we did in class.

(b) Consider the function F : R2
! R2 defined by F (x, y) = (2x�y, x+y). Use the above

theorem to show that F is locally invertible. Find a formula for F�1 and also calculate
J(F�1). Is it the same as (JF )�1?

3. State the complex version of the Inverse Function Theorem as we did in class.

4. Prove that (Tan�1)0(z) = 1
1+z2 , the familiar formula in calculus, where

Tan�1(z) =
1

2i
Log

✓
1 + iz

1� iz

◆
.

5. This last problem is about another occurrence of Jacobian: it shows up when calculating
the area of the transformed image of an analytic function.

(a) Let f : D ! C be a 1-1 analytic function. Prove that Area(f(D)) =
RR

D |f 0(z)|2dxdy.
32

(b) Let f(z) = z2 and D = {z 2 C
��|z � 1|  1}. Is f 1-1 on D? Sketch the region f(D)

and calculate its area. 33

31At what numbers is cosine 1 and sine 0? Answer: 2⇡n. So we can, for example, let xn = 1
2⇡n , which goes to 0.

32Recall Area(f(D)) =
RR

f(D)
1dudv, which, after a change of variables, is

RR
D
|
@(u,v)
@(x,y) |dxdy.

33As D is a circular disk, it’s most convenient to use polar coordinates. Note that D is described by 0  r  2 cos ✓
and �

⇡
2  ✓ 

⇡
2
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Lesson 8 Summary

The 1D real version of the Inverse Function Theorem was used in single variable calculus to
show the existence of inverse function and its derivative and how to find this derivative if we know
the original function’s derivative. The proof of it is not that hard, as f 0(x0) 6= 0 and the conti-
nuity of f 0(x) guarantees that either f 0(x) > 0 or f 0(x) < 0 over an interval containing x0 and
thus f(x) is strictly monotone over this interval. Hence, its inverse f�1 naturally exists by the
intermediate value theorem and is continuous by visual inspection (which immediately generates a
rigorous proof). It then follows that f�1 is also di↵erentiable with its derivative given by the flip of
that of f . The continuity of f�1 is used to show this. It’s also used to show the continuity of (f�1)0.

The complex version of the Inverse Function Theorem formally is analogous to the 1D real ver-
sion of the Inverse Function Theorem. However, the complex version is based on the 2D real version
of the Inverse Function Theorem as analytic functions f : D ! C are mappings from 2D plane to
itself. The proof of the 2D Theorem is significantly harder, because the monotonicity result doesn’t
make direct sense in dimensions other than 1. Nonetheless, its proof is a great demonstration of a
few techniques in higher dimensional real analysis.

Using the 2D IFT, the complex version of IFT follows naturally, by recognizing the equality
det(Jf(z)) = |f 0(z)|2. And thus the non-vanishing of the Jacobian determinant of f is the same as
the non-vanishing of f 0. The former is a notion in multivariable calculus while the latter is what
we just learned in this course.

Using the complex IFT, we quickly recognize the familiar formula (Log z)0 = 1
z on C\(�1, 0].

Even though we could prove the same using a concrete formula like that in Problem 2(c) of Lesson
7, note that it only holds on the right-half plane. Knowing this formula, many other formulas can
also be deduced, for example, (z↵)0 = ↵z↵�1 and derivatives of inverse trigonometric functions, as
they are expressed using the complex logarithmic function.

Inverse Function Theorems is a subject on its own, extending calculus and real and complex
analysis to functional analysis, di↵erential topology and di↵erential geometry. The notoriously
di�cult theorems of John Nash and Jürgen Moser fit into this category. There are much much
more to learn.
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Lesson 9 Introduction to harmonic functions

1. In this exercise, we check that Arg z, z 2 C\(�1, 0] indeed is a harmonic function on its
domain by doing concrete calculations on di↵erent subregions of its domain, whose union
is the domain.

(a) On the right half plane Re z > 0, use definition to show that Arg z is harmonic by
using Arg z = Arctan( yx).

(b) On the upper half plane Im z > 0, use definition to show that Arg z is harmonic by
using Arg z = Arccos( xp

x2+y2
).

(c) On the lower half plane Im z < 0, use definition to show that Arg z is harmonic by
using Arg z = �Arccos( xp

x2+y2
).

2. Use definition to show that the following functions are harmonic on their domains.

(a) u(x, y) = e2x cos 2y

(b) u(x, y) =
x

x2 + y2

3. Find a harmonic conjugate for each of the functions in Problem 2. What are the associated
analytic functions in terms of z?

4. Consider the function u(x, y) =

⇢ �2xy
(x2+y2)2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0).
It is a fact that �u = 0 on C,

which you don’t need to verify. However, u is not harmonic on C. To see this, show that
ux(x, y) is not continuous at (0, 0), which is a necessary condition for u to be C2. 34 35

5. Prove that u(x, y) = ln
p
x2 + y2 does not have a harmonic conjugate on its domain C\{0}.

36

34Calculate ux(0, 0) using the limit definition of derivative. Calculate ux(x, y), when (x, y) 6= (0, 0), using the
quotient rule. Then show the discontinuity by finding a path for (x, y) going to (0, 0) along which the limit of ux(x, y)
is not ux(0, 0).

35Indeed, on the smaller domain C\{0}, u is the imaginary part of 1
z2
, but there is no way to extend this function

even continuously to 0.
36Restricted to C\(�1, 0], we know u(x, y) does have a harmonic conjugate Arg z. Suppose v(x, y) is a harmonic

conjugate for u(x, y) on C\{0}. Then restricted to C\(�1, 0], v(x, y) = Arg z + C by uniqueness of harmonic
conjugates. So there is not much freedom for v(x, y): it is the angle function up to a constant. As Arg z jumps across
(�1, 0], so does v(x, y). Thus, v(x, y) can not be continuous on C\{0}, but harmonic functions have to be at least
continuous on its domain. Oops! It looks like this is almost the whole proof, which has been spelled out for free.
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Lesson 9 Summary

Harmonic functions make sense in all dimensions, and in all kinds of spaces. In the flat 2-dimensional
space, u : D ✓ R2

! R is called harmonic if u is C2, and uxx+uyy = 0. Denoting the second order
partial di↵erential operator @

@x
@
@x + @

@y
@
@y by �, the previous equation can also be written �u = 0,

called the Laplace equation, and � is called the Laplacian. Laplace is a person, who is, simply,
amazing. Though, engineering students hate him, for that the Laplace transforms, which are useful
when solving linear di↵erential equations, were fed into their mouths without explanation. That’s
because they didn’t learn the elegant complex analysis behind the scene, as I can attest by my
experience. So, you, students of 345, will be protected from this feeling.

It will turn out that u merely being C2 actually implies C1, i.e., its partial derivatives of all
orders exist and are continuous. But the assumption that u is C2 has to be checked carefully, as we
saw in Problem 4 that, there are functions which satisfy the Laplace equation, but the function still
is not harmonic, as their derivatives are not C2. The requirement of su�cient continuous di↵eren-
tiability is important for making a connection between real harmonicity and complex analyticity.

Indeed, if f = u+ iv is analytic, then both u and v are harmonic. In some sense, we can regard
an analytic function as storing two harmonic functions. Conversely, if both u and v are harmonic,
then f = u+ iv is not necessarily analytic. However, if we start from a harmonic u, then we can al-
ways find another harmonic function v such that u+ iv is analytic, at least over a smaller domain.
Such v is called a harmonic conjugate of u, which is unique up to adding a constant over their
domain D. So harmonic conjugate is essentially unique. In Lesson 12, we will use line integrals
to find harmonic conjugate over simply-connected domains. Today, it’s enough to do antiderivative.

Harmonic functions appear in almost all second-order partial di↵erential equations, which govern
many physical, chemical, and geometrical phenomena. Many books are devoted to this subject.



παθϵι̃ν

µαθϵι̃ν

“These two verbs mean ‘to suffer’ and ‘to learn’. Do you see how they’re almost identical?
What Socrates is doing here is punning on these words to remark on the similarity of the
two actions.”

Hello, Math 345 students again!

It’s been one month since August 28.

The above was taken from page 77 of Han Kang’s Greek Lessons, which I happen to order and
read since this past Sunday, after I saw it at the town library in Northampton. I’m sending this
letter as I would like to help you with one homework problem, Problem 1 of Lesson 9, which asks
us to prove that the angle function Arg z on C\(−∞, 0] is harmonic by doing concrete calcula-
tions, i.e., showing that all its four second order partial derivatives are continuous and it satisfies
the Laplace equation ∆Arg z = 0. Surely, as Arg z is the imaginary part of the analytic function
Log z, we know it is automatically harmonic. The point is: we would not appreciate how wonderful
this theorem is until we go through the pain of doing calculations. To suffer is to learn. So true it is!

But I don’t fully agree. At least, we can make it more enjoyable, or less painful.

First of all, this problem is necessarily complicated, as our aim is to write Arg z using x and
y so that we can do derivatives with respect to x and y, and using x and y means we are using
coordinates, but one set of coordinates which works for the entire domain C\(−∞, 0] does not nec-
essarily exist. For Arg z, as it is an angle, inverse trigonometric functions would provide concrete
expressions, but the output of such a function only covers an angular range less than π. So if
we want to cover the angular range from −π to π, we need at least three (two won’t work) such
functions. Now, I’ll go through (b), as (c) is almost identical, and (a) is simpler.

In (b), Arg z = Arccos( x√
x2+y2

) where y > 0 and x can be any number. Recall (or you can find

using google, or ChatGPT, or prove using the 1D real Inverse Function Theorem) that Arccos′(t) =
−1√
1−t2

. Thus, if we let v(x, y) = Arccos( x√
x2+y2

) so that we don’t need to write the latter many

times, then by the chain rule and also the quotient rule applied to the inner function,

vx =
−1√

1− ( x√
x2+y2

)2

1 ·
√
x2 + y2 − x1

2
2x√
x2+y2

(
√
x2 + y2)2

.

Never, ever, take another derivative of this expression directly. Instead, simplify it as much as
possible before anything else. You see, something your former teacher told you could be important:
simplify your work. There is truth in “wisdom” and value in “tradition”. Some movie director
used to say so. Therefore, by multiplying the numerator and denominator of the second term by√

x2 + y2, and also simplifying the first term, we have

vx =
−1√

y2

x2+y2

(x2 + y2)− x2

(
√

x2 + y2)3
=

−
√

x2 + y2

|y|
y2

(
√
x2 + y2)3

=
−y

x2 + y2
,

1



2

where in the last step, |y| was replaced by y, as y > 0. (So in (c), you should change |y| to −y as
y < 0.) Compare this result vx = −y

x2+y2
with the previous one. How simple it is!

Similarly,

vy = · · · = −1√
1− x2

x2+y2

−xy

(
√

x2 + y2)3
= · · · = x

x2 + y2
.

Then you can also check that

vxx =
2xy

(x2 + y2)2
,

vxy = vyx =
−x2 + y2

(x2 + y2)2
,

and

vyy =
−2xy

(x2 + y2)2
,

which are continuous. Furthermore,

∆v = vxx + vyy = 0.

Therefore, v is harmonic on Im z > 0.

Finally, some of you said you don’t like any of these, as they feel like engineering. First of all, I
can assure you the math engineers do are 100 times more complicated than this, and they have to
do it right, as it would be directly used in systems supporting humans and even saving lives. Every
time you took the elevator in SMUD, imagine what exactly made it work and how much care could
have possibly been put into it. If you keep thinking the same about objects surrounding us, you
would marvel at the “miracles” nuanced math has produced. The devils are in the details. Sec-
ondly, retreating to math itself, we would eventually realize that most new math are discovered by
doing computations. Computations for mathematicians are to experiments for scientists. Through
tedious and persistent work are truth eventually unveiled. In concrete terms, most mathematics
are eventually reduced to algebra (broadly defined) and calculus. Training yourself on how to do
them and how to do them well will empower you when tackling what the future will bring forth.

Then, with great power comes great responsibility.

Ok. So much for today. I’m typing this letter with lights off as my sons have fallen asleep by my
side. If I keep staring at the screen in darkness like I sometimes do with a cellphone, I would really
become the blind Greek lecturer in the book. I’ll schedule this letter to be sent to you at 8:20am
on Friday morning, and I can’t wait to see you in class. By you, I mean all of you, and all of u!

P.S.: Page 78: “However, we cannot see the twinning of these verbs simply as a play on
words. Since, for Socrates, learning literally meant suffering. Even granting that Socrates
himself did not think this in so many words, the thought was at least formulated as such by
the young Plato.”

September 28, 2023
Yongheng Zhang (your Math 345 instructor who cares about you)
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Lesson 10 Conformal mappings and analytic functions

1. In class, we used complex number multiplication to show that an analytic function with
non-vanishing derivative is conformal. In this problem, we will use linear algebra instead
to show the same result. Recall from Lesson 1 that a complex number can be written as
a 2 ⇥ 2 matrix. This proof is very much in the same spirit. Here we begin: let f(x, y) =
u(x, y) + iv(x, y) be an analytic function. Let z(t) = x(t) + iy(t) be the parametrization
of a C1 curve such that z(0) = z0 2 D and f 0(z0) 6= 0. Writing both f(x, y) and z(t) as
column matrices, use the chain rule and Cauchy-Riemann equations to show that37

(f(z(t)))0 =


ux uy
vx vy

� 
x0(t)
y0(t)

�
=


ux �vx
vx ux

� 
x0(t)
y0(t)

�
.

2. Consider the familiar polar coordinate transformation in calculus from the right-half plane
{(r, ✓)

��r > 0} to the xy-plane. Prove that this map is not conformal. 38 39

x = r cos ✓ and y = r sin ✓

3. Consider the function f(z) = z2. Find a domain D such that f : D ! C is a conformal
mapping (one-to-one and conformal everywhere on the domain D). The answer of course
is not unique.

4. Consider the Jourkowsky map J(z) = z + 1
z from Lesson 5 which we used to understand

the trigonometric functions in Lesson 6. Prove that J : D ! C is a conformal mapping40 if
D is (1) the punctured open unit disk: 0 < |z| < 1, (2) the outside of the unit disk: |z| > 1.

5. Find a conformal mapping from the vertical strip

�⇡/2 < Re z < ⇡/2

to the sector
0 < Arg z < ⇡/2

by composing familiar conformal mappings. 41

Drawing successive pictures helps us to think.

37This proves that f is conformal at z0 because the 2⇥ 2 matrix is very special: it is an overall scaling composed
with a pure rotation and thus preserves oriented angles. To see these: note that the two columns are perpendicular
as their dot product is 0; the two columns have equal length; the determinant of this matrix > 0 and thus preserves
orientation. Therefore, we can factor this matrix as an overall scalar multiplied to a matrix in SO(2).

38There are many ways to prove it. For example, you can calculate its Jacobian, and show that it’s not a scalar
times a matrix in SO(2). Or show the map is not analytic by disproving the Cauchy-Riemann equations.

39Note that this is similar but di↵erent from the exponential function e
r+i✓ = e

r cos ✓ + ie
r sin ✓ because of the r

and e
r di↵erence. The former does map the horizontal and vertical rectangular grid to orthogonal circular and radial

web, though in general, it doesn’t preserve angle for other grids.
40In addition to showing the J

0(z) 6= 0 condition, we need to show J is 1-1 on the given D. A way to do this is
to assume J(z1) = J(z2) and then prove z1 = z2.

41Some conformal mapping building blocks to consider are e
z, Logz, zn, z1/n and multiplication by a complex

number with modulus 1 for rotation.
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Lesson 10 Summary

A C1 function f : D ! C is conformal if it preserves angles, i.e., if the angle from the tangent
vector v1 of the curve �1 to the tangent vector v2 of the curve �2 at the common point z0 is ↵, then
the angle from the tangent vector u1 of the curve f(�1) to the tangent vector u2 of the curve f(�2)
at the common point f(z0) is also ↵.

Apparently, the geometric property of conformality bears no direct relations with analyticity,
which is what we have been studying. Surprisingly, under a mild assumption, they mean the same
thing. Indeed, we have the following theorem:

Under the further assumption that det(Jf(z0)) 6= 0, f is analytic if and only if f is conformal.

The forward direction was proved in class. Problem 1 you just did proved it again, using another
method. The textbook has a third proof, which is the fastest, using a process like that in the proof
of the chain rule.

The backward direction is proved here now: Suppose f = u + iv is conformal. Let a curve be
parametrized by z(t) = x(t) + iy(t) = z0 + tei✓. So the curve is simply a straight line through
z0 when t = 0 that can point along any angular direction ✓. Furthermore, z0(t) = ei✓ and thus
x0(t) = cos ✓ and y0(t) = sin ✓. Then (f(z(t)))0 = (uxx0(t) + uyy0(t)) + i(vxx0(t) + vyy0(t)) =
(ux cos ✓ + uy sin ✓) + i(vx cos ✓ + vy sin ✓). As f is conformal, (f(z(t)))0/z0(t) should not depend
on ✓. This imposes a very strong condition on (f(z(t)))0/z0(t) from which we will get the Cauchy-
Riemann equations. To see the details, let’s do concrete calculuations:

(f(z(t)))0/z0(t) = (f(z(t)))0/ei✓ = (f(z(t)))0e�i✓

= (ux cos
2 ✓+uy cos ✓ sin ✓+vx cos ✓ sin ✓+vy sin

2 ✓)+i(�ux sin ✓ cos ✓�uy sin
2 ✓+vx cos

2 ✓+vy sin ✓ cos ✓)

= (ux + ivx) cos
2 ✓ + (uy + vx + i(vy � ux)) sin ✓ cos ✓ + (vy � iuy) sin

2 ✓.

Now, writing cos2 ✓ = 1� sin2 ✓, this expressions is

= ux + ivx + ((uy + vx + i(vy � ux)) cos ✓ + (vy � ux � i(uy + vx)) sin ✓) sin ✓.

Note that, the two vectors uy + vx + i(vy � ux) and vy � ux � i(uy + vx) are of equal length and
orthogonal to each other, thus (uy + vx + i(vy � ux)) cos ✓ + (vy � ux � i(uy + vx)) sin ✓ is a vector
obtained by turning uy + vx + i(vy � ux) with respect to ✓. As (f(z(t)))0/z0(t) doesn’t depend on
✓, this vector should be zero. Thus, we get uy = �vx and vy = ux, the Cauchy-Riemann equations.
As f is also C1, by the Cauchy-Riemann analyticity criterion42, f is analytic.

Later, after we learn the di↵erential operators @
@z and @

z , we will see that the above calculation
can be written in a very concise way.

A conformal mapping is a 1-1 map which is conformal at all points in its domain. Typically, we
can get a conformal mapping by restricting an analytic function to a subset of its domain where
f 0(z) 6= 0, or by composing several such mappings.

Conformal mappings are used often in generating graphical arts. Conformal mappings also make
sense in higher-dimensions. Perhaps some of you can tell us about it in your project.

42You see, the Cauchy-Riemann analyticity criterion, the powerful translator bridging multivariable calculus and
complex analysis is used again! Last time, it was when we proved the 1D complex Inverse Function Theorem from
the 2D real Inverse Function Theorem. This time, we use it to go from the conformal property expressed using
multivariable calculus to analyticity in complex analysis.
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Lesson 11 Important conformal mappings: the fractional linear transformations

(FLI)

1. Given a fractional linear transformation f(z) = az+b
cz+d , its matrixM is


a b
c d

�
. Recall det(M)

is defined to be nonzero.

(a) Compute the inverse matrix M�1.
(b) Find a formula for f�1(z) by solving for w from z = f(w).
(c) Have you noticed any relationship between your answers in (a) and (b)?

2. Fractional linear transformations map circles in C⇤ to circles in C⇤. This can be proved by
decomposing such a map into dilation z 7! az, a 6= 0, translation z 7! z + b, and possibly
an inversion z 7!

1
z and show each of the three simpler maps do. In this problem, we check

this for inversion through four examples. Show that f(z) = 1
z maps 43:

(a) the circle |z � 1| = 2 to another circle,
(b) the circle |z � 1| = 1 to a line,
(c) the line y = x to another line,
(d) the line y = x+ 1 to a circle.

3. Read the proof of the theorem that there is a unique fractional linear transformation map-
ping three di↵erent points z1, z2, z3 2 C⇤ to each of the three di↵erent points w1, w2, w3 2 C⇤,
respectively, and then fill in the following two little details.

(a) Construct a FLT f mapping z0,1, z2 to 0, 1,1, where z0, z2 2 C.
(b) Construct a FLT f mapping z0, z1,1 to 0, 1,1, where z0, z1 2 C.

4. Consider the function g(z) = z�a
1�az where |a| < 1. In Lesson 1, you proved that it maps the

unit circle |z| = 1 to itself.

(a) Prove that g is a FLT.
(b) Prove that if a = Rei✓, then g(ei✓) = ei✓. Let a 6= 0, then show that g maps the

straight line through 0 and a to the straight line through �a and 0.44

5. A FLT f maps 1 + i to 0, 2 to 1 and 0 to i� 1.

(a) Without finding f(z) explicitly, sketch the images of the circle |z � 1| = 1 and the
line segment [0, 2] under f by using the conformal property and the fact that f maps
“circles” to ”circles”.

(b) Find an explicit expression of f(z).

43See the textbook for how to do this. Alternatively, letting u+ iv = w = 1
z , we have x+ iy = z = 1

u+iv = u�iv
u2+v2 .

We can then plug x = u
u2+v2 and y = �v

u2+v2 into each of the four equations to get an equality for u and v.
44Note that g maps 0, a and e

i✓ to �a, 0 and e
i✓. The former three points are on a line. The latter three points

are also on a line. FTL maps line to line.
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Lesson 11 Summary

After learning conformal mappings in Lesson 10, today we studied an important class of such func-
tions, called Möbius transformations f(z) = az+b

cz+d . In general, when z takes values in other fields, or
algebraic structures, such maps are called fractional linear transformations (FLT) as our textbook
did, or linear fractional transformations (LFT) as the Internet webpages do.

That ad� bc 6= 0 is part of the definition of FLT suggests us to associate a matrix


a b
c d

�
to the

map. Indeed, we can build a group homomorphism from GL(2,C), the group of all 2⇥ 2 invertible
matrices with complex entries to the group of FLTs. This homomorphism has a nontrivial kernel,

consisting of all invertible matrices of the form


a 0
0 a

�
. Thus, we can identify FLTs with elements

in GL(2,C) up to a nonzero multiplicative constant. This surely has to be the case, as if we mul-
tiply a, b, c, d by the same nonzero constant, the FLT doesn’t change.

FLT maps circles on C⇤ to circle on C⇤, i.e., it maps circles and lines in C to circles and lines
in C. Furthermore, if you tell to which three di↵erent locations w1, w2, w3 to send three di↵erent
points z1, z2, z3 on C⇤, a FLT exists to do that, and only this FLT can do it. Combined with the
good conformal property of FLT, we can tell a lot about what FLT do to lines and circles on the
plane, even without knowing the formula. Of course, a formula can be easily found if we wanted
to.

Möbius transformation is a hot topic in the very early days of YouTube. This short and old one45,
for example, https://www.youtube.com/watch?v=JX3VmDgiFnY, has more than 2 millions views,
which was quite rare for a video in mathematics. Indeed, it’s a Top Favorite in the categories of
Education and earlier in Film and Animation. You see, Möbius transformations have such simple
and physical explanations if we pull everything back to the Riemann sphere.

45Be aware that there are four basic transformations in the video: dilation, rotation, translation, and inversion,
but the first two together is just multiplication by a complex number, which was called dilation by us.

https://www.youtube.com/watch?v=JX3VmDgiFnY
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Lesson 12 Real line integrals and harmonic conjugates

1. Consider the line integral
R
C ydx+ xdy, where C is a smooth curve from (0, 0) to (2, 0).

(a) Evaluate this line integral by plugging in a parametrization if C is the straight line
segment from (0, 0) to (2, 0).

(b) Evaluate this line integral by plugging in a parametrization if C first goes from (0, 0) to
(1, 1) along a straight line and then goes from (1, 1) to (2, 0) along another straight line.

(c) Show that if C1 and C2 are any two smooth curves, both from (0, 0) to (2, 0), thenR
C1

ydx+ xdy =
R
C2

ydx+ xdy. (So your answers to (a) and (b) should be the same.)

2. It’s been some time since you proved Green’s Theorem in Math 211. Here is an opportunity
to review part of it. 46 All functions below are C1.

(a) If D = {(x, y) 2 R2
��a  x  b, g1(x)  y  g2(x)}, show that

R
@D Pdx = �

RR
D PydA.

(b) If D = {(x, y) 2 R2
��a  y  b, g1(y)  x  g2(y)}, show that

R
@D Qdy =

RR
D QxdA.

3. The domains D of the following harmonic functions u(x, y) are all simply-connected. Prac-
tice writing their harmonic conjugates as line integrals using the formula we proved in class
today. 47

(a) u(x, y) = x2 � y2

(b) u(x, y) = x
x2+y2 where D = C\(�1, 0]

(c) u(x, y) = ex cos y

4. Prove that the harmonic conjugate v(x, y) =
R
C

�y
x2+y2dx+

x
x2+y2dy of u(x, y) = ln |z|, where

C is the curve from 1 to |z| on the x-axis, and then from |z| to z along a circular arc, is the
✓ of z, by plugging in parametrization of C.

5. Prove that if h(z) = u1(x, y) + iu2(x, y) is harmonic (which means both real functions u1
and u2 are harmonic) on their simply-connected domain D 48, then there are two analytic
functions f(z) and g(z) on D such that

h(z) = f(z) + g(z).

46(a) also holds for general regions D we typically draw on paper, which can be cut into simpler regions of the type
described. Apply the result to each simple region and then add up the answer. Similarly, (b) also holds for general
regions D. The full Green’s Theorem is obtained by adding up the equalities in (a) and (b). From this process, we
see that Green’s Theorem also holds for regions with holes.

47The formula is v(x, y) =
R
C
�uydx+uxdy, where C is any curve in D from a chosen point z0 2 D to the variable

point (x, y) 2 D.
48So we know there are v1(x, y) and v2(x, y) such that a(z) := u1 + iv1 and b(z) := u2 + iv2 are analytic on D.

Note that u1 = 1/2(a(z) + a(z)) and u2 = 1/2(b(z) + b(z)).
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Lesson 12 Summary

We knew what a harmonic conjugate is back in Lesson 9. However, we left one question open: does
it always exist? Today, we give an answer which depends on the shape of the domain: yes, it does,
if the domain is simply-connected.

Simple-connectedness is a topological notion. The rigorous definition has things to do with
shrinkability of loops in the domain. Intuitively, simple-connectivity means the region doesn’t have
any holes or punctures. Alternatively, it means you can deform your curve freely however you want
within the domain (but if your region is not simply-connected, and if you draw your loop around
a hole or a puncture, then you can not deform it past this hole or puncture). Why do we require
this condition? Because we want to show the harmonic conjugate defined as a line integral does
not depend on the curve by moving any curve to any other through successive little regions over
which we can apply Green’s Theorem.

Here is the BIG theorem we proved today:

Suppose (1) domain D is simply-connected, (2) P and Q are C1 over D, (3) Qx�Py = 0 (people
say Pdx+Qdy is a closed di↵erential form), then if we fix a point A 2 D and let C be any curve
from A to the variable point (x, y) in D, then (1) f(x, y) :=

R
C Pdx+Qdy is well-defined (does not

depend on the curve), and (2) fx = P and fy = Q (thus Pdx+Qdy = fxdx+ fydy, which people
call an exact di↵erential form).

Its corollary gives us the a way to construct harmonic conjugate:

If u is harmonic on simply-connected domain D, then its harmonic conjugate exists on D, and
it can be given by

v(x, y) :=

Z

C
�uydx+ uxdy,

where C is any path in D connecting a chosen point A and the variable point (x, y).

The above holds because we can let P = �uy and Q = ux in v(x, y) :=
R
C Pdx+Qdy, where P

and Q are C1 as u is C2 and Qx�Py = uxx+uyy = 0. Thus, vx = P = �uy and vy = Q = ux, which
are continuous. Therefore, by the Cauchy-Riemann analyticity criterion, v(x, y) as this well-defined
line integral is a harmonic conjugate of u(x, y) as u(x, y) + iv(x, y) is analytic.

However, keep in that simple-connectedness is not a necessary condition. In fact, in Problem
3(b), we can change D from the simply-connected C\(�1, 0] to the region C\{0} with a puncture.
The harmonic conjugate exists in this bigger domain. In fact, v = �y

x2+y2 , which is defined on C\{0}.
You may worry not being able to deform any two curves in C\{0}. Indeed, we cannot: a curve
wrapping around 0 once cannot be deformed to a curve wrapping around 0 twice. However, once
a curve goes around 0 a complete turn, the line integral

R
C �uydx + uxdy is 0, as you can verify

(which was a homework problem in Math 211, or you can find it in the textbook by Stewart.) So
even though we can’t deform any two curves, after cancelling extra turning of one curve compared
to the other, the two line integrals are still the same, demonstrating the well-definedness of v(x, y)
as a line integral.



28

Lesson 13 The mean value property of harmonic functions

1. Find the value of the following integrals. Note that both integrals are average values of
harmonic functions over circles, so there is no point in actually evaluating these integrals,
if it is even doable. Using the Mean Value Property is so much faster.

(a)
R 2⇡
0 ecos ✓ cos(sin ✓) d✓2⇡

(b)
R 2⇡
0 ecos ✓ sin(1 + sin ✓) d✓2⇡

2. Now it’s your turn. Write down a really complicated integral with respect to ✓ for which
those who doesn’t know the mean value property of harmonic functions would be intimi-
dated and have no idea how to evaluate, but you know its answer.

3. Now, let’s use what we learned in dimension 2 to do dimensionality reduction strike on the 1-
dimensional case in this and the next problem. Consider a continuous function u : [a, b] ! R.
Let (x0 � ⇢, x0 + ⇢) ✓ (a, b). For any 0 < r < ⇢, we define the average value A(r) of u over
the boundary of the interval [x0 � r, x0 + r] as follows

A(r) =
u(x0 + r) + u(x0 � r)

2
.

Prove that
lim
r!0

A(r) = u(x0).

4. Consider the same function above, but we also assume that u is harmonic, which simply
means u is C2 and uxx = 0 over an open interval containing [a, b]. Prove that d

drA(r) = 0
so as to conclude that A(r) = u(x0), just like what we did in class49. Thus, the mean value
property also holds for 1-dimensional harmonic functions.

5. In this last problem, we will see that the mean value property also holds in dimension 3. Let
u : R3

! R be harmonic, i.e., u is C2 and uxx + uyy + uzz = 0. Without loss of generality,
for any r > 0, consider the sphere centered at the origin with radius r: @Br. Define the
average value of u over @Br as

A(r) =
1

4⇡r2

ZZ

@Br

udS,

where 4⇡r2 is the total area of @Br and this integral is the surface integral of scalar func-
tion u over the sphere. Using spherical coordinates x = r sin� cos ✓, y = r sin� sin ✓
and z = r cos�, where r is fixed, 0  ✓  2⇡ and 0  �  ⇡, we see that A(r) =
1

4⇡r2
R 2⇡
0

R ⇡
0 u(x, y, z)r2 sin�d�d✓ = 1

4⇡

R 2⇡
0

R ⇡
0 u(x, y, z) sin�d�d✓. It can be seen again as

we did in lower dimensions that limr!0A(r) = u(0, 0, 0). Show that d
drA(r) = 0 so as to

conclude that A(r) = u(0, 0, 0) for any r > 0.50

49 d
drA(r) = 1

2 (ux(x0 + r) � ux(x0 � r)) using interchanging finite sum with derivative and the chain rule. Then

by the Fundamental Theorem of calculus (the 1D version of Green’s Theorem), this expression is 1
2

R x0+r

x0�r
uxxdx.

50By interchanging derivative with integral, we have d
drA(r) = 1

4⇡

R 2⇡

0

R ⇡

0
ur(x, y, z) sin�d�d✓, which by the chain

rule is 1
4⇡

R 2⇡

0

R ⇡

0
(ux sin� cos ✓ + uy sin� sin ✓ + uz cos�) sin�d�d✓. Adding r

2 in front of sin�d�d✓ to get back dS

and noticing that hsin� cos ✓, sin� sin ✓, cos�i is the unit normal vector ~n to the surface, we see that this integral is
1

4⇡r2

RR
@Br

hux, uy, uzi · d
~S (recall d~S = ~ndS), which by the divergence theorem, is 1

4⇡r2

RR
@Br

uxx + uyy + uzzdV .
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Lesson 13 Summary

The average value of a continuous function u : D ! R over a circle contained in any open disk in
its domain is the line integral of the function over this circle with respect to arc length divided by
the length of this circle. After parametrizing the circle using angle ✓, it can also be written as an
integral with respect to ✓, divided by the total angle turn 2⇡. As u is continuous, the average value
function is continuous with respect to the radius of the circle, and it converges to the function’s
value at the center of the circle.

Surprisingly, for a harmonic function, this average value is independent of the radius of the circle.
Thus, by the last sentence in the previous paragraph, this common average value is the function’s
value at the center of the circle. This is called the mean value property. In class, we proved that
harmonic functions have this mean value property by showing that the derivative of the average
value with respect to radius is 0. Things we used are the chain rule, the rewriting of the integral
with respect to ✓ as a line integral of a vector field, and then lastly, the Green’s Theorem at which
point the Laplace equation was finally used to show the value 0.

When we proved the mean value property for harmonic functions in class, we interchanged
derivative with integral. Now let’s justify it: prove that if f(r, ✓) is continuous and fr(r, ✓) exists
and is continuous so that the following Riemann integrals make sense, then

d

dr

Z b

a
f(r, ✓)d✓ =

Z b

a
fr(r, ✓)d✓.

Proof. We will show that lim
s!r

R b
a f(s, ✓)d✓ �

R b
a f(r, ✓)d✓

s� r
=

Z b

a
fr(r, ✓)d✓ and we focus on a closed

rectangle [r� l, r+ l]⇥ [a, b] contained in the domain of fr(r, ✓). Let ✏ > 0. As fr is continuous, and
[r � l, r + l]⇥ [a, b] is compact, fr is uniformly continuous, which means, responding to ✏

b�a , there
is � > 0 such that whenever |r0 � r| < � and for any ✓ 2 [a, b], we have |fr(r0, ✓) � fr(r, ✓)| <

✏
b�a .

Now, for all s 2 [r � l, r + l] and s 6= r,

R b
a f(s, ✓)d✓ �

R b
a f(r, ✓)d✓

s� r
=

Z b

a

f(s, ✓)� f(r, ✓)

s� r
d✓, which

is
R b
a f(s(✓), ✓)d✓ for some s(✓) between s and r by the Mean Value Theorem. Thus, if 0 < |s�r| <

�, then |s(✓) � r| < �, whence

����

R b
a f(s, ✓)d✓ �

R b
a f(r, ✓)d✓

s� r
�

Z b

a
fr(r, ✓)d✓

���� =

����
Z b

a
fr(s(✓), ✓) �

fr(r, ✓)d✓

���� 
Z b

a
|fr(s(✓), ✓)� fr(r, ✓)|d✓ <

Z b

a

✏

b� a
d✓ = ✏. ⇤

It’s even more surprising that the converse is also true: if a continuous function on a domain
satisfies the mean value property, without further assumption, it turns out that the function is
harmonic. In the next lesson, we will sketch a proof after we learn a consequence of the mean value
property: the maximum principle.
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Lesson 14 The maximum principle from the mean value property

1. Let’s prove the following corollary to the real version of the maximum principle again: Let
u : D [ @D ! R be continuous on D [ @D and harmonic on the bounded D. Then if
a  u  b on @D, then a  u  b on D as well.

2. Suppose u : D [ @D ! R is continuous and satisfies the mean value property on D. On
the other hand, someone found a continuous function g : D [ @D ! R which is harmonic
on the bounded D and agrees with u on @D. Show that u is actually g on D. 51. This is
the method used to show the the mean value property implies harmonicity. See the lesson
summary for more details.

3. Consider the function f(z) = z14 + 1 over the closed disk |z|  1. Find the maximal value
of |f |. 52 At what points is this maximum value attained?

4. Let f(z) be analytic on its domain D. Assume that f is never zero on D. 53

(a) Prove that if |f(z)| attains its minimum on D, then f(z) is a constant on D.

(b) Prove that if D is bounded and f extends to be a continuous function on D[@D, then
|f(z)| attains its minimum on @D.

5. The celebrated Fundamental Theorem of Algebra states: Let p(z) be a polynomial of degree
n � 1, i.e., p(z) = anzn + an�1zn�1 + · · ·+ a1z + a0, for some an, · · · , a0 2 C where n � 1
and an 6= 0. Then there must be z0 2 C such that p(z0) = 0. Now we can prove it as follows:

For the sake of contradiction, suppose p(z) 6= 0 everywhere on C. Thus, 1
p(z) is analytic

on C and note that | 1
p(0) | > 0. On the other hand, limz!1

1
p(z) = limz!1

1
zn

an+an�1
1
z+···+ a0

zn
=

0
an+0+···+0 = 0.

(a) Show that54, there is R > 0, such that for any z on the circle |z| = R, | 1
p(z) | < |

1
p(0) |.

(b) Show that the above result contradicts the maximum principle for 1
p(z) over the disk

|z|  R.

Remark: We will prove the Fundamental Theorem of Algebra again (and again), when-
ever we learn any relevant new technique.

51Consider u� g, which satisfies the mean value property, and thus the maximum principle. Note that, over @D,
0  u� g = 0. We can use Problem 1 now.

52Note that as f is analytic, it’s harmonic. By the maximum principle, the maximum modulus occurs on the
boundary of the domain. Also draw a picture to help us think.

53Consider the function 1
f(z) instead, and note that the max of | 1

f(z) | is attained when the min of |f(z)| happens

at the same point. So we can use the maximum principles.
54As in calculus, limz!1 f(z) = L means for any ✏ > 0, there is R > 0 such that whenever |z| � R, |f(z)�L| < ✏.

In this problem, we can let ✏ = |
1

p(0) |, L = 0 and only consider |z| = R and never mind |z| > R.
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Lesson 14 Summary

Today’s class is a direct follow-up to the last one. Last time, we learned that harmonic functions
satisfy the mean value property (MVP). Today, we show that the MVP implies the maximum
principle (MP).

We proved four MPs in class. Two for real, two for complex; two for open domain, two for
bounded domain with its boundary.

The open versions say, if a harmonic function (or its modulus) attains its maximum somewhere in
D, then this function is constant. The complex version of this follows from the real version by doing
a rotation through angle ei✓ so that at the maximum value of |f(z0)| = M , e�i✓f(z0) = |f(z0)| = M
and then showing the real part of e�i✓f(z) is M while the imaginary part is 0. The proof of the
real version uses the connectedness of D. Write D = {z 2 D

��f(z) = M}[ {z 2 D
��f(z) < M}. The

latter set is automatically open as it can be written as the inverse image of the open set (�1,M)
by the continuous function f . The former set can also be shown to be open by using the mean
value theorem and continuity of f to show it contains open disks (on which the value of f is M).
As the former set is nonempty, it has to be the whole of D, and thus f is constant.

The version for bounded domain with its boundary follows from the above open version, using
the fact that continuous functions attains maxima over its closed and bounded (and thus compact)
domain D [ @D. If the maximum occurs on @D, then we are done. If the maximum occurs in D,
then the function (or its modulus) is a constant over D and thus over D [ @D, so the maximum
occurs on the boundary. In both cases, maximum occurs on @D.

The maximum principle is very useful in that we can say something about the function over the
entire domain if we only know some information over its boundary. As one application, we sketch
a proof of the following, which is the converse of what we proved in Lesson 13:

If u : D ! R is continuous and satisfies the mean value property, then u is harmonic on D.

Proof. As D is open, at any point, there is a little open disk centered at this point which is con-
tained in D. We can choose a smaller disk centered at the same point but with a smaller radius
such that the closed disk is contained in D. Thus, D is the union of the interior of these closed
disks. Over each such closed disk D, it’s a fact that one can construct a continuous function g
(to be described below) which is harmonic inside D such that g = u over @D. As g is harmonic,
it satisfies the mean value property. Thus, u � g satisfies the mean value property, and thus the
maximum principle. By Problem 2, as u � g = 0 on @D, u � g = 0 on D. Therefore, u is the
harmonic g inside the open disk D. So u is harmonic on D.

Such g can be realized as an integral with the Poisson kernel (See Problem 5 of Lesson 1). Over

|z| < 1, let Pr(✓) = 1 + z
1�z + z

1�z = 1�|z|2
|1�z|2 = 1�r2

1+r2�2r cos ✓ , where z = rei✓. Then define

g(z) =

Z ⇡

�⇡
u(ei')Pr(✓ � ')

d'

2⇡
.

It can be shown (and it is in a later chapter of the textbook, which we will not have the energy to
cover) that g is harmonic on |z| < 1 and extends to be the continuous u on |z| = 1. ⇤

In dimension 1, such a g(x) can be taken to be a linear function g(x) = ax+ b. Indeed, any 1D
harmonic function is a linear function.
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Lesson 15 Complex Line Integrals

1. Let � be the counterclockwise oriented piecewise smooth boundary curve of the compact
region D. Prove55 that Z

�
zdz = 2iArea(D).

2. For the same � above, prove that
Z

�
zdz = 0.

3. Use the parameterization CR : z(t) = Reit, t : 0 ! 2⇡ to show that56 57

Z

CR

zndz =

⇢
0 if n 6= �1
2⇡i if n = �1

4. Let P (z) = amzm+· · ·+a1z+a0 be a polynomial of degreem and Q(z) = bnzn+· · ·+b1z+b0
a polynomial of degree n. Let �R be the upper half of the circle centered at 0 with radius
R. Use the ML-estimate to how that58����

Z

�R

P (z)

Q(z)
dz

���� < ⇡2 |am|

|bn|
Rm�n+1

if R is big enough. Feel free to use the fact59 that there is some R > 0, such that whenever
|z| � R, we have |P (z)| < 3

2 |am||z|m and |Q(z)| > 1
2 |bn||z|

n.

5. For the same �R above, it is quite straightforward to see that
R
�R

|eiz||dz| < ⇡R. How-
ever, this is not very useful. Instead, the following sharper version can be used to showR1
0

sinx
x dx = ⇡

2 , something which was perhaps left unanswered in single variable calculus,
but we will get to later in the course. Prove this inequality. 60

Z

�R

|eiz||dz| < ⇡

55Write the complex line integral
R
�
(u + iv)dz in the form

R
�
udx � vdy + i

R
�
vdx + udy and then use Green’s

Theorem to both the real part and imaginary part.
56After studying Lesson 16, you will get this result within a split second.
57The whole theory of complex residue is partially built on this result.
58Note that if n � m+ 2, i.e., the degree of the denominator is at least 2 higher than that of the numerator, we

see that lim
R!1

Z

�R

P (z)
Q(z)

dz = 0. This is quite a useful result, as we shall see in future.

59Here is a proof of these two facts: As lim
z!1

P (z)
zm

= lim
z!1

am + am�1/z + · · · + a0/z
m = am, letting ✏ = |am|/2,

we know that there is R1 > 0 such that if |z| � R1, then |
P (z)
zm � am| <

|am|
2 . Whence, |P (z)

zm | = |
P (z)
zm � am + am| 

|
P (z)
zm � am| + |am| <

3
2 |am| and thus |P (z)| < 3

2 |am||z|
m. Similarly, there is R2 > 0, such that if |z| � R2, then

|
Q(z)
zn � bn| <

|bn|
2 , whence |

Q(z)
zn | = |bn + Q(z)

zn � bn| � |bn|� |
Q(z)
zn � bn| >

|bn|
2 , and thus |Q(z)| > 1

2 |bn||z|
n. To make

both equalities hold, we can let R = max{R1, R2}.
60Its whole proof is on Page 216 of the textbook. Feel free to lift it from there. This inequality even has a name:

Jordan’s Lemma.
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Lesson 15 Summary

Complex line integral
R
� f(z)dz is also defined as the limit of a Riemann sum

lim
n!1

nX

i=1

f(z⇤i )�z,

for any continuous f(z) over piecewise smooth curve � on the complex plane. Using�z = �x+i�y,
and f = u+ iv, we can write the the complex line integral as two real line integrals in the form of
a complex number: Z

�
udx� vdy + i

Z

�
vdx+ udy,

which is useful for proving theorems, as we saw in Problems 1 and 2, and will see in Cauchy’s
Theorem starting from Lesson 17. On the other hand, if we parameterize the curve � by z(t) =
x(t) + iy(t), t : a ! b, then the line integral becomes

Z b

a
f(z(t))z0(t)dt,

which is useful in calculations. In future applications, it is quite useful to have an estimate of
how big (in terms of modulus/length) the complex line integral is. This is where the ML-estimate
comes handy:

We proved the ML-estimate formula for complex line integrals:

|

Z

�
f(z)dz| 

Z

�
|f(z)||dz|  ML,

if |f(z)|  M for all z on � and L =
R
� |dz| is the length of �. This is very useful to show certain

integrals are zero when we study contour integrals in Chapter VII. The first inequality is called the
triangle inequality for complex line integrals. The following was used to show its validity, where we
can let wn =

Pn
i=1 f(z

⇤
i )�z and bn =

Pn
i=1 |f(z

⇤
i )||�z|.

Proposition. Let bn, n � 1 be a sequence of real numbers converging to b0.
61 Let wn, n � 1

be a sequence of complex numbers converging to w0.
62 Then if |wn|  bn for all n, then |w0|  b0.

63

Proof. Let ✏ > 0, however small it is. We will show that |w0| < ✏+b0 so as to demonstrate |w0|  b0.

(If |w0| > b0, then ✏ := |w0|�b0
2 satisfies |w0| > ✏+ b0 for this particular ✏, contradicting |w0| < ✏+ b0

for all ✏.)
To see why |w0| < ✏+ b0 is true, we use the two convergence assumptions:
(1) As wn ! w0, there is N1 2 N responding to ✏

2 such that |wn � w0| <
✏
2 if n � N1.

(2) As bn ! b0, there is N2 2 N responding to ✏
2 such that |bn � b0| <

✏
2 if n � N2.

Therefore, letting N = max{N1, N2}, if n � N , then n � N1 and n � N2. Thus, |w0| =
|w0�wn+wn|  |w0�wn|+ |wn|  |w0�wn|+ bn  |wn�w0|+ |bn| = |wn�w0|+ |bn� b0+ b0| 
|wn � w0|+ |bn � b0|+ |b0| <

✏
2 + ✏

2 + |b0| = ✏+ |b0|. ⇤

61This means for any ✏ > 0, there is N 2 N such that for all n � N , |bn � b0| < ✏.
62The definition of convergence of a sequence of complex numbers is the same as that for the real: simply replace

absolute value by length. So this means for any ✏ > 0, there is N 2 N such that for all n � N , |wn � w0| < ✏.
63Geometrically, this means if each wn is inside the disk centered at the origin with radius bn, then the limit of

wn is inside the disk with the limit radius.
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Lesson 16 Fundamental Theorem of Calculus for analytic functions

1. In Multivariable Calculus, the 2D Fundamental Theorem of Line Integral says that for any
piecewise smooth curve � from point A to point B and real continuous conservative vector
field rf = hfx, fyi, we have

R
� rf · d~r = f(B)� f(A), which can also be written

Z

�
fxdx+ fydy = f(B)� f(A).

In class, we used the following vector version of this theorem for complex functions F (z).
However straightforward it it, prove64 this vector version from the real version.

Z

�
Fxdx+ Fydy = F (B)� F (A).

2. Calculate65 the following complex line integrals, where � is any piecewise smooth curve on
the right-half plane from �i to i.

(a)

Z

�
zez

2
dz

(b)

Z

�
cos zdz

(c)

Z

�
Logzdz

3. In (c) of Problem 2, what would the answer be if the branch cut of Logz is along the positive
x axis and � still goes from �i to i, but on the left-half plane.

4. Consider the following complex line integral, where � is the counterclockwise oriented arc
from �i

p
3 on i

p
3 on the circle |z � 1| = 2, and the square root is the principal branch.

Z

�

1
p
z � 1

dz

(a) Evaluate this line integral by plugging in a parametrization of �. 66

(b) Evaluate this line integral by using the fundamental theorem of calculus.

5. Let f = u + iv and F = U + iV be analytic functions on their common simply-connected
domain. Assume F 0(z) = f(z). Write both U and V as real line integrals in terms of u and
v. 67

64Write F (z) = U + iV , and then apply the FTLI to the real and imaginary parts of
R
�
Fxdx+ Fydy.

65Note that the antiderivatives of the integrands are 1
2e

z2 , sin z and zLogz � z, respectively.
66Let z = 1 + 2ei✓, where ✓ : � 2⇡

3 !
2⇡
3 .

67The answer is in the proof of the second part of FTC we did in class.
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Lesson 16 Summary

The Fundamental Theorem of Calculus (FTC) also holds for complex (analytic) functions. Same
as the real version, there are also two parts. The first part says, if F is an antiderivative of the
continuous f = u+ iv, i.e., F 0(z) = f(z), then

R
� f(z)dz = F (B)� F (A), where � is any piecewise

smooth curve in the domain of f(z) from point A to point B. The proof is quite straightforward,
relying on the Fundamental Theorem of Line Integrals (FTLI). Indeed, writing dz = dx + idy,
and using f(z) = F 0(z) = Fx = 1

iFy (taking the complex derivative along the x and iy directions,
respectively),

R
� f(z)dz =

R
� fdx+

R
� ifdy =

R
� Fxdx+ Fydy, which by the complex version of the

FTLI, that you proved Problem 1, is F (B)� F (A).

This part of the fundamental theorem is very useful, as the answer only depends on the end
points B and A of the curve �, which we substitute into the antiderivative F (z). However, a natu-
ral question is if F (z) always exists, and if it does, how to find it. Even though F (z) doesn’t always
exist (for example, consider 1/z over C\{0}, whose antiderivative is a branch of logz, that is only
defined on a slit plane.), if we only consider domain that is simply-connected, then F = U + iV
always exists. This is the second part of the FTC. In class, fixing z0 in the domain, we defined
U :=

R
� udx� vdy for any curve � from z0 to the variable point z, which is well-defined by Green’s

Theorem: if we deform � to another curve �0, then the line integral over the region bounded by ���0

is of (�v)x�uy, which by a Cauchy-Riemann equation, is 0, and thus this integral is independent of
the curve. Furthermore, we have Ux = u and Uy = �v. Then it follows that Uxx+Uyy = ux�vy = 0,
by the other equation of the Cauchy-Riemann equations. So U is harmonic. By what we learned
in Lesson 12, as the domain is simply-connected, its harmonic conjugate V exists and is given by
V =

R
� �Uydx+Uxdy, which is

R
� vdx+udy, and we have Vx = v, Vy = u. Therefore, F := U + iV

is analytic, and we see that F 0(z) = Fx = Ux+ iVx = u+ iv = f . This F is unique up to a constant.
This can be proved using a theorem we saw in Lesson 7: Suppose G is another antiderivative, then
(F �G)0(z) = F 0(z)�G0(z) = f � f = 0. As the domain is connected, we know F �G has to be a
constant C. Thus, G = F + C.

Writing U+iV =
R
� udx�vdy+i

R
� vdx+udy, we see that F (z) =

R
�(u+iv)d(x+iy) =

R
� f(z)dz.

So while both the real and imaginary parts of F can be expressed as real line integrals, F itself can
be written as a complex line integral, whose form is easier to remember. In fact, we can start from
this complex line integral, and then recover the formula for U and V by multiplying all the terms
out. This is what we will do in Lesson 17, to prove Cauchy’s Theorem, the cornerstone of complex
analysis, out of which almost all important results grow.



36

Lesson 17 Cauchy’s Theorem

1. Use Cauchy’s Theorem, but not the Cauchy’s Integral Formula to prove that

1

2⇡i

Z

�

1

w � z
dw = 1

as long as � is any smooth simple closed curve winding around the point z counterclockwise
once. 68

2. From Cauchy’s Integral Formula

f(z0) =
1

2⇡i

Z

@D

f(z)

z � z0
dz,

prove69 the Mean Value Property for Analytic Functions70: Let the disk |z � z0|  r be
contained in the domain of the analytic function f(z). Then

f(z0) =

Z 2⇡

0
f(z0 + rei✓)

d✓

2⇡
.

3. Find the value of the following complex line integrals, using either the Cauchy’s Integral
Formula (carefully identify f(z) and z � z0 of the integrand.) or Cauchy’s Theorem (some
of the integrals is just zero).

(a)

Z

|z|=2

z2023

z � i
dz (b)

Z

|z|= 1
2

z2023

z � i
dz (c)

Z

|z|=1

cos z

z
dz

4. Now let’s prove the Fundamental Theorem of Algebra a second time: Let p(z) = anzn +
an�1zn�1 + · · ·+ a1z + a0 be a polynomial of degree n � 1. Then there is z0 2 C such that
p(z0) = 0.

(a) As p(z) is of degree at least 1, we know p(z) = zq(z)+a0 where q(z) = anzn�1+ · · ·+a1
is also a polynomial. Verify that 1

z = q(z)
p(z) +

a0
zp(z) .

(b) Prove that if p(z) is never 0 on C, and thus q(z)
p(z) , as a rational function with non-

vanishing denominator, is analytic on C, then by integrating both sides of the above
equality over a circle of radius R and then letting R ! 1, we have 2⇡i = 0. 71

5. Let D be a bounded domain with piecewise smooth @D. Suppose f(z) is analytic on a
region containing D [ @D. Prove72 that

maxz2@D|z � f(z)| �
2Area(D)

Length(@D)
.

68Apply Cauchy’s Theorem to the region bounded by � and a small circle centered at z to show that the above
integral is the same as that over this small circle, which can be evaluated by substituting a parametrization, just like
Problem 3 of Lesson 15.

69Let your curve be the boundary circle of this disk.
70Taking the real or the imaginary part, we get the Mean Value Property for real harmonic functions.
71Footnote 4 of Lesson 15 is useful.
72Consider applying the ML-estimate to the integral

R
@D

z � f(z)dz. Problem 1 of Lesson 15 is also useful.
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Lesson 17 Summary

Cauchy’s Theorem in complex analysis is the cornerstone of complex analysis. However, its proof is
surprisingly simple: just use Green’s Theorem twice, once to the real part of

R
@D f(z)dz and once

to its imaginary part. Nonetheless, we need to check the assumption carefully: f(z) is analytic
in D and extends smoothly to the boundary @D, i.e., f is C1 over D [ @D in addition to being
analytic inside the open D. The C1 part is to make sure after taking the partial derivatives in the
application of Green’s Theorem, those partial derivatives are continuous on D[@D, and thus as we
get close to the edge @D in the double integral, the integral is guaranteed to make sense. Note that
Cauchy’s Theorem is actually quite subtle, due to such continuity issues and some unexpected wild-
ness of @D. Our textbook handled it well: our analytic function f(z) are defined to have continuous
f 0(z) and @D is assumed to be piecewise smooth. Later, we will see that by Goursat’s Theorem,
continuity actually follows from existence of derivative, but without the continuity assumption, the
treatment in the proof of Cauchy’s Theorem would be quite discouraging to newcomers. Cauchy’s
Theorem also holds for D with rather strange @D, but such exotic situation is better left to your
future endeavor.

Anyway, the proof of Cauchy’s Theorem is here:
R
@D f(z)dz =

R
@D(u+iv)(dx+idy) =

R
@D udx�

vdy+ i
R
@D vdx+udy =

RR
D �vx�uydA+ i

RR
D ux� vydA = 0, by the two Cauchy-Riemann equa-

tions.

Cauchy’s Theorem has many important consequences. The most direct one is the Cauchy’s In-
tegral Formula: f(z0) =

1
2⇡i

R
@D

f(z)
z�z0

dz, which is proved by excising a small disk B centered at z0

contained in D and then applying Cauchy’s Theorem to f(z)
z�z0

over the region with a new hole. Such

things were done merely to show that the integral
R
@D

f(z)
z�z0

dz can be changed to
R
@B

f(z)
z�z0

dz over
the boundary of B, which is something we are able to handle concretely as @B can be described
precisely using a parametrization. Here, the textbook used the Mean Value Property to show that
this integral is 2⇡if(z0) and thus concluded the proof. During class, we used a characterization of
analytic function: f(z) = f(z0)+f 0(z0)(z�z0)+ ✏(z)(z�z0) instead, just to present an alternative
treatment, and also to preview a technique to be used in the proof of Goursat’s Theorem in Lesson
20.

Conversely, you proved in your homework that the Mean Value Property can actually be proved
using the Cauchy’s Integral Formula.
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Lesson 18 Cauchy’s Integral Formulas

1. We relied on the following fact when we proved Cauchy’s Integral Formulas for f (m)(z0) in
class today:
If lim

z!z0
g(w, z) = g(w, z0) uniformly for w 2 @D (i.e., for any ✏ > 0, there is � > 0 such that if 0 <

|z�z0| < �, then |g(w, z)�g(w, z0)| < ✏ for all w 2 @D), then lim
z!z0

Z

@D
g(w, z)dw =

Z

@D
g(w, z0)dw.

Prove it. 73

2. As a review of the techniques used in the proof of the Cauchy’s Integral Formulas, let’s
prove this special version when m = 1. Show that if f is analytic on D and C1 on D [ @D,
then

f 0(z0) =
1

2⇡i

Z

@D

f(w)

(w � z0)2
dw,

where f 0(z0) is defined as lim
z!z0

f(z)� f(z0)

z � z0
and f(z) and f(z0) satisfy the 0th order

Cauchy’s Integral Formula f(z) = 1
2⇡i

R
@D

f(w)
w�z dw.

3. In this problem, let’s practice using the Cauchy’s Integral Formulas by calculating the fol-
lowing integrals.

(a)

Z

|z|=2

ez

(z � 1)2023
dz (b)

Z

|z|=2

ez

(z � 1)(z � 2023)
dz (c)

Z

|z|=2

ez

(z � 1)2(z � 2023)
dz

4. Use Cauchy’s Integral Formula to calculate the following integral. Note that, as the circle
encloses two zeros of the denominator, we can draw two little circles inside the big one and
then use Cauchy’s Theorem to show this integral is the same as the sum of the two over
these new circles. Z

|z�3|=2

Logz

(z � 2)2(z � 4)2
dz.

5. Calculate the following integral. Of course, its answer depends on where a and b are. So
we consider the following cases. 74

1

2⇡i

Z

|z|=1

1

(z � a)(z � b)
dz

(a) if both a and b are outside of |z| = 1.

(b) if a is outside of |z| = 1 and b is inside of |z| = 1.

(c) if a is inside of |z| = 1 and b is outside of |z| = 1.

(d) if both a and b are inside of |z| = 1.

73We are proving a limit statement. So let ✏ > 0. And consider ✏
L where L is the length of @D. Then produce a

� responding to ✏
L , such that if 0 < |z � z0| < �, then |g(w, z) � g(w, z0)| < ✏

L . After that, use the ML-estimate to
show |

R
@D

g(w, z)dw �
R
@D

g(w, z0)dw| < ✏. In the summary, we will show that why the convergence is uniform in

the proof of Cauchy’s Integral Formulas.
74It is out of the question to consider the cases when a or b is on |z| = 1, as in this case, the integral diverges.
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Lesson 18 Summary

The Cauchy’s Integral Formula we proved in Lesson 17 expresses f(z) as an integral of a related
function over a curve (of one or more components) circling around z:

f(z) =
1

2⇡i

Z

@D

f(w)

w � z
dw

OK. We just opened the Pandora’s box. It turns out that once we can express the 0th order
derivative of f(z) as an integral, we can do the same for all orders. We just knocked down the first
block of a domino chain. Then blocks fall down forever:

f (m)(z) =
m!

2⇡i

Z

@D

f(w)

(w � z)m+1
dw

You see. Derivative is integral. It only holds in the fairy tale of complex analysis.

These integral formulas show that once f is analytic, its derivatives of all orders exist. (Wow.)
As f (m)(z) is continuous if f (m+1)(z) exists, f (m�1)(z) is analytic. So the derivatives of f of all
orders are analytic. It also follows that if u is real harmonic, then u is C1 by finding a local
harmonic conjugate v of u and then pass the C1 property of f = u+ iv to u. In Lesson 19, we will
see a class of applications, which boils down to an estimation of |f (m)(z)| using the ML-estimate.
(So we are estimating the modulus of derivative actually using the good estimation property of
integrals. This is what makes complex analysis so powerful and special.)

When we proved the above formula, we used Problem 1 and the fact that the function g(w, z) in
the integral does converge uniformly for w 2 @D. The latter indeed is the case because g(w, z) is
jointly continuous in w and z and w is over @D, which is both closed and bounded, and thus com-
pact. Using this continuity and compactness condition, let’s prove that limz!z0 g(w, z) = g(w, z0)
uniformly given that limz!z0 g(w, z) = g(w, z0) pointwise.

Proof. Let ✏ > 0. As g(w, z) is jointly continuous in w and z, for any w 2 @D, there are �1w > 0
and �2w > 0 such that if |w0

� w| < �1w and |z � z0| < �2w, we have |g(w0, z)� g(w, z0)| < ✏/2. In
particular, |g(w0, z)� g(w0, z0)| = |g(w0, z)� g(w, z0)+ g(w, z0)� g(w0, z0)|  |g(w0, z)� g(w, z0)|+
|g(w, z0) � g(w0, z0)| < ✏/2 + ✏/2 = ✏ if |w0

� w| < �1w and |z � z0| < �2w. Consider the open
disks Bw = {w0

2 C
��|w0

� w| < �1w}, whose union as w exhausts points in @D covers @D, which
means [w2@DBw ◆ @D. As @D is compact, finitely many of these disks cover @D. Say these
disks are Bw1 , Bw2 , · · · , BwN . Then let � := min{�2w1 , �2w2 , · · · , �2wN }, which is > 0. Finally, if
0 < |z � z0| < �, then for any w 2 @D, w is contained in some Bwi , and we have |z � z0| < �2wi .
Therefore, |g(w, z)� g(w, z0)| < ✏. ⇤

In the induction proof of the formula for f (m)(z),

g(w, z) =
1

z � z0

✓
f(w)

(w � z)m
�

f(w)

(w � z0)m

◆
=

f(w)
Pm�1

i=0 (w � z)i(w � z0)m�1�i

(w � z)m(w � z0)m
,

which is jointly continuous in w and z, as this is the product of a rational function and a continuous
function.
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Lesson 19 Cauchy’s Estimate and Liouville’s Theorem

1. In class, we proved the Fundamental Theorem of Algebra (FTA) a third time, using Liou-
ville’s Theorem. In this problem, as a review, state and prove FTA using Liouville again.

————————————————————————————————————————

In the next three problems. We will apply Liouville’s Theorem to (entire) functions which
are not necessarily bounded, but turn out to be constant anyway.

2. Prove that if u is real harmonic on C and u is bounded above, then u is a constant. 75

3. Prove that if f : C ! C is analytic and Imf(z) > 0 for all z 2 C, then f is a constant. 76

4. Prove that if f : C ! C is analytic and there is a disk |z � z0| < r such that f maps C to
the outside of this disk, then f is a constant. 77

————————————————————————————————————————

Now we come back to (a variant of) Cauchy’s Estimate itself.

5. The reason that a bounded entire function f(z) is constant is f 0(z) = 0 for all z 2 C,
because it leads to f(z) = C, a polynomial of degree 0, as we did in Lesson 7. Similar result
holds when higher order derivatives vanish.

(a) Let f be an entire function (the domain of f is the entire C and f is analytic on it).
Prove that if f (n+1)(z) = 0 for all z 2 C, then f(z) is a polynomial of degree less than
or equal to n. 78

(b) Suppose f is an entire function and there is M > 0 such that |f(z)|  M |zn| on C,
show that for any z 2 C and any R > 0 satisfying R � |z| (so that if |w� z| = R, then
|w| = |w � z + z|  |w � z|+ |z| = R+ |z|  2R),

|f (n+1)(z)| =

����
(n+ 1)!

2⇡i

Z

|w�z|=R

f(w)

(w � z)n+2
dw

���� 
(n+ 1)!M(2R)n

Rn+1
.

(c) For the same f in (b), conclude that f is a polynomial with degree at most n.

75Find a harmonic conjugate v of u and let g = u+ iv. Then consider f(z) = e
g(z).

76Compose f with the Cayley map g(z) = z�i
z+i . Recall that g is a conformal mapping from the open upper half

plane to open the unit disk.
77What function maps things outside this disk into a disk centered at the origin?
78Start by something like this: as (f (n))0(z) = f

(n+1)(z) = 0 on C, we know f
(n)(z) = an for some an 2 C.

Then, as (f (n�1)(z) � anz)
0 = f

(n)(z) � an = 0, we know f
(n�1)(z) � anz = an�1, i.e., f

(n�1)(z) = anz + an�1 for
some an�1 2 C. Then as ((f (n�2))0(z) � an

2 z
2
� an�1z)

0 = f
(n�1)(z) � anz � an�1 = 0, we know there is an�2 2 C

such that (f (n�2))0(z) � an
2 z

2
� an�1z = an�2... Eventually, f(z) = an

n! z
n +

an�1

(n�1)!z
n�1 + · · · + a1z + a0 for some

a0, a1, · · · , an 2 C.
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Lesson 19 Summary

This lesson is a further application of the Cauchy’s Integral Formulas for the any-order derivatives
of analytic functions as complex line integrals, where we simply let the region be a disk:

f (m)(z) =
m!

2⇡i

Z

|w�z|=R

f(w)

(w � z)m+1
dw

The Cauchy’s Estimate for |f (m)(z)| is obtained by evaluating such formulas over a circle centered
at z by plugging in the usual parameterization w(t) = z0 + Reit where t : 0 ! 2⇡, and then using
the triangle inequality after taking the modulus of this integral. One pair of R is cancelled from
the numerator and denominator, then we get

|f (m)(z)| 
m!M

Rm
,

where M is an upper bound for |f(w)| over |w � z| = R.

With the Cauchy’s Estimate in hand, when m = 1, we can use it to bounded analytic functions
over the entire complex plane to show such functions, called bounded entire functions, must be
constant. This is because as f has a global bound M , then over a circle |w�z| = R with arbitrarily
large radius R, we have |f 0(z)|  M

R . Taking the limit by sending R to 1, we se that |f 0(z)|  0.
Therefore, f 0(z) = 0 on C. Thus, by what we learned in Lesson 7, f is a constant.

In practice, many entire functions are not bounded, but missing some points on the complex
plane, e.g., it maps C to the upper half plane, or outside of some disk. In this case, we can com-
pose our entire function with another function to get a new entire function which is bounded. By
Liouville’s Theorem, this new function is bounded, and then so is our original function. Problems
2, 3, and 4 are of this type.

The method for proving Cauchy’s Estimate can be used to give other variant versions of Cauchy’s
Estimate, which are more useful in certain applications. Problem 5 (b) is such an example.
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Lesson 20 Morera’s Theorem and Goursat’s Theorem

1. State Morera’s Theorem (and read through its proof at least twice).

2. In this problem, we will prove that Morera’s Theorem is quite useful. Let f be analytic on
|z| < 1 and satisfies f(0) = 0. Consider the function

g(z) =

8
><

>:

f(z)

z
if 0 < |z| < 1

f 0(0) if z = 0.

Prove79 that g is analytic on |z| < 1. Feel free to use the following version80 of Cauchy’s Theorem:
If f is analytic on rectangle R and is continuous (we didn’t say C1) on R[@R, then

R
@R f(z)dz = 0.

3. State Goursat’s Theorem (and read through its proof at least three times).

4. The following Cantor’s Intersection Theorem is essential when proving Goursat’s Theo-
rem: if Rn, n 2 N is a sequence of closed rectangles such that Rn+1 ✓ Rn for all n, and
diameter(Rn) ! 0 as n ! 1, then there is a single point z0 2 C such that

1\

n=1

Rn = {z0}.

The “closedness” condition is necessary here. Show that if Rn = (0, 2
n) ⇥ (0, 1

n), i.e., the
Cartesian product of the open intervals (0, 2

n) and (0, 1
n), then

T1
n=1Rn is empty, i.e., there

is no point that is in all these rectangles.

5. Now that we finally see the continuity condition in the definition of analytic functions can
be removed. It took us quite a while. To recall this long journey, write a very short essay
explaining why it is the case that if f 0 exists everywhere on D, then f 0 is continuous on D.
You can start by reviewing the definition of analytic functions, then try to go through the
theorems we learned, before arriving at Goursat’s Theorem.

79On 0 < |z| < 1, f(z)/z is analytic and thus continuous. At 0, you can show that g(z) is continuous by
demonstrating limz!0 g(z) = g(0), i.e., limz!0 f(z)/z = f

0(0), which is just the definition of derivative. So g(z) is
continuous on the entire |z| < 1. To show g(z) is analytic, let R be any rectangle with sides parallel to the coordinate
axes in |z| < 1, and consider

R
@R

g(z)dz. If 0 is not in the interior of the rectangle, as g(z) = f(z)/z which is analytic
on the closed R, this integral must be zero. If 0 is on @R, g(z) is still f(z)/z in the interior of R and thus analytic
there and g is continuous over the closed R. Thus, by the above version of Cauchy’s Theorem, the integral is again
0. Lastly, if 0 is in the interior of R, then we can cut R into four rectangles sharing 0 as one of their vertices. Then
you finish up the proof.

80Here is the idea why this version is true: in the interior of this rectangle R, draw another parallel rectangle
R

0 whose sides are very close to those of R. As f is analytic over R
0
[ @R

0,
R
@R0 f(z)dz = 0. On the other hand,

the original integral
R
@R

f(z)dz is very close to his integral. Actually,
R
@R

f(z)dz can be made arbitrarily close toR
@R0 f(z)dz = 0 by making R

0 su�ciently close to R and also using the continuity of f over the edge of R. This can

be made into a rigorous proof.
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Lesson 20 Summary

Morera’s Theorem was used to prove Goursat’s Theorem. This is the relationship between the two.

Morera’s Theorem can be viewed as a converse to Cauchy’s Theorem. A corollary to Cauchy’s
Theorem says, if f is analytic on D, then for any closed rectangular region R ✓ D, we haveR
@R f(z)dz = 0. This holds because f is analytic on the closed R and of course also C1 on R[ @R.
Morera’s Theorem states that if f is only assumed to be continuous on D, then if

R
@R f(z)dz = 0

for any closed rectangle contained in D, then f is analytic on D. Note that it su�ces to consider
only those R with sides parallel to the coordinate axes. Some textbooks use triangles, which work
equally fine.

Note that analyticity is a local criteron: existence of derivative and its continuity at any point
only depends on the function’s behavior at a neighborhood of this point. The idea of the proof is
that at each open disk centered at z0 and contained in D, construct another function F (z) on this
disk which satisfies F 0(z) = f(z). Since f(z) is assumed to be continuous, then by definition, F (z)
is analytic on this disk. From Lesson 18, we learned that an analytic function’s derivative is also
analytic. So the proof is completed. To construct this F (z), we do F (z) :=

R
� f(⇣)d⇣, where ⇣ is

an L-shaped path first from z0 along the horizontal line to the shadow of z on this line, and then
from this point vertically to z. (Surely, we can also first go vertically, and then horizontally. Just
pick one.) The condition

R
@R f(z)dz = 0 is then used to show F (z+�z)�F (z) =

R
� f(⇣)d⇣ where

� is again an L-shaped path, this time from z to z +�z. The continuity of f is then used to show
F 0(z) = f(z).

Goursat’s Theorem says: if f 0 exists everywhere on D (without assuming f 0 is continuous on
D), then f is analytic. To prove it, note that as f 0 exists, f is continuous. Thus, if we can showR
@R f(z)dz = 0 for each rectangle with sides parallel to the axes, then it follows that f is analytic.
This is where the ingenious part comes in: first, we can use a horizontal line and a vertical line to cut
R into four equals parts, and consider the four line integrals over each of the four parts. Then one
of them has the largest modulus. Thus, |

R
@R f(z)dz| is less than or equal to 4 times this modulus.

Then we cut this quarter rectangle further into four parts, and consider the resultant four line inte-
grals, among which one has the largest modulus. Thus, |

R
@R f(z)dz| is less than or equal to 42 times

this modulus. We continue this n times, and have that |
R
@R f(z)dz|  4n|

R
@Rn

f(z)dz|, where Rn is
the very small rectangle in the nth iteration. This nested sequence of decreasing closed rectangles
contains one and only one point z0 in common. (Google Cantor’s Intersection Theorem.) After
changing |

R
@Rn

f(z)dz| to |
R
@Rn

f(z)�f(z0)�f 0(z0)(z� z0)dz| due to the vanishing of the integral
of the analytic linear function f(z0) + f 0(z0)(z� z0), and applying the ML-estimate, we finally see
that |

R
@R f(z)dz|  4nmaxz2@Rn |✏(z)(z � z0)|

L
2n  4nmaxz2@Rn |✏(z)|

L
2n

L
2n = maxz2@Rn |✏(z)|L

2,
where L is the length of @R, |✏(z)(z � z0)| = |f(z)� f(z0)� f 0(z0)(z � z0)| and ✏(z) goes to 0 as z
goes to z0. Thus, |

R
@R f(z)dz|  0 and so

R
@R f(z)dz = 0.

To recap, two ingredients were essential here. (1) The subdivision of the rectangle to create a
nested sequence of decreasing rectangles over which the integral satisfies an inequality. (2) The use
of the reformulation of the existence of derivative: f(z) = f(z0) + f 0(z0)(z � z0) + ✏(z)(z � z0)

where limz!z0 ✏(z) = 0. This holds because limz!z0
f(z)�f(z0)

z�z0
= f 0(z0) can be rewritten as

limz!z0
f(z)�f(z0)

z�z0
� f 0(z0) = 0 where we let ✏(z) = f(z)�f(z0)

z�z0
� f 0(z0).

It’s interesting to note that, even though this theorem is named after Édouard Goursat, it was
actually discovered by Alfred Pringsheim, who criticized Goursat’s original treatment of this proof.
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Lesson 21 An elegant notation and Pompeiu’s formula

1. Let g(z) = f(z, z) be a C1 function of z = x + iy where f : C2
! C is analytic in each of

its variables. Show that
@

@z
g(z) = D1f(z, z) and

@

@z
g(z) = D2f(z, z),

where D1 means taking partial derivative with respect to its first input and D2 means
taking partial derivative with respect to its second input. Thus, @

@z and @
@z indeed behave

like partial derivatives, as their notations suggest. 81

2. Let f(z) = z2024 + z2023 + 1. Using the above interpretation, calculate @f(z)
@z . Is f(z)

analytic? Explain your answer.

3. Show that ( @2

@x2 + @2

@y2 )f = 4 @
@z

@
@zf = 4 @

@z
@
@zf if f is C2. Use this formula to verify that

ln |z| is harmonic. Note that ln |z| = 1
2 ln zz.

4. Suppose f is C1 on D and z0 = x0 + iy0 2 D. Verify that for z = x+ iy,

fx(z0)(x� x0) + fy(z0)(y � y0) =
@f

@z
(z0)(z � z0) +

@f

@z
(z0)(z � z0).

Now you can read the proof that if f is C1 on D, f 0(z) is non-vanishing, and f is
conformal, then f is analytic on D.82 It’s on Page 126 of our textbook.

5. Let z0 2 C. Show that

z0 =
1

2⇡i

Z

@D

z

z � z0
dz �

1

⇡

ZZ

D

1

z � z0
dA,

where D is a disk containing z0 in its interior.

81I’ll prove the first. You do the second. @
@z g(z) = 1

2
@
@xg(z) + 1

2i
@
@y g(z), which by the usual chain rule

is 1
2 (D1f(z, z) @z

@x + D2f(z, z) @z
@x ) +

1
2i (D1f(z, z) @z

@y + D2f(z, z) @z
@y ) = 1

2 (D1f(z, z) + D2f(z, z)) + 1
2i (D1f(z, z)i +

D2f(z, z)(�i)) = D1f(z, z).
82This was proved in the summary of Lesson 10, without using @f

@z and @f
@z , but the presentation in the book is

more elegant.
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Lesson 21 Summary

Cauchy’s Theorem and Cauchy’s Integral Formula are for analytic functions. What if the functions
are not analytic, but just C1? It turned out that there are the extended Cauchy’s Theorem

Z

@D
f(z)dz = 2i

ZZ

D

@f

@z
dA

and extended Cauchy’s Integral Formula (after Dimitrie Pompeiu):

f(z0) =
1

2⇡i

Z

@D

f(z)

z � z0
dz �

1

⇡

ZZ

D

@f

@z

1

z � z0
dA.

If f is analytic, then @f
@z = 0. Then these two formulas recover Cauchy’s Theorem and Cauchy’s

Integral Formula.
But wait a second? What is @

@z? Let’s go back to the complex derivative. We know if f(z) is

analytic, then f 0(z) = @
@xf = 1

i
@
@yf , because it doesn’t matter along which direction we take the

derivative (so specifically, the derivatives along x and iy are both f 0(z)).

Then taking the average, we have 0 = 1
2(

@
@x + 1

i
@
@y ).

Now we also want to take the derivative of functions which are only C1. Then we define

@

@z
=

1

2
(
@

@x
+

1

i

@

@y
),

which is just the above complex derivative if f is analytic. Symmetrically, we also define

@

@z
=

1

2
(
@

@x
�

1

i

@

@y
).

If f is analytic, as the two parts of @f
@z cancel each other, we know @f

@z = 0. This can also be proved
by writing f = u + iv and using the Cauchy-Riemann equations. Indeed, for C1 functions, by
Cauchy’s Analyticity Criterion, f is analytic if and only if

@f

@z
= 0.

It is so simple!

These two new first order di↵erential operators satisfy all properties you expect them to satisfy.
In particular, as f(z) = f(x+ iy) = f( z+z

2 + i z�z
2i ), we see f can be viewed as a function of the two

variables z and z. As you discovered in Problem 1, @
@z and @

@z behave just like partial derivatives,
which is really convenient.

Lastly, back to Pompeiu’s formula. It can be written in the following more symmetric way, which
perhaps is the way you will find it in research papers.

f(z0) =
1

2⇡i

Z

@D

f(z)

z � z0
dz +

1

2⇡i

ZZ

D

@f

@z

1

z � z0
dz ^ dz.

Here is what dz^dz means without digging much into it. First of all, dz = dx+ idy. dz = dx� idy. Then
^ is a thing which is distributive and kills anything of the form dw^dw, i.e., dw^dw = 0 from which it also
follows that �dy^ dx = dx^ dy. (Proof: 0 = (dx+ dy)^ (dx+ dy) = dx^ dx+ dx^ dy+ dy^ dx+ dy^ dy =
dx^dy+dy^dx.) Thus, dz^dz = (dx+idy)^(dx�idy) = dx^dx+idy^dx�idx^dy�i2dy^dy = �2idx^dy.
You can take it as a definition that dx ^ dy = dxdy = dA, even though in fact, there is a coordinate
transformation process here, which is hidden as the Jacobian determinant of the transformation from x and
y to x and y is 1. Now we see how 1

2⇡i would become �
1
⇡ in the original formula.
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Lesson 22 Sequence and series of functions

1. This problem is about the geometric series
P1

k=0 z
k.

(a) Show that the sequence of terms zn ! 0 pointwise on |z| < 1. 83

(b) Even though we did this in class, prove again that
P1

k=0 z
k = 1

1�z on |z| < 1, and that the

convergence is uniform84 on |z|  R for any 0 < R < 1.

(c) Does the above series converge at z = i, which is on the boundary of |z|  1? Justify your claim.

2. This problem is about the p-series
P1

k=1
1
kp , where p is real.

(a) Use the comparison test85 to show that the harmonic series (when p = 1) diverges.

(b) Use the comparison test86 to show that the p-series diverges when p < 1.

(c) Use the comparison test87 to show that the p-series converges when p > 1.

3. Show that if fn ! f uniformly and each fn is continuous, then f is also continuous. 88

4. Show that if fn ! f uniformly on the piecewise smooth � = @D where D is bounded, thenR
� fn(z)dz !

R
� f(z)dz.

89

5. Consider the famous series90 ⇣(s) =
1X

n=1

1

ns
, where the variable is denoted by s = �+ i⌧ for historical

reasons, and we take the principal branch of Log in the definition of ns.

(a) Recall how ns was defined and show that
�� 1
ns

�� = 1
n� .

(b) Show that for each �0 > 1, ⇣(s) converges uniformly on the half plane Res = � > �0.

(c) Show that for each �0 > 1, ⇣(s) is analytic on the half plane Res = � > �0.

(d) Conclude that ⇣(s) is analytic on the half plane Res = � > 1.

83You may find a useful hint on page 34 of the textbook. Also note that ln a
ln b = logb a, where a, b > 0 and b 6= 1.

84Use the Weierstrass M-test.
85Note that 1

k =
R k+1

k
1
kdx �

R k+1

k
1
xdx and

P1
k=1

R k+1

k
1
xdx =

R1
1

1
xdx = lnx

��1
1
.

86Compare with the harmonic series.
87Note that in this case, for k � 2, 1

kp =
R k

k�1
1
kp dx 

R k

k�1
1
xp dx and

P1
k=2

R k

k�1
1
xp dx =

R1
1

1
xp dx = 1

1�p
1

xp�1

��1
1
.

88This is the classic ✏/3 proof. Its solution is on the back.
89The ML-estimate produces a short proof.
90This is called the Riemann’s zeta function.
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Lesson 22 Summary

A sequence of functions fn is just infinitely many functions, one for each n 2 N. These functions share a
common domain, say D. We say fn converges to the limit f (pointwise), if for each z 2 D, the sequence
of points fn(z) converges to the point f(z), and write fn(z) ! f(z), or limn!1 fn(z) = f(z). Using the
formal language, this means at any z 2 D, for any ✏ > 0, there is N 2 N (which depends on both z and ✏),
such that if n � N , then |fn(z)� f(z)| < ✏. Note that each N depends on z.

However, this notion of convergence is not very useful, as there is no way to pass certain good properties
of fn to f . The following is more useful:

We say the sequence fn converges to f uniformly (versus pointwise), if for any ✏ > 0, there is N 2 N,
which only depends on ✏, such that if n � N , then |fn(z)� f(z)| < ✏ for all z 2 D. Thus, the same N works
for all z! This is why it’s called uniformly convergence. Now we pass good properties of fn to their limit f :
Theorem 1. If fn ! f uniformly and each fn is continuous, then f is also continuous.
Theorem 2. If fn ! f uniformly on � with finite length, then limn!1

R
� fn(z)dz =

R
� limn!1 fn(z)dz.

Theorem 3. If fn ! f uniformly on D and each fn is analytic, then so is f .
Theorem 1 is proved in the end. Theorem 2 can be handled using ML-estimate (that’s why we
require � has finite length). Now let’s prove Theorem 3.

Proof. As each fn is analytic, it is also continuous. By Theorem 1, their uniform limit f is also
continuous. Now let R be a closed rectangle in D with sides parallel to the axes. As fn is analytic,
by Cauchy’s Theorem,

R
@R fn(z)dz = 0. Now by Theorem 2,

R
@R f(z)dz =

R
@R limn!1 fn(z)dz =

limn!1
R
@R fn(z)dz = limn!1 0dz = 0. Therefore, by Morera’s Theorem, f is analytic. ⇤

Recall that a series is just the limit of its sequence of partial sums, so we say
P1

k=1 zk converges
if the sequence sn :=

Pn
k=1 zk = z1+z2+ · · ·+zn converges. When the series

P1
k=1 ak and

P1
k=1 bk

consist of real terms, the following test is very useful. (For example, you used it in Problem 2.)

The Comparison Test. Suppose 0  ak  bk. (1) If
P1

k=1 bk converges, then so does
P1

k=1 ak.
(2) Thus, if

P1
k=1 ak diverges, then so does

P1
k=1 bk.

Series of functions are defined similarly. We say
P1

k=1 fk(z) converges pointwise, if for each z,
the series of numbers

P1
k=1 fk(z) converges. Uniform convergence is defined similarly. There is an

extremely useful test (as in Problem 1, Problem 5 and many times in future), called the Weierstrass
M-test, that can be used to show a series converges uniformly. Its proof depends on the reformula-
tion of convergence of sequence as a Cauchy sequence, in which the limit is not specified, because
we don’t know what it is, which is typically the case.

The Weierstrass M-Test. Suppose Mk are real and
P1

k=1Mk converges. If for each k,
|fk(z)|  Mk for all z, then

P1
k=1 fk(z) converges uniformly.

As promised, now we prove Theorem 1.

Proof. Let ✏ > 0. Let z0 be any point in the common domain of these functions. We will show f
is continuous at z0. First of all, as fk ! f uniformly, responding to ✏

3 , there is N 2 N such that if
n � N , then |fn(z)� f(z)| < ✏

3 for any z in the domain. Fix such an n. Then as fn is continuous
at z0, there is � > 0 responding to ✏

3 , such that for all z in the domain and |z � z0| < �, we have
|fn(z)�fn(z0)| <

✏
3 . Therefore, for such z, |f(z)�f(z0)| = |f(z)�fn(z)+fn(z)�fn(z0)+fn(z0)�

f(z0)|  |f(z)� fn(z)|+ |fn(z)� fn(z0)|+ |fn(z0)� f(z0)| <
✏
3 + ✏

3 + ✏
3 = ✏. ⇤
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Lesson 23 Power series are analytic

1. State the Ratio Test for power series
P

akzk. Read through its proof in the textbook (page
141). And use them to calculate the radius of convergence of the following two series.

(a)
1X

k=1

kzk (b)
1X

k=1

zk

k + 1

2. State the Root Test for power series
P

akzk. Read through its proof in the textbook (page
142). And use them to calculate the radius of convergence of the above two series again.

3. We are back to the two series in Problem 1 again.

(a) Prove that on |z| < 1,
1X

k=1

kzk =
z

(1� z)2
. 91

(b) Prove that on 0 < |z| < 1,
1X

k=1

zk

k + 1
= �1�

1

z
Log(1� z). 92

(c) Let f(z) = z
(1�z)2 . What is f (2023)(0)?

4. In this problem, we review the proof of the uniform convergence of derivatives by proving
a special case of it: Suppose each fn is analytic on |z � z0|  R0, and fn ! f uniformly on
|z � z0|  R0. Show that for any r with 0 < r < R0, f 0

n ! f 0 uniformly on |z � z0|  r.

5. Finally, let’s show that power series converges within the radius of convergence R and this
convergence is uniform if we stay away from the boundary by a positive distance. R is
defined as follows: Let Tr = {|ak|rk : k 2 N} be the set of the lengths of the terms in the
series. Then R is defined to be the supremum of {r : Tr is bounded.}, the “largest” r such
that Tr is bounded. So if s < R, then Ts is bounded. This means, there is C > 0 such that
|ak|sk  C for all k 2 N.

(a) Let 0 < r < R. Choose s such that r < s < R. Show that the series
P1

k=0 akz
k

converges uniformly on |z|  r by using the Weierstrass M-test where Mk = C( rs)
k. 93

(b) Conclude that
P1

k=0 akz
k converges on |z| < R.

91Start from the geometric series
P1

k=0 z
k = 1

1�z . Use term-by-term di↵erentiation. Also feel free to multiply or
divide z on both sides. We can call this term-by-term multiplication/division. This can be done due to the algebraic
limit theorems.

92Start from the geometric series
P1

k=0 z
k = 1

1�z . Use term-by-term integration. Also feel free to multiply or

divide z on both sides.
93The proof in on page 139 of the textbook.
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Lesson 23 Summary

Today, we added one more property of uniformly convergent sequence of functions to the three
in Lesson 22.

Theorem 4. If fn ! f uniformly on |z � z0|  R0 and each fn is analytic on |z � z0|  R0 (so

by Theorem 3, f is also analytic). Then for each m 2 N and 0 < r < R0, f
(m)
n ! f (m) uniformly

on |z � z0|  r.

This theorem will permit us to di↵erentiate power series term-by-term, as we will see soon.
Power series are series of the form

P1
k=0 ak(z � z0)k. Here, k doesn’t have to start from 0. It can

actually start from any integer, as the first few terms doesn’t influence the convergence property
of the series. Power series are special in that they are analytic inside a perfectly circular disk,
diverge outside this disk, though it’s hard to say anything about its behavior on the rim of this
disk. To be more precise, let Tr = {|ak|rk : k 2 N}, and then define R to be the supremum of
{r : Tr is bounded.}, where supremum is the smallest upper bound of this set, which is guaranteed
to exist for this nonempty set (note 0 2 Tr) by the completeness property of real numbers. Then
we have the following key theorem for power series.

Key Theorem for Power Series. Let f(z) =
P1

k=0 ak(z � z0)k. Then

(1) f diverges in |z � z0| > R.
(2) f converges in |z � z0| < R.
(3) f converges uniformly in |z � z0| < R0 for any 0 < R0 < R.
(4) It’s inconclusive on |z � z0| = R.

(2) and (3) were proved in Problem 5. For (1), as |ak(z � z0)k| is not bounded, then there is no
way for ak(z � z0)k to converge to 0, which is necessary for a series to converge. (For a convergent
series

P1
k=0 bk = s in general, let sn = b0 + b1 + · · ·+ bn be its partial sum. Then bn = sn � sn�1.

So limn!1 bn = limn!1 sn � limn!1 sn�1 = s� s = 0.)

Using the Key Theorem, and Theorems 4 and 3 for uniformly convergent sequence of analytic
functions, we have the following useful corollaries for f(z) =

P1
k=0 ak(z � z0)k.

Corollary 1. On |z � z0| < R, f(z) is analytic, and f(z) can be di↵erentiated termwise:

f (m)(z) =
P1

k=0 ak((z � z0)k)(m). Furthermore, we have ak = f (k)(z0)
k! .

Corollary 2. On |z�z0| < R, f(z) can also be integrated termwise:
R z
z0
f(⇣)d⇣ =

P1
k=0 ak

R z
z0
(⇣�

z0)kd⇣ =
P1

k=0 ak
(z�z0)k+1

k+1 .

The proofs of both also depend on the fact that partial sums for power series are simply polynomi-
als (finite sum of power functions), which can be di↵erentiated and integrated termwise. For exam-
ple, f 0(z) = limn!1 f 0

n(z), where fn(z) is a polynomial, and thus f 0
n(z) is just

Pn
k=0 ak((z� z0)k)0.

Similarly,
R z
z0
f(⇣)d⇣ = limn!1

R z
z0
fn(⇣)d⇣ = limn!1

R z
z0

Pn
k=0 ak(⇣ � z0)kd⇣ =

limn!1
Pn

k=0 ak
R z
z0
(⇣ � z0)kd⇣.

There are formulas for finding the radius of convergence R of power series. In addition to the
ratio test and the root test, there is also a formula named after Hadamard, in case the limit of the
constructed sequence do not exist. Hadamard’s formula uses lim sup, which always exists.
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Lesson 24 Analytic functions as power series

1. In class, we showed that if f(z) is analytic on |z � z0| < ⇢, then f(z) =
P1

k=0 ak(z � z0)k.

Prove that if |f(z)|  M on |z � z0| < ⇢, then for any 0 < r < ⇢, |ak| 
M

rk
. 94

2. In Lesson 1, we defined ei✓ = cos ✓ + i sin ✓. In Lesson 5, we defined cos z and sin z, from
which we get

eiz = cos z + i sin z.

Using power series expansion at z0 = 0, verify the above equality.

3. Suppose f(z) is analytic on |z| < ⇢ and f(z) has been expanded as a power series
P1

k=0 akz
k.

(a) Show that if f(z) is odd, i.e., f(�z) = �f(z) for all z, then the power series only
contain odd terms, i.e., ak = 0 if k is even. 95

(b) Show that if f(z) is even, i.e., f(�z) = f(z) for all z, then the power series only contain
even terms, i.e., ak = 0 if k is odd.

4. Consider the functions f(z) = z�2
z2�4 and g(z) = Logz

z�1 .

(a) Find the radius of convergence of the power series expansion of f(z) at z0 = 1.

(b) Find the power series expansion of f(z) at z0 = 1. 96

(c) What is the radius of convergence of the power series expansion of g(z) at z0 = 5? 97

5. L’Hosptial’s rule also holds for complex analytic functions. Here is a simple version. Suppose
both f and g are analytic, f(z0) = g(z0) = 0 and g0(z0) 6= 0. Show that98

lim
z!z0

f(z)

g(z)
= lim

z!z0

f 0(z)

g0(z)
.

94This is just the Cauchy Estimate we discussed in Lesson 19. Recall that ak = 1
2⇡i

R
|⇣�z0|=r

f(⇣)
(⇣�z0)k+1 d⇣.

95Take derivatives of both sides of f(�z) = �f(z) and then show f(k)(0)
k! = 0 if k is even.

96We can use ak = f(k)(1)
k! or notice that 1

z+2 = 1
3

1

1�(� z�1
3 )

, which can then be expanded using the geometric series

where �
z�1
3 is substituted. The latter method will be used again when we study Laurent series, and it is preferred

to the former method, which is extremely tedious in general.
97The solution in on page 147 of our textbook. Problem 5 below may provide another way to explain why g(z)

can be extended to z = 1 and thus z = 1 is not really a singularity. As further hints, recall that on |w| < 1, we have

�Log(1�w) =
P1

k=0
wk+1

k+1 by integrating 1
1�w =

P1
k=0 w

k. Using z = 1�w, we have Log(z) =
P1

m=1
(�1)m+1

m (z �

1)m, which converges on |z�1| < 1. Thus, on 0 < |z�1| < 1, g(z) = Logz
z�1 = 1�(z�1)/2+(z�1)2/3�(z�1)3/4 · · · ,

which is analytic on |z � 1| < 1. So z = 1 is really not a singularity, even though z = 0 still is.
98Use the power series expansions of f and g at z0: f(z) =

P1
k=1 ak(z � z0)

k and g(z) =
P1

k=1 bk(z � z0)
k.

The series start at k = 1 because f(z0) = g(z0) = 0. When we calculate the left-hand-side, write f(z) = (z �

z0)
P1

k=1 ak(z � z0)
k�1 and g(z) = (z � z0)

P1
k=1 bk(z � z0)

k�1, and then use the fact that limit of a quotient is
the quotient of limits, provided each limit exists. For the right-hand-side, the series of f 0 and g

0 can be found by
term-by-term di↵erentiation. Then use limit of quotient is the quotient of limits again. You will see that the two
sides are equal.
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Lesson 24 Summary

In Lesson 23, we learned that power series are analytic functions on an open disk with radius called
the radius of convergence. Today we learned the opposite story, that analytic functions are power
series on an open disk, and we can also say something about how big this disk is.

The reason that analytic functions are power series is due to the Cauchy’s integral formula, the
expressions of 1

⇣�z as a power series whose convergence is uniform, and the interchange of integral

with series by the uniform convergence property. In more details, if f(z) is analytic on the disk
|z�z0| < ⇢, then for any z in this disk, there is r > 0 such that |z�z0| < r < ⇢, and by the Cauchy’s

Integral formula, we have f(z) =
1

2⇡i

Z

|⇣�z0|=r

f(⇣)

⇣ � z
d⇣ =

1

2⇡i

Z

|⇣�z0|=r

f(⇣)

⇣ � z0 � (z � z0)
d⇣ =

1

2⇡i

Z

|⇣�z0|=r

f(⇣)

⇣ � z0

1

1� z�z0
⇣�z0

d⇣, which as |
z�z0
⇣�z0

| < 1, is
1

2⇡i

Z

|⇣�z0|=r

f(⇣)

⇣ � z0

1X

k=0

(
z � z0
⇣ � z0

)kd⇣, i.e.,

1

2⇡i

Z

|⇣�z0|=r

1X

k=0

f(⇣)

(⇣ � z0)k+1
(z � z0)

kd⇣. As the convergence of the series is uniform on the circle

|⇣� z0| = r contained in the disk |z� z0| < ⇢, we can switch limit with integral. Thus, the previous

integral becomes
1X

k=0

1

2⇡i

Z

|⇣�z0|=r

f(⇣)

(⇣ � z0)k+1
(z � z0)

kd⇣, which finally is

1X

k=0

 
1

2⇡i

Z

|⇣�z0|=r

f(⇣)

(⇣ � z0)k+1
d⇣

!
(z � z0)

k.

The integral inside the parentheses is ak, which we saw is f (k)(z0) divided by k! according to the
higher-oder Cauchy’s Integral Formulas. This can also be deduced from what we learned in Lesson

23: term by term di↵erentiation, to see ak = f (k)(z0)
k! . Once we have this formula, we can also do

Cauchy’s Estimate on |ak|, which you did Problem 1. Note that the radius of convergence of this
series is at least ⇢.

We have two immediate corollaries to this theorem, which are very useful.

Corollary 1. Suppose f and g are both analytic on the disk |z � z0| < ⇢. If the derivatives of
all orders of f and g agree at the single point z0, then f and g are the same function.

Corollary 2. If f(z) has been expanded as a power series over a disk centered at z0, then the
radius of convergence equals the largest ⇢ such that f(z) can be extended to be an analytic function
on |z � z0| < ⇢.

Corollary 1 holds simply because f(z) =
P1

k=0
f (k)(z0)

k! (z � z0)k =
P1

k=0
g(k)(z0)

k! (z � z0)k = g(z)
on |z � z0| < ⇢. To prove Corollary 2, Let R be the radius of convergence of the series and L the
largest radius such that f(z) can be extended to an analytic function on |z� z0| < L. Since f(z) is
(extended to be) analytic on |z � z0| < L, its power series, which is the same as the original power
series by the uniqueness of Corollary 1, has R � L by the Theorem. Now if R > L, then f(z) is
extended to be this power series, which is analytic on this larger disk |z � z0| < R, contradicting
to the maximum of L. Thus, R = L.

Therefore, if f(z) has a singularity at z0 where limz!z0 f(z) = 1, and we are considering
expanding f(z) at z1, which is di↵erent from z0, then the radius of convergence is |z0 � z1|.
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Lesson 25 Analyticity and power series at infinity

1. Consider the function f(z) =
1

1 + z3
.

(a) Find its power series at 0 on |z| < 1.

(b) Show that f(z) is analytic at 1, and also find its power series expansion on |z| > 1.

2. Show that f(z) = e1/z is analytic at 1 and also find its power series expansion on |z| > 0.

3. In this problem, let’s prove the coe�cient formula for power series at infinity again. Suppose
f(z) =

P1
k=0

bk
zk

which converges uniformly on |z| � r. Show that

bk =
1

2⇡i

Z

|z|=r
f(z)zk�1dz. 99

4. Stereographic projection can also be done using the south pole S = (0, 0,�1). Let (X,Y, Z)
be any point but S on the sphere X2 + Y 2 +Z2 = 1. Let the w = u+ iv complex plane be
the xy-plane, whose u-axis is the x-axis and the v-axis is the �y-axis. Draw a line through
S and (X,Y, Z). This line intersects the w complex plane at a point. Show that this point
is given by

w =
X

1 + Z
� i

Y

1 + Z
.

5. Recall from Lesson 1 Problem 6 that the stereographic projection of (X,Y, Z) onto the
z = x+ iy plane from the north pole N = (0, 0, 1) is given by

z =
X

1� Z
+ i

Y

1� Z
.

Show that if z 6= 0, then
1

z
= w,

the analytic change of variable we used today to study power series at infinity. 100 101

99The proof is on the top of page 150 of our textbook. It shows a technique for finding residues which we will
come back to after learning Laurent series.

100Don’t forget to use X
2 + Y

2 + Z
2 = 1.

101
w =

1
z
can also be seen by simple high-school geometry.
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Lesson 25 Summary

We have been discussing analytic functions and (their) power series on subsets of C, but re-
call in Lesson 1 that 1 is an important point which can be joined with C to form the Riemann
sphere. What does it mean to say f is analytic at 1, and what about power series expansion at 1?

The trouble with 1 is that it is not expressed as numbers familiar to us, i.e., in the form of
x+ iy where x and y are real. After all, 1 is not on C.

Here is the rationale to get around this di�culty, if we really want to discuss matters at 1, which
is on the Riemann sphere, we can think of the sphere as the union of two copies of complex planes.
To be more concrete, consider the unit sphere S2 : X2 + Y 2 + Z2 = 1 in the three dimensional
Euclidean space. In Lesson 1, we learned that we can identify C with S2

\{N}, the unit sphere with
the north pole N = (0, 0, 1) removed, by doing stereographic projection using rays from N . So
complex analysis on S2

\{N} can be handled by doing the usual thing on C. However, 1, which is
identified with N , cannot be mapped to C by this stereographic projection. If we want to discuss
matters about N , we can switch our point of view, and consider S2

\{S}, the unit sphere with the
south pole S = (0, 0,�1) removed. This set contains N , and we can do a stereographic projection,
this time using rays from the south pole S to the point on the sphere as described in Problem 4.
In particular, N is projected to 0 on the complex plane. One subtlety is that this complex plane
labelled by w = u + iv has u along x but v along �y so that the transformation formula will be
analytic.

So we can view the sphere S2 as the union of two open sets U1 = S2
\{N} and U2 = S2

\{S}.
The former U1 is identified with C labelled by z = x + iy using the stereographic projection from
the north pole, and the latter U2 is identified with another copy of C labelled by w = u+ iv using
the stereographic projection from the south pole. If we started from using z, but would like to
consider 1 = N , then we can switch to w, as in this case, N can written as the concrete number
w = 0 + i0, and is surrounded by other complex numbers described by w = u+ iv whereas in the
former case, not only that N cannot be expressed using z, it is isolated from its neighbors expressed
using z = x+ iy. The switch, as you proved in Problem 5, is given by w = 1

z , or z = 1
w .

This issue being resolved, we have the following definition: f(z) is analytic at z = 1 if
g(w) := f( 1

w ) when w 6= 0 and g(0) := limw!0 f(
1
w ) is analytic at 0. So we have made the

above change of variable and are considering 1 as the concrete w = 0.

If f is analytic at infinity, then using the power series expansion of f( 1
w ) =

P1
k=0 bkw

k at w = 0,

we get the power series expansion of f(z) by substituting 1
z into w:

P1
k=0

bk
zk
. Its coe�cient bk can

be calculated by doing line integral over circles |w| = r inside the disk of convergence for the power
series in w:

bk =
1

2⇡i

Z

|w|=r

f( 1
w )

wk+1
dw.

After making the change of variable w = 1
z , and noticing that dw = �

1
z2dz and changing w to z

changes the counterclockwise oriented circle |w| = r to the clockwise oriented circle |w| = 1
r , we

have

bk =
1

2⇡i

Z

|z|= 1
r

f(z)zk�1dz,

which you proved using another method in Problem 3.
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Lesson 26 Manipulating power series

1. Using the equality e2z = ezez, prove102 that

2n

n!
=

nX

k=0

1

k!(n� k)!

2. Prove that if fn(z) ! f(z), gn(z) ! g(z) uniformly on their common domain D, and there
is M > 0 such that |f(z)|, |g(z)| < M for all z 2 D, then fn(z)gn(z) ! f(z)g(z) also
uniformly. 103

3. In this problem, we finish the computation of the first two Bernoulli numbers.

(a) Calculate
z

sin z
up to z4. (Answer: = 1 + 1

6z
2 + 7

360z
4 + · · · )

(b) Show that
z

2
cot(

z

2
) :=

z/2

sin(z/2)
cos(z/2) = 1�

1

6

z2

2!
�

1

30

z4

4!
+O(z6). 104

4. Consider the function f(z) =
ez

1 + z
and its power series expansion f(z) =

P1
k=0 akz

k.

(a) Show that ak = (�1)k(
1

0!
+

�1

1!
+

1

2!
+ · · ·+

(�1)k

k!
).

(b) What is the radius of convergence of this series?

5. In this problem, we study the series expansion of f(z) = z1/2 at z = 1.

(a) Writing f(z) = z1/2 = e
1
2Logz and using the series expansions of ez =

P1
k=0

zk

k! and

Logz =
P1

k=1
(�1)k+1(z�1)k

k , calculate the series expansion of f(z) at z = 1 up to (z�1)3.

(b) Calculate the series expansion of f(z) up to (z � 1)3 using ak = f (k)(1)
k! . 105

102You see, you get the binomial formula using complex analysis. Even though this is not a good example showing
the power of power series in combinatorics, as the binomial formula has much simpler proofs, in general, complex
analysis is quite useful in the latter subject.

103Some hint: Consider |fn(z)gn(z) � f(z)g(z)| = |fn(z)gn(z) � f(z)gn(z) + f(z)gn(z) � f(z)g(z)|  |fn(z) �
f(z)||gn(z)|+|f(z)||gn(z)�g(z)|. As fn(z) ! f(z) uniformly, there isN1 2 N such that if n � N1, then |fn(z)�f(z)| <
✏

4M . As gn(z) ! g(z) uniformly, there is N2 2 N such that if n � N2, then |gn(z)�g(z)| < ✏
2M and |gn(z)�g(z)| < M

and thus |gn(z)| = |gn(z)�g(z)+g(z)|  |gn(z)�g(z)|+ |g(z)| < M +M = 2M for all z. Then if N = max{N1, N2},
then if n � N , then n � N1 and n � N2. Thus, all the previous results hold. Then you can finish by showing
|fn(z)gn(z)� f(z)g(z)| < ✏.

104From (a), we have z/2
sin(z/2) = 1 + 1

6 (z/2)
2 + 7

360 (z/2)
4 + · · · = 1 + 1

24z
2 + 7

4!·240z
4 + · · · Also recall that

cos(z/2) = 1 �
1
2! (z/2)

2 + 1
4! (z/2)

4 + · · · = 1 �
1
8z

2 + 1
16·4!z

4 + · · · Thus, z
2 cot( z2 ) := z/2

sin(z/2) cos(z/2) = 1 + ( 1
24 �

1
8 )z

2 + (� 1
4!·8 + 7

4!·240 + 1
4!·16 )z

4 +O(z6) = 1� 2
24z

2 + 1
4!

�30+7+15
240 z

4 +O(z6) = 1� 1
6

z2

2! �
1
30

z4

4! +O(z6).
105In fact, we can go further to find the formula for all terms, which is pretty straightforward, but we stop here,

as we have seen that the above two methods have yielded the same result for enough number of terms.
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Lesson 26 Summary

Even though we can always find ak in f(z) =
P1

k=0 akz
k by doing derivatives ak = f (k)(0)

k! , in

general, calculating f (k)(0) is tedious, if not extremely so.

Another way to find the series expansion is to decompose an analytic function into simpler com-
ponents, and then combine the familiar series of these simpler components. The reason we can do
this is due to the good property of power series: they behave as polynomials, i.e., we can manipu-
late them as if they are polynomials. We can add, subtract, and scalar multiply them as we do for
polynomials. We can also multiply them as multiplying polynomials. More precisely, we have the
following:

Suppose f(z) =
P1

k=0 akz
k and g(z) =

P1
k=0 bkz

k (over some disk at 0), then

(1) f(z)± g(z) =
P1

k=0(ak + bk)zk.

(2) cf(z) =
P1

k=0 cakz
k.

(3) f(z)g(z) =
P1

n=0 cnz
n, where cn =

Pn
k=0 akbn�k.

(4) f(z)m = f(z)f(z) · · · f(z), which can be done by using (3) m � 1 times. If f(z)m =P1
n=1 cnz

n, then cn =
P

k1+···+km=n ak1 · · · akm .

(5) If g(0) = b0 6= 0, then

1

g(z)
=

1

b0

1

1� (
P1

k=1�
bk
b0
zk)

=
1

b0

1X

m=0

(
1X

k=1

�
bk
b0
zk)m,

where the last step holds because |
P1

k=1�
bk
b0
zk| < 1 if |z| is small by the continuity of g(z)

at z = 0, and each (
P1

k=1�
bk
b0
zk)m can be expanded as in (4).

(6) f(z)
g(z) = f(z) 1

g(z) , which can be expanded using (3) and (5).

(1) and (2) holds because of the algebraic limit theorems for limits (series). (4), (5) and (6)
follows from (1), (2) and (3). Thus, it su�ces to prove (3).

Proof. Let fn(z) =
Pn

k=0 akz
k and gn(z) =

Pn
k=0 bkz

k be the partial sums, which are polynomials.
As fn and gn converge uniformly to f and g, respectively, over a closed disk at 0, on which f and g
are continuous and thus also bounded, fn(z)gn(z) converges to f(z)g(z) uniformly over this closed
disk by Problem 2. As all functions involved are analytic, by the Theorem we proved in Lesson
23, the mth derivative of fn(z)gn(z) converges uniformly to the mth derivative of f(z)g(z). When
n � m, the mth derivative of fn(z)gn(z) is the coe�cient in front of zm, which is the cm above.
Thus, its limit as n ! 1 is also this cm. ⇤

Problem 5 shows we can also get the series of f(g(z)) by composing those of f(z) and g(z). In
this problem, the series of f(z) and g(z) are not expanded at the same point.
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Lesson 27 Zeros of analytic functions and their magic

1. Find the zeros and their orders of: (a) sin z (b) cos z (c) (z�1)Logz
z

2. State and prove the Principle of Permanence of Functional Equations. Use it to show that
ezew = ez+w from eset = es+t where s and t are real. 106

3. In this problem, we show that each non-constant analytic function is a conformal mapping
composed with an Nth power function for some N 2 N: 107 Show that if f(z) is analytic
and has a zero of order N at z0, then there is another function g(z) analytic near z0 such
that g0(z0) 6= 0 and f(z) = g(z)N . 108

4. Show that the Open Mapping Theorem (see the footnote to the previous problem) implies
the maximum principle: If f is analytic on the domain D and |f | attains its maximal value
at some point z0 2 D, then f is constant. 109

5. Before we leave Chapter V on power series, let’s get some taste of analytic continuation.
The basic idea is that we can extend the definition of an analytic function beyond the zones
of comfort by varying its power series along a path trespassing into a previously forbidden
place. The identity principle we learned today guarantees the uniqueness of this extension.

(a) If you are not sure what the answer to Problem 5 of Lesson 26 is, it is f(z) := z1/2 =

1 + 1
2(z � 1) � 1

8(z � 1)2 + 3
48(z � 1)3 + · · · In fact, the coe�cient ak = f (k)(1)

k! =
(�1)k�11·3·5···(2k�3)

k!2k
for k � 2 and a0 = 1, a1 = 1

2 . Now consider the twice traversed

circular path eit, where t : 0 ! 4⇡, and we define ft(z) =
P1

k=1 ak(t)(z � eit)k, where

a0 = 1, a1 =
1
2e

� it
2 , and for k � 2, ak(t) =

(�1)k�11·3·5···(2k�3)
k!2k

e�
i(2k�1)t

2 , i.e.,

ft(z) = 1 +
e�

it
2

2
(z � eit)�

e�
i3t
2

8
(z � eit)2 +

3e�
i5t
2

48
(z � eit)3 + · · ·

Show that the radius of convergence of ft(z) is 1.
110

(b) Show that f2⇡(z) = �f(z).

(c) Show that f4⇡(z) = f(z). 111

106It’s on page 157 of our textbook.
107As conformal mapping simply mildly deforms the domain, it maps open set to open set. As the Nth power

function simply wraps angles around and stretches radial lines, it also maps open set to open set. Therefore, non-
constant function maps open set to open set. This is called the Open Mapping Theorem, which does not hold for real
analytic functions. For example, the square power functions folds the real line into the interval [0,1), which reveals
the sharp 0 as a boundary point.

108Since f(z) has a zero of order N , we know f(z) = (z� z0)
N
h(z) where h(z0) 6= 0. Let Log be a branch of log z

whose domain includes h(z0) and let g(z) = (z � z0)e
1
N Logh(z).

109If f is not constant, then by the Open Mapping Theorem, an open disk centered at f(z0) is contained in f(D).
On this disk, more than half of the points f(z) has length larger than |f(z0)|.

110Note that the radius of convergence of f(z) is 1 and if you use the ratio test, the two series ft(z) and f(z) have
the same |ak|/|ak+1| sequence. Or just use the ratio test.

111In fact, ft(z) as we vary t is defined on the part of the Riemann surface of z1/2, each point of which has distance
less than 2 from the origin.
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Lesson 27 Summary

For an analytic function f , z0 is called a zero of f if f(z0) = 0. If we expand f(z) as a power
series a0 + a1(z � z0) + a2(z � z0)2 + · · · , this means a0 = 0. But what if more ak’s are zero?

First of all, if all ak = 0, then f(z) = 0 for all z. This is not very interesting, but it is often a case
not to forget. Now let’s assume not all ak’s are 0, and let aN be the first coe�cient which is not 0,
i.e., a0 = a1 = · · · = aN�1 = 0, but aN 6= 0. Then f(z) = aN (z � z0)N + aN+1(z � z0)N+1 + · · · ,
which can be factored as

f(z) = (z � z0)
Nh(z),

where h(z) = aN + aN+1(z � z0)N+1 + · · · is analytic and h(z0) = aN 6= 0.

In this case, z0 is called a zero (of f) of order N . Equivalently, if f(z0) = f 0(z0) = · · · =
f (N�1)(z0) = 0 but f (N)(z0) 6= 0, then z0 is a zero of order N. When N = 1, we say z0 is a simple
zero. When N = 2, a double zero... The above expression permits us to write f(z) = g(z)N , where
g(z) is analytic over a disk centered at z0, and g0(z0) 6= 0. See Problem 3. Thus, locally, f(z)
is the composition of the conformal map g(z) with the N ’s power function. As both maps open
sets to open sets, f maps open sets to open sets. This is called the Open Mapping Theorem. The
maximum principle also follows from it. See Problem 4.

The zeros of a nonconstant analytic function are isolated, meaning each zero stays a positive
distance away from all the other zeros. The proof consists of two parts. Part I: if f is nonconstant,
then the zeros of f are of finite order. This is proved by considering U : the set of all z 2 D such
that f (m)(z) = 0 for all m and its complement D\U : the set of all z 2 D such that f (m)(z) 6= 0 for
some m. It can be shown that both U and D\U are open. U is open because the power series with
all coe�cients 0 is locally 0 and thus an open disk’s z are in U . D\U is open because if f (m)(z0) 6= 0
for some m at some z0. By the continuity of f (m), there is a disk worth of z around z0 such that
f (m)(z) 6= 0. Thus, this disk in contained in D\U . As D is connected, either U = D or D\U = D.
As f is nonconstant, it can only be the case that D\U = D, i.e., no zeros are of infinite order, i.e.,
all zeros are of finite order. Part II: Let z0 be a zero of f . So f(z) = (z � z0)Nh(z) and h(z0) 6= 0.
As h is continuous, there is a disk centered at z0 over which h(z) 6= 0. Thus, z0 is the only zero
over this disk, and thus z0 stays a finite distance from the other zeros.

The above theorem is so strong that it forces a uniqueness property of analytic functions: if
f(z) = g(z) over a subset E of D and E contains a nonisolated point, then f(z) = g(z) for all
z 2 D. The proof of this theorem simply reduces to showing f(z) � g(z) has to be the constant
0 on D if it is 0 on the set E with nonisolated point by quoting the previous theorem. As an
application, if there is another definition g(z) of ez such that both agree with ex on the real axis.
As every point of E = R is nonisolated, then we must have g(z) = ez.

In a similar vein, we also have the Principle of Permanence of Functional Equations, which allows
us to imply ezew = ez+w simply from its real version. This theorem is proved by using the above
uniqueness property of analytic functions twice. See Problem 2.
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Lesson 28 Laurent decomposition and Laurent series

1. In this problem, we prove the uniqueness of Laurent decomposition. 112

(a) Suppose h(z) is entire and limz!1 h(z) = 0. Show that h(z) is bounded on C.

(b) Suppose f(z) is analytic on ⇢ < |z � z0| < �, and f(z) = f0(z) + f1(z) where f0(z) is
analytic on |z � z0| < � and f1(z) is analytic on |z � z0| > ⇢ with limz!1 f1(z) = 0.
Show that f0 and f1 are unique.

2. Consider the function f(z) = 1
z2�z = 1

(z�1)z defined on C\{0, 1}. Find its Laurent decom-
position and its Laurent series expansion over each of the following regions.

(a) 0 < |z| < 1

(b) |z| > 1

3. Consider the same function f(z) = 1
(z�1)z again. Expand it as a Laurent series centered

at �1 such that it converges at 1/2. (Note that 1 < |z � (�1)| < 2 is the largest annulus
including 1/2 over which f(z) is analytic). 113

4. Suppose f(z) has been decomposed as f0(z) + f1(z) in the usual sense and expanded asP1
k=�1 akzk.

(a) If f(z) is even114, i.e., f(�z) = f(z), then ak = 0 for all odd k and both f0 and f1are
even.

(b) If f(z) is odd, i.e., f(�z) = �f(z), then ak = 0 for all even k and both f0 and f1are odd.

5. Suppose f(z) is analytic on the non-simply connected C\{0}. Show that for some c 2 C,
there is F (z) analytic on C\{0} such that f(z)�

c

z
= F 0(z). 115

112The proof is on the top of page 166 in the textbook.
113Note that f(z) = 1

z�1 �
1
z = 1

z+1�2 �
1

z+1�1 . The first function is analytic on |z + 1| < 2 and the second

function is analytic on |z + 1| > 1. Then we expand both using power series in terms of some a satisfying |a| < 1.
114Note that if f(z) =

P
akz

k, then f(�z) =
P

ak(�z)k =
P

(�1)kakz
k. If f(�z) = f(z), then corresponding

coe�cients in the series expansions of f(�z) and f(z) should be equal, by the uniqueness of coe�cients. Alternatively,
we can use the integral representation of ak to show ak = (�1)kak.

115Consider the Laurent series expansion of f(z), separate the z
�1 term. Then each of the rest terms has

antiderivative on C\{0} and F (z) is just the sum of all of them.
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Lesson 28 Summary

Analytic functions somewhere on C can be expanded as a power series of positive powers over an
open disk. Analytic functions at 1 can be expanded as a power series of negative powers over the
outside of a closed disk centered at the origin. Today, each region we consider are a combination of
these two types: it is inside a bigger disk, and outside a smaller disk, which share the center. This
is called an annulus, described by 0  ⇢ < |z � z0| < �  1, which also includes the punctured
disks, punctured planes and the exterior of any closed disk.

If f(z) is analytic over any such annulus, then there are analytic functions on larger domains: f0
on |z � z0| < � and f1 on |z � z0| > ⇢ with limz!1 f1(z) = 0 such that f(z) = f0(z) + f1(z) over
the annulus. This is called the Laurent Decomposition of f(z) over this annulus.

Existence of this decomposition follows from Cauchy’s Integral Formula applied to a closed
annulus r  |z � z0|  s contained in this open annulus, whose boundary consists of two circles
|z� z0| = r and |z� z0| = s, where the former inside circle originally is clockwise oriented and thus
need a negative sign:

f(z) =
1

2⇡i

Z

|z�z0|=s

f(⇣)

⇣ � z
d⇣ +

�1

2⇡i

Z

|z�z0|=r

f(⇣)

⇣ � z
d⇣.

We then simply let the first integral be f0(z), and the second be f1(z). Note that indeed
limz!1 f1(z) = 0 by doing an ML-estimate of |f1(z)| first.

Uniqueness of this decomposition can be shown by assuming that there are two other analytic
functions g0 and g1 with the same property and f(z) = g0(z) + g1(z). Then by constructing an en-
tire function h(z) which is defined as h(z) = g0(z)�f0(z) over |z�z0| < � and h(z) = f1(z)�g1(z)
over |z�z0| > ⇢, and noticing that limz!1 h(z) = 0, we see h(z) = 0 by Liouville’s Theorem. Then
it follows that g0 = f0 and g1 = f1 over their individual domains. You proved this in Problem 1.

We know each of f0 and f1 over their domains can be expanded as a series, the former consisting
of nonnegative powers, and the latter consisting of negative powers. Thus, over the annulus, f can
be expanded as

f(z) =
1X

k=�1
ak(z � z0)

k,

where an can be calculated by first dividing the above equality by (z�z0)n+1, and then integrating

both sides of the result over a circle contained in the annulus with center z0:
R
|z�z0|=r

f(z)
(z�z0)n+1dz =

R
|z�z0|=r

P1
k=�1 ak(z � z0)k�n�1dz. As the convergence of the series is uniform, we can switch

integral with series. Thus, the previous expressions is
P1

k=�1 ak
R
|z�z0|=r(z � z0)k�n�1dz, which

consists of only one term for k = n:
R
|z�z0|=r

1
z�z0

dz = 2⇡i. Thus,

an =
1

2⇡i

Z

|z0�z|=r

f(z)

(z � z0)n+1
dz.

This formula includes the series formula for analytic functions on C and analytic functions at 1
as special cases.
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Lesson 29 Classification of isolated singularities

1. Find and classify the isolated singularities of each of the following functions.

(a)
zez

z2 � 4
(b)

e2z � 1

z
(c) tan z =

sin z

cos z
(d) z2 sin(

1

z
) (e)

Logz

(z � 1)3

2. Prove that e
1

1+z2 has essential singularities at ±i by showing they are neither removable
nor poles. 116

—————————————————————————————————————–
In the following problems, let’s prove the characterization of each of the three types of

isolated singularities. Almost all details of proofs can be found in the textbook from page
172 to 175.

3. Riemann’s Theorem on Removable Singularities. Le z0 be an isolated singularity of
f(z). Then f(z) has a removable singularity at z0 if and only if f(z) is bounded near z0.

4. MATH 345 Students’ Theorem on Poles. Le z0 be an isolated singularity of f(z).
Then f(z) has a pole at z0 if and only if limz!z0 |f(z)| = 1.

5. Casorati-Weierstrass Theorem on Essential Singularities. Le z0 be an isolated
singularity of f(z). Then f(z) has an essential singularity at z0 if and only if for every
complex number w0, there is a sequence zn ! z0 such that f(zn) ! w0.

116We can consider special paths z = x+ i and z = yi through i, and z = x� i and z = yi through �i, where x

and y are real.
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Lesson 29 Summary

In lesson 28, we studied Laurent decomposition and Laurent series expansion over annulus, which
includes punctured disk as a special case. Today, we only consider punctured disk over which we
are given an analytic function. So the question is: what happens at z0, or when z gets close to z0?

First of all, f(z) may be not defined at all at z0. Then we call z0 an isolated singularity of f(z)
over this punctured disk. There are nonisolated singularities. For example, a slit for the Logz
function is a line of singularities, and Logz is not even defined along this half line.

Over this punctured disk, we can expand f(z) into its Laurent series

f(z) = · · ·+
a�2

(z � z0)2
+

a1
z � z0

+ a0 + a1(z � z0) + a2(z � z0)
2 + · · ·

Then we classify the isolated singularities into three types:

(1) If ak = 0 for all k < 0, then z0 is called a removable singularity of f(z).
(2) If a�N 6= 0 for some N > 0, and ak = 0 for all k < �N , then z0 is called a pole of f(z) and

N is called the order of the pole.
(3) If ak 6= 0 for infinitely many negative k, then z0 is called an essential singularity of f(z).

In (1), we can define f(z) to be over the entire disk, including the puncture z0 by letting f(z)
to be its power series. Thus, the singularity can be removed.

In (2), as there are only finitely many negative powers of z � z0, we can write f(z) = a�N

(z�z0)N
+

a�(N�1)

(z�z0)N�1 + · · · + a�1

z�z0
+ a0 + a1(z � z0) + · · · = f1(z) + f0(z), where f1(z) is the sum of the neg-

ative powers and f0(z) is the analytic part. f1(z) is called the principal part. This is one way to

view poles. We can also factor out 1
(z�z0)N

to have f(z) = g(z)
(z�z)N

, where g(z) as a power series

with g(z0) = a�N 6= 0. This is the second way to view poles. Lastly, 1
f(z) = (z � z0)N

1
g(z) =

(z � z0)Nh(z), where h(z) = 1
g(z) is analytic as g(z) is and g(z0) 6= 0. Furthermore, we also have

h(z0) 6= 0. Thus, f(z) has a pole of order N at 0 if and only if 1
f(z) has a zero of order N at z0.

This is a third way to view poles.

(3) is the most weird case, as any small region around z0, no matter how small it is, can be
mapped to get arbitrarily close to an arbitrary point on the complex plane. This is summarized
in the Casorati-Weierstrass Theorem you proved in Problem 5. In contrast, for a pole, as z gets
close to z0, f(z) are sent to approach 1 and for a removable singularity, as z gets close to z0, f(z)
predictably are sent to a finite value to make f(z) analytic also at the puncture. These were proved
in Problems 4 and 3.

In practice, to prove z0 is an essential singularity, we just show it’s neither removable nor a pole.
This is done by showing |f(z)| is not bounded near z0 (so z0 is not removable) and f(z) does not
go to 1 when z goes to z0 along some path (so z0 is not a pole). This is a strategy that can be
used in Problem 2.

Problem 2 is a special case of the following fact: if z0 is a non-removable isolated singularity of
f(z), then z0 is an essential singularity of ef(z). In problem 2, ±i are poles of 1

1+z2 , which are not

removable. Thus, ±i are essential singularities of e
1

1+z2 .
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Lesson 30 Meromorphic functions and partial fractions decomposition on C⇤

1. Find the principal part of

f(z) =
1

sin z
at each of its poles on the Riemann sphere C⇤. Note that 1 is not an isolated singularity
of f(z) and thus it is not a pole. 117

2. Show that

f(z) =
z3

z � 1
has a pole at 1 and find the principal part P1(z) by finding the series expansion of f(z)
on |z| > 1.

3. From the proof of the theorem of meromorphic functions on C⇤, we know

f(z) =
z3

(z � 1)(z � 2)

is the sum of the principal parts P1, P1 and P2. Find these principal parts. 118

4. Consider the function

f(z) =
sin z

1 + z
.

Show that it is meromorphic on C but not meromorphic on C⇤.

5. Let V be the complex vector space of meromorphic functions C⇤ with possible poles at 0,
1, 1, each with orders at most 2. Find a basis of this vector space. What is the dimension
of V ?

117Find the power series expansion of sin z at k⇡ and then manipulate series to find the principal parts for these
simple poles.

118We can do a long division to find P1(z) and then split the rest to find P1(z) and P2(z). The answers are
P1(z) = z + 3, P1(z) = �1

z�1 and P2(z) = 8
z�2 .



63

Lesson 30 Summary

In Lesson 29, we studied isolated singularities of analytic functions over punctured disk 0 < |z�z0| <
r. They were classified into removable, pole, and essential, depending on how many negative powers
of z � z0 are present in the Laurent series expansion of f(z) at z0: none for the removable, finitely
many for pole, and infinitely many for the essential.

Today, we started by considering isolated singularity at 1: f(z) has an isolated singularity at
1 if f(z) is analytic on some |z| > R, but the behavior at 1 is left open. This infinite annulus
|z| > R can be thought as a punctured disk centered at 1, which makes sense if you use the usual
w = 1

z change of variable, corresponding to the switching from the north-pole to the south-pole
stereographic projections. Then z = 1 is classified into removable, pole, and essential singularities
if w = 0 is removable, a pole, or essential. Therefore, in the Laurent series expansion of f(z) over
|z| > R, 1 is (1) removable, (2) a pole, or (3) essential, if there are (1) no positive powers of z, (2)
finitely many positive powers, or (3) infinitely many positive powers, respectively.

This lesson’s focus is on functions with possible poles: a function is meromorphic on a domain
D of C⇤ if f is analytic on D expect at possible isolated singularities each of which is a pole. For a
pole z0 2 C, the principal part P (z) is defined to be the sum of all the negative powers of z� z0 in
the Laurent series expansion of f(z) on 0 < |z� z0| < r; At 1, the principal part P1(z) is defined
to be the sum of all nonnegative powers of z in the Laurent series expansion of f(z) over |z| > R.
So if 1 is removable, P1(z) is simply a constant, and if 1 is a pole, then P1(z) is a polynomial
of degree at least 1.

If f(z) is a rational function, i.e., f(z) = P (z)
Q(z) where both P (z) and Q(z) are polynomials, then

f(z) is meromorphic on C⇤. What is surprising is that the converse is also true:

Theorem. If f(z) is meromorphic on C⇤, then f(z) is rational.

First of all, note that there can only be finitely many poles on C⇤. This is because if there were
infinitely many, then as C⇤ is compact, then there is a limit point of these poles, which itself has
to be a singularity, because any disk around it contains nearby approaching poles and thus f(z)
can not be analytic over any disk around this point. Furthermore, this singularity is not isolated.
These contradict to the assumption that all singularities of meromorphic functions are isolated.
After resolving this impossible infinitude of the number of poles, the proof relies on the construc-
tion of the function g(z) = f(z)� P1(z)� P1(z)� · · ·� PM (z), where Pi(z) is the principal part
of f(z) at a pole zi 2 C. So we are simply subtracting the principal parts of all poles from the
function f(z) itself, including that of 1, if it is a pole. Now on C minus the poles, as the sum of
analytic functions, g(z) of course is analytic. But g(z) is also analytic at each of the poles. This
is because at zi, f(z)� Pzi(z) is a power series and thus is analytic at z0, and the sum of the rest
of the principal parts are also analytic at z0. Being an entire function, g(z) is also bounded, as
limz!1 g(z) = limz!1(f(z) � P1(z)) �

PM
i=1 limz!1 Pi(z) = 0 � 0 = 0, where each of the limit

is of a finite sum of negative powers of a linear function. Hence, by Liouville’s Theorem, g(z) is a
constant, which has to be 0. So f(z) = P1(z)+P1(z)+ · · ·+PM (z), which is rational by expressing
it as a single fraction.

For meromorphic functions on C⇤, the powers of z and 1
z�z0

are important, as they serve as basis
elements for the vector space of meromorphic functions. In a future course of complex analysis,
you will learn that over a donut surface, the Weierstrass functions, all denoted by }(z), which are
meromorphic functions with a double pole, and their derivatives, will serve analogous roles.
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Lesson 31 The residue theorem

1. Find the residue of the following functions at the given points.

(a)
1

z2 � 1
at 1 (b) tan z =

sin z

cos z
at ⇡/2 (c)

z

Logz
at 1 (d)

z

(z2 + 1)2
at i (e)

ez

z2023
at 0

2. Evaluate the following integrals.

(a)

Z

|z|=2
tan zdz

(b)

Z

|z�1|=1

1

z8 � 1
dz Hint: Three of the simple zeros of z8 � 1 are inside the circle |z � 1| = 1: 1, ei

⇡
4 and e�i⇡

4 .

3. We should also have Rule 2.5 for finding residues: If f(z) is analytic and z0 is a pole of

order N � 1, then Res[f(z), z0] =
1

(N � 1)!
lim
z!z0

dN�1

dzN�1
((z � z0)

Nf(z)).

(a) Prove this rule.

(b) Calculate

Z

|z�1�i|=2

1

(z2 + 1)5
dz.

4. Now we prove a formula which you could have seen in Calculus II. Suppose P (z) and Q(z)
are polynomials such that the zeros z1, · · · , zm of Q(z) are all simple and the degree of Q(z)

is bigger than the degree of P (z). Show that
P (z)

Q(z)
=

mX

i=1

P (zi)

Q0(zi)

1

z � zi
. 119

5. A function is doubly periodic if there are complex numbers !1 and !2 which do not lie on
the same line such that f(z + !1) = f(z) and f(z + !2) = f(z). Thus, if we know what f
does over the parallelogram D = {z

��z = t!1+ s!2, 0 < t, s < 1} and any of its two adjacent
sides, then we know what f does on C by translation. Liouville proved three theorems for
doubly periodic functions. We consider the first two today, and leave the last to Chapter
8. These proofs are short and elegant.

(a) Prove Liouville’s First Theorem: Suppose f is analytic and doubly periodic on C,
then f is a constant. 120

(b) Prove Liouville’s Second Theorem: Suppose f is meromorphic and doubly periodic
on C, and none of its poles are on @D, then the sum of its residues inside D is 0. 121

Also conclude that doubly periodic meromorphic functions with only a simple pole in
D does not exist. 122

119By the theorem we proved for meromorphic functions over C⇤, P (z)/Q(z) = P1(z) +
Pm

i=1 Pzi(z), where
P1(z) = 0 by long division, and the Pzi(z) is of first order. Then the rest is mere calculations of the residues.

120Note that f is continuous over the compact parallelogram D [ @D, so it’s bounded. Hence, f is bounded on
the entire C. Now we can use the usual Liouville’s Theorem, which we might call Liouville’s Theorem 0.

121Note that integral over opposite edges cancel as their directions are opposite and the functions are the same
due to double periodicity.

122The Weierstrass }(z) functions have a double pole inside its fundamental domain. These are the simplest
doubly periodic meromorphic functions, which look pretty complicated.
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Lesson 31 Summary

If f(z) has an isolated singularity at z0, then Res[f(z), z0], the residue of f(z) at z0, is defined to
be the coe�cient a�1 of the 1

z�z0
term in the Laurent series expansion of f(z) over 0 < |z�z0| < ⇢.

The residue theorem relates this complex number to the line integral of this function.

The residue theorem.

(1) If 0 < r < ⇢, then

Z

|z�z0|=r
f(z)dz = 2⇡iRes[f(z), z0].

(2) If domain D is bounded with piecewise smooth @D and f is analytic on D [ @D except at

isolated singularities at z1, · · · , zm 2 D. Then

Z

@D
f(z)dz = 2⇡i

mX

i=1

Res[f(z), zi].

We have seen the proof of (1) before. Simply expand f(z) into its Laurent series. Switch integral
with the infinite sum by uniform convergence, and then integrate each power (z� z0)k. We learned
this when we first studied complex line integrals: only the integral of (z � z0)�1 is nonzero, and it
is 2⇡i. (2) can be proved by drawing little disks around each zi and then consider the new region
D0 formed by taking o↵ these disks and then apply Cauchy’s Theorem to D0, as f is analytic on
D0. Thus, the integral over @D is the sum of the integrals over each of the little circles, which by
(1), is the sum of 2⇡i times the residue at zi.

So if we know the residues of f(z) inside D, then we can evaluate
R
@ f(z)dz by using (2). But

how do we find the residues? Of course, we can expand f(z) into its Laurent series (or just look
at a few terms containing the 1

z�z0
term) by manipulating series. However, if z0 is a pole, then we

have the following four rules:

(1) If f(z) has a simple pole at z0, then Res[f(z), z0] = lim
z!z0

(z � z0)f(z).

(2) If f(z) has a double pole at z0, then Res[f(z), z0] = lim
z!z0

d

dz
((z � z0)

2f(z)).

(3) If f(z) and g(z) are analytic at z0, and g(z) has a simple zero at z0, then Res[f(z), z0] =
f(z0)

g0(z0)
.

(4) If g(z) is analytic at z0 and has a simple zero at z0, then Res[f(z), z0] =
1

g0(z0)
.

(1) and (2) and Problem 3(a) are proved by writing out the Laurent series and then multiply

by (z � z0)order of z0 to get a power series. Then we find a�1 by doing a Taylor series coe�cient

computation. (3) follows from (1) by writing (z � z0)
f(z)
g(z) = f(z)

g(z)�g(z0)
z�z0

before taking the limit. (4)

is a special case of (3).

In Lessons 32 and 33, we will use the Residue Theorem to help us evaluate some real integrals
which may look impossible to calculus students. Afterwards, we will use the Residue Theorem
to count the sum of the number of zeros and poles inside a region. Liouville’s Third Theorem is
related to this last point. Liouville’s First and Second Theorems are Problem 5.
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Lesson 32 The residue calculus – contour integrals

1. Consider the integral

Z 1

�1

dx

x2 + 9
.

(a) Find its value using method from Calculus I.

(b) Find its value using contour integral.

2. Prove that

Z 1

�1

cos 2x

x2 + 9
dx =

⇡

3e6
. Consider integrating ei2z

z2+9 .

3. Find the value of

Z 1

�1

sin2 x

x2 + 9
dx. Note that sin2 x = 1�cos 2x

2 . So you can find the answer

to this problem simply by using the answers to Problems 1 and 2.

4. Find the values of the following integrals.

(a)

Z 1

�1

1

(x2 + 1)5
dx. 123

(b)

Z 1

�1

1

x4 + 1
dx.

5. Some real variable integrals can be converted to complex contour integrals directly without
a limiting process. This is particular so for integrals of rational functions of trigonometric
entries. The simplest nontrivial case is the following

Z 2⇡

0

d✓

a± cos ✓
,

where a > 1.

(a) Show that the value of this integral is 2⇡p
a2�1

. The whole proof for the “+00 case is on

pages 203 and 204 of our textbook. The conversion from the real to the complex is
through z = ei✓ and note that dz = izd✓ and cos ✓ = ei✓+e�i✓

2 = z+1/z
2 .

(b) Consider the Poisson kernel we saw in Lesson 1, which played a role when we studied
harmonic functions in Lesson 14,

Pr(✓) =
1� r2

1� 2r cos ✓ + r2
,

which came from Pr(✓) = 1 + z
1�z + z

1�z = 1�|z|2
|1�z|2 , where we then substitute z = rei✓.

Use the result from (a) to show that for all 0  r < 1,
Z 2⇡

0
Pr(✓)

d✓

2⇡
= 1.

123Recall that you had already calculated the residue of the integrand at i. It’s 35/(256i).
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Lesson 32 Summary

Whenever we learn something new, we can check it against something we encountered before,
and see if we can solve any puzzles we couldn’t do or whose solution is cumbersome before. Someone
said this before. I don’t remember who. Perhaps Richard Feynman.

This applies to the residue theorem particularly: The residue theorem allows us to solve some
real integrals over the entire number line or half of it by expressing it using complex line integral,
which in turn can be solved by quoting the residue theorem. Today, we considered the situationR1
�1 f(x)dx, where f(x) is a rational function or a trigonometric function times a rational function
which does not vanish at any real number. The strategy is to find a complex function g(z), and then
consider a domain D, which for today is the upper half disk centered at 0 with radius R, that could
contain some isolated singularities of g(z). Then on the one hand,

R
@D g(z)dz can be calculated by

using the residue theorem. On the other hand,
R
@D g(z)dz is the sum of

R R
�R g(x)dx and

R
�R

g(z)dz,
where �R is the semi-circle with radius R. Typically, using the LM -estimate, the modulus of the
second integral can be shown to be smaller than a constant times 1

Ra , where a > 0. Then after

taking the limit R ! 1, this integral goes to 0. The first integral, containing
R R
�R f(x)dx, which

in the limit is what we want to find:
R1
�1 f(x)dx. Therefore, we have connected what we want to

find to 2⇡i times the sum of the residues.

For example, when the integrand is a rational function f(x) = P (x)
Q(x) where the degree of Q(x)

is at least 2 larger than the degree of P (x), and Q(x) is not zero on the real line, then to findR1
�1 f(x)dx, we just let g(z) = f(z), i.e, consider

R
@D

P (z)
Q(z)dz, which can be evaluated using

residue’s theorem. The
R
�R

P (z)
Q(z)dz part has modulus smaller than

3
2 |am|Rm

1
2 |bn|Rn ⇡R = 3|am|⇡

|bn|
1

Rn�m�1 ,

where P (z) = amzm + · · · + a0 and Q(z) = bnzn + · · · + b0, and by assumption n � m+ 1. Thus,

once we let R ! 1,
R
�R

P (z)
Q(z)dz goes to 0. The other part of the line integral becomes

R1
�1

P (x)
Q(x)dx,

whose value is the residue result.

We also considered integral of the form
R1
�1 cos axP (x)

Q(x)dx for some a > 0, where the degree of

Q(z) is again at least 2 larger than that of P (z). In this case, using cos az P (z)
Q(z) , would not be a

good idea, because along the imaginary axis z = iy, cos az = eiaiy+e�iaiy

2 = e�ay+eay

2 , which grows

unbounded as we enlarge the radius of the half circle. Instead, we use eiaz P (z)
Q(z) . Then ML-estimate

can be used to show that the integral over �R goes to 0 as R ! 1 as |eiaz| = |eia(x+iy)
| = e�ay

 1.

The other part
R R
�R eiax P (x)

Q(x)dx then becomes
R1
�1 cos axP (x)

Q(x)dx+ i
R1
�1 sin axP (x)

Q(x)dx. After equat-

ing with the residue result, we have both
R1
�1 cos axP (x)

Q(x)dx and
R1
�1 sin axP (x)

Q(x)dx.

Sometimes, a real variable integral can be directly written as a complex line integral without
doing ML-estimation. Problem 5 is such an example.
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Lesson 33 The residue calculus cont’d

1. This is a review question: in class, we calculated the integral

Z 1

0

x�a

1 + x
dx, 0 < a < 1, for

which we used the following two facts. Prove them by using ML-estimates.

(a) |

Z

�R

z�a

1 + z
dz| 

R�a

R� 1
· 2⇡R, where �R is a big circle centered at 0 with radius R.

(b) |

Z

�✏

z�a

1 + z
dz| 

✏�a

1� ✏
2⇡✏, where �✏ is a small circle centered at 0 with radius ✏.

2. Prove that

Z 1

0

xa

(1 + x)2
dx =

⇡a

sin(⇡a)
, where 0 < a < 1. 124

3. This problem concerns the fractional residue theorem and its application.

(a) State and prove the fractional residue theorem.

(b) Why doesn’t the fractional residue theorem hold for poles of orders other than 1?

4. Use an indented upper half disk, the residue theorem, and the fractional residue theorem

to show that PV

Z 1

�1

1

x5 � 1
dx = �

2⇡

5
(sin

2⇡

5
+ sin

4⇡

5
). 125

5. Prove that

Z 1

�1

sinx

x
dx = ⇡ by integrating f(z) = eiz

z along an indented upper half disk.

You have solved the most di�cult part in Problem 5 of Lesson 15. 126

124The solution is on page 206-207 of our textbook.
125After applying the residue theorem and the fractional residue theorem to f(z) = 1

z5�1
and taking the limits,

we have limR!1
R
�R

f(z)dz + I �
⇡i
5 = 2⇡i

5 (e
2⇡i
5 + e

4⇡i
5 ), where I denotes this principal value integral, �⇡i

5 is the

fractional residue of f(z) at z = 1 with negative angle. The right-hand-side is 2⇡i times the sum of the residues of
f(z) at the two fifth roots of unity inside the indented upper half disk.

126The full solution is on page 217-218 of our textbook.
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Lesson 33 Summary

Today, we continued our study of contour integrals by focusing on two topics: (1) integrals with
branch points, and (2) fractional residues.

When we evaluate integrals like
R1
0

x�a

x+1dx, where 0 < a < 1, by doing contour integral of

f(z) := z�a

z+1 , we have to be careful about the numerator z�a, which is defined as e�aLogz, for a
suitable definition of a continuous branch of Logz. So whatever the region D we choose, it should
lie in a slit plane. For this integral, we choose [0,1) as the slit, and the region D is the keyhole
region bounded inside by the small circle �✏ with radius ✏, outside by the large circle �R with radius
R, both centered at 0, and with two edges from ✏ to R, one slightly above the x-axis, and the other
slighly below, so that D avoids [0,1). Then we can apply the residue theorem to f(z) over @D.

The important part of this process is the expression of z once we trace over @D. When we start
by tracing along the top edge from ✏ to R, we can choose z = xei0 = x, where x goes from ✏ to R.
Then as we trace over �R, z = Rei✓ where ✓ changes from 0 to 2⇡. So as we trace along the lower
edge from R to ✏, z = xei2⇡, where x decreases from R to ✏. Finally, over �✏, z = ✏ei✓, and ✓ goes
from 2⇡ back to 0. Note that along the lower edge z = xei2⇡, where x decreases from R to ✏, if we
don’t have the “fractional ”power z�a, we can just remove ei2⇡ as it’s just 1. However, if we plug

z = xei2⇡ into f(z), we have (xei2⇡)�a

1+xei2⇡ = e�i2⇡a x�a

1+x , where e�2i⇡a
6= 1. This will contribute a term

to the contour integral in the equation from the residue theorem.

Now about fractional residues. Certain contours have to avoid a singularity of f(z) on its way,
by moving along an arc of a circle with angle ↵ around the singular point. When this point is a
simple pole, then as the radius of the small circular arc goes to 0, the integral along this small
circular arc is ↵ia�1 where a�1 is the residue of f(z) at this singular point, i.e., the coe�cient
of the �1th power in the Laurent series expansion of f(z) at this simple pole. This is called the
fractional residue theorem. If the arc is the full circle, then we recover the usual residue theorem
for simple pole.

The fractional residue theorem is quite useful, in its flexibility with the choice of the angle ↵ and
thus of the choice of the shape of D. However, it doesn’t hold for poles of orders higher than 1 in
general. There is always a balance.
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Lesson 34 The argument principle

1. Let f(z) = (z � 1)2023(z � 2)2024(z � 3)2025(z � 4)2028. Prove that

1

2⇡i

Z

|z|=5

f 0(z)

f(z)
dz = 902.

2. Use the argument principle to show that

ez = 1

has one and only one solution inside the horizontal strip �⇡ < Imz < ⇡. 127

3. Suppose f(z) is analytic on D and � is a simple closed curve in D such that the value of
f(z) on � is in C\(�1, 0]. Prove that f(z) does not have any zero inside the curve �.

4. Suppose D is bounded with piecewise smooth boundary @D. Let f be meromorphic on D
and extends to be analytic on D [ @D such that f(z) 6= 0 on @D. Furthermore, let g(z) be
analytic on D [ @D. Show that

1

2⇡i

Z

@D
g(z)

f 0(z)

f(z)
dz =

nX

i=1

Nig(zi),

where z1, · · · , zn are the distinct zeros and poles of f(z) with order Ni. This is called
the generalized argument principle. Its proof should be almost the same as that for the
argument principle.

5. Here continues Problem 5 of Lesson 31. Recall that a function is doubly periodic if there are
complex numbers !1 and !2 which do not lie on the same line such that f(z + !1) = f(z)
and f(z + !2) = f(z). Let D be the parallelogram {z

��z = t!1 + s!2, 0 < t, s < 1}. Prove
the following Liouville’s Third Theorem. 128

Suppose f is meromorphic and doubly periodic on C with neither zeros nor poles on
@D. Then the number of zeros of f equals the number of poles of f , both counted with
multiplicity.

127Consider the logarithmic integral of f(z) = e
z
�1 over the rectangle with vertices ±R±i⇡ and then let R ! 1.

128Apply the argument principle to f(z) and also use the proof of Liouville’s Second Theorem.
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Lesson 34 Summary

The argument principle relates the number of zeros and poles of a meromorphic function (or an-
alytic function if no poles) inside a region, which is number-theoretic, to the number of times a
curve wraps around the origin, which is topological. These two seemingly unrelated notations are
connected by analysis, using an integral appearing in the residue theorem.

In fact, the argument principle is a special application of the residue theorem, where the function

integrated is f 0(z)
f(z) . You may have recognized that f 0(z)

f(z) looks like the derivative of a logarithmic

function: it is (Logf(z))0 by the chain rule, and Logf(z) by definition is the sum ln |f(z)|+iArgf(z).
That’s where angle comes into play. There is a caveat there: f(z) may not be in the domain of
Log( ), which is a slit plane, not the whole plane. We will come back to this later. On the other

hand, the residue of f 0(z)
f(z) at a pole turns out to be the multiplicity of a zero or a pole of f(z).

Here is a precise statement of the argument principle.

The argument principle. Let D be a bounded domain with piecewise smooth @D, and f a
meromorphic function on D which extends analytically across @D such that f(z) 6= 0 on @D. Then

N0 �N1 =
1

2⇡i

Z

@D

f 0(z)

f(z)
dz =

� arg f(@D)

2⇡
,

where N0 is the total number of zeros of f inside D counted with multiplicity, N1 is the total
number of poles inside D counted with multiplicity, and � arg f(@D) is the total angle change if we

trace along the curve f(@D) once, and thus � arg f(@D)
2⇡ is the number of times f(@D) wraps around

the origin, called the winding number of f(@D).

As f(z) 6= 0 over @D, f(z) is always a nonzero vector, and thus arg f(z) always makes sense.

Let’s prove both equalities. For the first, residue theorems says 1
2⇡i

R
@D

f 0(z)
f(z) dz is the sum of

residues of f 0(z)
f(z) inside D. To see what a residue is, let z0 be a zero or a pole of f(z), so

f(z) = (z�z0)Ng(z) for some analytic g(z) with g(z0) 6= 0 and some nonzero integer N . When N is
positive, z0 is a zero of order N . When N is negative, z0 is a pole of order �N (or we can just say it’s

a pole of orderN depending on the context). Thus, f 0(z)
f(z) = N(z�z0)N�1g(z)+(z�z0)Ng0(z)

(z�z0)Ng(z)
= N

z�z0
+ g0(z)

g(z) ,

where g0(z)
g(z) is analytic near z0 as g(z0) 6= 0. Therefore, the residue of f 0(z)

f(z) at z0 is N , the order of
the singularity at z0! Thus, summing over all the zeros and poles, we have the first equality.

For the second, as the antiderivative of f 0(z)
f(z) locally is log f(z), we have 1

2⇡i

R
@D

f 0(z)
f(z) dz =

1
2⇡i log f(z)

��z=zf
z=z0

where z0 is any initial point on @D and zf is the final point on @D as we traverse
it once, which presumably is the same as z0. However, what we really mean here is that we are
keeping track of how log f(z) changes as we move along @D. f(z0) and f(zf ) should be interpreted
as living on the Riemann surface of log( ). Furthermore, as log f(z) = ln |f(z)| + i arg f(z), and

ln |f(z)|
��z=zf
z=z0

= 0, we have 1
2⇡i

R
@D

f 0(z)
f(z) dz = 1

2⇡� arg f(@D), the total angle change along f(@D)

divided by 2⇡. Practically, to see how the angle accumulates, we can cut f(@D) into several pieces
such that each piece lies in a slit plane, then we can use an analytic branch of log z on this slit
plane to calculate the angle change. Finally, we add them up, which is the total angle change.
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Lesson 35 Rouché’s Theorem

1. Prove that 2z5 + 6z � 1 has four roots in the annulus 1 < |z| < 2.

2. Let D be the rectangle with vertices iR, �R+ iR, �R� iR and �iR. For any R > 4, prove
that ez = z + 2 has exactly one solution in D. 129

3. Let’s prove the Fundamental Theorem of Algebra one last time. Suppose

p(z) = anz
n + · · ·+ a0

is a polynomial of degree n � 1. Show that p(z) = 0 has a solution. 130 131

4. In Rouché’s Theorem, f and h are assumed to be analytic on D [ @D, so only zeros were
considered. In this problem, poles are also considered. So let domain D be bounded with
piecewise smooth @D, and suppose f(z) and h(z) are meromorphic on D [ @D with poles
only in D. Furthermore, suppose

|h(z)| < |f(z)|

on @D. Show that the number of zeros minus the number of poles inside D are the same
for both f(z) and f(z) + h(z). 132

5. Prove the symmetric version of Rouché’s Theorem: Let domain D be bounded with
piecewise smooth @D. Suppose f(z) and g(z) are analytic on D [ @D and

|f(z) + g(z)| < |f(z)|+ |g(z)|

over @D. Show that f(z) and g(z) have the same number of zeros in D. 133

129
f(z) = z + 2, h(z) = �e

z.
130The proof is on page 230 of the textbook. To fill in more details, let f(z) = anz

n and h(z) = an�1z
n�1+· · ·+a0.

Then limz!1
h(z)
zn = 0. Thus, responding to ✏ = |an|, there is R large enough such that if |z| � R, |h(z)zn | < |an|,

which means |h(z)| < |anz
n
| = |f(z)|.

131In fact, the proof shows directly that p(z) = 0 has n solutions without using the iterative Euclidean algorithm.
132The proof is the same as that of Rouché’s Theorem, except that the number of poles is added to the equation.
133Similar to the proof of the ordinary version of Rouché’s Theorem, we write f(z) = g(z) f(z)g(z) and thus arg f(z) =

arg g(z) + arg f(z)
g(z) . On the other hand, divide |g(z)| from both sides of |f(z) + g(z)| < |f(z)|+ |g(z)|, then we have

|
f(z)
g(z)+1| < |

f(z)
g(z) |+1. This shows f(z)

g(z) has to fall in C\[0,1), which can be shown by noticing that | f(z)g(z)+1| = |
f(z)
g(z) |+1

if f(z)
g(z) is a nonnegative real number.
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Lesson 35 Summary

The argument principle we discussed in Lesson 35 applies to meromorphic functions whose zeros
and poles are not on the boundary @D of the bounded domain D. Rouché’s Theorem is simply an
application of this principle to the simpler analytic functions which can be decomposed into a big
function and a small function. The theorem says the small function can be neglected if you want
to count the number of zeros of the original function inside D. To be precise:

Rouché’s Theorem. Let D be a bounded domain with piecewise smooth boundary @D. We
also assume f(z) and h(z) are analytic on D [ @D. If |h(z)| < |f(z)| on @D, then the number of
zeros of f(z) + h(z) and f(z) in D are the same.

The proof contains an interesting topological idea. First of all, the inequality |h(z)| < |f(z)|
guarantees that no zeros of f(z) and f(z) + h(z) are on @D, which is a condition to quote the
argument principle. If f(z) is ever 0 on @D, then |h(z)| < |0|, which cannot be true. If f(z) + h(z)
can ever be 0, then |h(z)| = |�f(z)| = |f(z)|, contradicting |h(z)| < |f(z)|. Then, by the argument

principle, the number of zeros insideD of f(z) and f(z)+h(z) are � arg(f(@D)
2⇡ and � arg(f(@D)+h(@D))

2⇡ ,

respectively. However, as f(z) + h(z) = f(z)(1 + h(z)
f(z)), arg(f(z) + h(z)) = arg f(z) + arg(1 + h(z)

f(z)).

Since |h(z)| < |f(z)|, we have |
h(z)
f(z) | =

|h(z)|
|f(z)| < 1, and thus h(z)

f(z) lies inside the unit disk. Hence,

1+ h(z)
f(z) lies in the unit disk centered at 1. In particular, it misses the slit (�1, 0]. Therefore, once

z travels over @D once, 1 + h(z)
f(z) wraps around 0 zero times. So � arg(f(@D)

2⇡ = � arg(f(@D)+h(@D))
2⇡ ,

which implies that f(z) + h(z) and f(z) have the same number of zeros minus poles in D.

That � arg(f(@D)
2⇡ = � arg(f(@D)+h(@D))

2⇡ above was proved partially by algebra and partially by
analysis. However, if you model it using real-world examples, it’s quite clear. Imagine f(z) describes
the motion of you on the plane as z goes over @D, and h(z) the motion of a puppy relative to you.
Since |h(z)| < |f(z)| is always true, as z goes over @D once, the puppy f(z) + h(z) and you f(z)
wrap around 0 the same number of times, no matter how wildly the puppy runs around you. Draw
a picture, or just imagine it!134 On the other hand, we can also model f(z) as the motion of the
earth around the sun, and h(z) as the motion of the moon relative to the earth. Then the winding
number of the moon around the sun and that of the earth around the sun have to be the same for
the same reason. 135

134I learned this in a complex analysis class taught by Steven R. Bell in graduate school.
135I learned this from an article by Donald G. Saari. The article quoted Wintner’s 1941 book, The Analytical

Foundations of Celestial Mechanics, which mentioned the astronomy origins of Cauchy and Rouché’s discoveries in
complex analysis.
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Lesson 36 The Schwarz lemma and automorphisms of the unit disk

1. Prove136 the following version of the Schwarz Lemma for disks not necessarily centered at
the origin: Suppose f is analytic on |z � z0| < R and |f(z)|  M . If f(z0) = 0, then

(a) |f(z)|  M
R |z � z0| if |z � z0| < R.

(b) If |f(z0)| = M
R |z0 � z0| for some z0 in 0 < |z � z0| < R, then f(z) = �(z � z0) for some

� with |�| = M
R .

2. The above version of the Schwarz lemma just assumes that z0 is a zero f without specifying
its order. If we do, then we get a sharper version. Prove the following: Suppose f is analytic
on |z � z0| < R and |f(z)|  M . If z0 is a zero of order m of f(z), then

(a) |f(z)|  M
Rm |z � z0|m if |z � z0| < R.

(b) If |f(z0)| = M
Rm |z0 � z0| for some z0 in 0 < |z � z0| < R, then f(z) = �(z � z0)m for

some � with |�| = M
Rm .

3. Prove137 the following infinitesimal version of the Schwarz Lemma: Let f be analytic on D.
Suppose |f(z)|  1 for each z 2 D and f(0) = 0, then

(a) |f 0(0)|  1.

(b) If |f 0(0)| = 1, then f(z) = �z for some � with |�| = 1.

4. In the above infinitesimal version of the Schwarz Lemma, the condition f(0) = 0 can be
removed. Show that if f is analytic on D and |f(z)|  1 for each z 2 D, then |f 0(0)|  1.
138

5. Let’s prove the following fact used in class: If f : D ! C is analytic and one-to-one on D,
then f 0(z) 6= 0 for all z 2 D. (Note that this is false in calculus, as f(x) = x3 is analytic
and one-to-one on R but f 0(0) = 0.) 139

136It’s on page 260 and 261 of our textbook. I would say adapting the proof of the Schwarz Lemma directly is
easier.

137It’s on page 261 of our textbook.
138Say f(0) = a. Then apply the above infinitesimal version of the Schwarz Lemma to 'a � f(z), where 'a(z) =

z�a
1�az .

139We can prove, for example, of the contrapositive. Suppose f is analytic on D and there is z0 2 D such that
f
0(z0) = 0. Then it will turn out that f cannot be one-to-one. This can done as follows: Consider the power series

expansion
P1

k=0 ak(z � z0)
k of f . As a1 = f

0(z0) = 0, this power series becomes f(z) = a0 + aN (z � z0)
N + · · · for

some N � 2. Thus, f(z) = a0 +(z� z0)
N
h(z) where h(z0) 6= 0. Similarly to what we did for Problem 3 of Lesson 27,

we have f(z) = a0 + g(z)N with g(z0) = 0 and g
0(z0) 6= 0. Thus, by the inverse function theorem (Lesson 8), there

are open sets U of z0 and V of 0 such that g : U ! V is one-to-one. So, for r and re
i2⇡/N in V , there are z1 6= z2 in

U such that g(z1) = r and g(z2) = re
i2⇡/N . You see, the proof will be done after one more sentence.
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Lesson 36 Summary

The automorphism group of the unit disk D, denoted by Aut(D), consists of all bijective analytic
maps from D to itself. Composition of functions, which is associative, serves as the group operation.
The identity element is the identity map z 7! z. For any f 2 Aut(D), f�1 : D ! D is also analytic,
and thus f�1

2 Aut(D). To see why f�1 is analytic, note that f being one-to-one implies that
f 0(z) 6= 0 for all z 2 D (This is Problem 5). Thus, by the complex inverse function theorem, f�1 is
locally and thus globally analytic. Because f 0(z) 6= 0, we see that f is conformal. Indeed, Aut(D)
is called the group of conformal self-maps of the unit disk.

Mathematicians are greedy, as they often want to find all things with a certain property. In the
case of Aut(D), they are quite successful:

Theorem. Aut(D) = {�
z � a

1� az
: |a| < 1, |�| = 1}. So each element in this group is a special

fractional linear transformation 'a(z) :=
z�a
1�az we studied in Lesson 1 followed by a rotation, and

as a topological space, Aut(D) is a solid donut without glaze.

The proof of this theorem depends on a lemma with far-reaching consequences beyond Lesson
36, though its proof uses nothing but power series and the maximum principle.

The Schwarz Lemma. Let f be analytic on the open unit disk D. Suppose |f(z)|  1 for each
z 2 D and f(0) = 0. Then

(1) |f(z)|  |z| for all z 2 D.

(2) If |f(z0)| = |z0| for some z0 6= 0, then f(z) = �z for some � with � = 1.

The power series part comes in the condition f(0) = 0, from which we get f(z) = zg(z) for some
analytic function g(z) after factoring z out of the terms of the power series expansion of f(z) at 0. So
|f(z)| = |z||g(z)|. If we can show |g(z)|  1, then we done. To see why this is the case, let 0 < r < 1.

And consider the circle |z| = r, on which we have |g(z)| = |f(z)|
|z| = |f(z)|

r 
1
r . Thus, by the maximum

principle, |g(z)|  1
r over |z|  r. Therefore, for any z 2 D, |g(z)| = limr!1 |g(z)|  limr!1

1
r = 1,

and hence |g(z)|  1. Thus, (1) |f(z)|  |z|. To prove (2), note that if |f(z0)| = |z0| for some
z0 6= 0, then |g(z0)| = 1, which means the maximum value of |g(z)| is attained in the interior of
D. Thus, g(z) is a constant with |g(z)| = 1. Letting this constant be � concludes the proof. A few
generalizations of the Schwarz Lemma are proved in similar ways.

One application of the Schwarz Lemma is the following Corollary: If f 2 Aut(D), and f(0) = 0,
then f(z) = �z for some � with |�| = 1. The proof shows a typical way to deal with a function
which can go both ways. If we apply the Schwarz Lemma to f , then |f(z)|  |z|. If we apply the
Schwarz Lemma to f�1, then we get |f�1(w)|  |w|. Writing w = f(z), we have |z|  |f(z)|. Thus
|f(z)| = |z|, which by the second part of the Schwarz Lemma, says f(z) = �z for some � with
|�| = 1.

Now the proof of the Theorem follows by using 'a(z), which is itself an element in Aut(D) as
'a maps the unit circle to the unit circle as shown in Problem 4 of Lesson 1 and f maps a to 0 and
thus the inside the circle to the inside the circle. For any h 2 Aut(D), let a = h�1(0) and consider
h �'�1

a , which is in Aut(D). Note that this composite map sends 0 to 0, so we can apply the above
corollary to it, from which we get h � '�1

a (w) = �w and thus h(z) = �'a(z).
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