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Motivation

I Trend 1: Secular decline in measures of dynamism

I Job Creation, Job Destruction, and Reallocation Rates (Decker et al., 2014)
I Worker Reallocation Rates (Davis and Haltiwanger, 2014)

I Geographic, Demographic, and Industry changes do not explain all of the decline (at
most 35%)

I Entrepreneurship (Decker et al., 2014, 2020)
I High Growth Young Firms (Decker et al., 2016)
I Migration Rates (Molloy, Smith and Wozniak, 2013)

I Should we be worried?

I Adverse implications for productivity if due to rising frictions and distortions
I Alternative hypothesis is that patterns reflect changing business structure

I e.g., large, global chains in retail trade are more stable and productive
I Rising Markups (De Loecker and Eeckhout, 2020)

I Both hypotheses might be true. If latter dominates, why has productivity growth
been so anemic since early 2000s (and potentially earlier)? (Gordon, 2016)
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Motivation

I Trend 2: Increased Dispersion in productivity and growth rate distributions (Decker et al.,
2020)

I Should we be worried?

I Shocks or Responsiveness? (Decker et al., 2020)
I Fundamentals or Distortions?

I Standard macro models interpret revenue productivity dispersion as increased
misallocation (Hsieh and Klenow (2009), Bils, Klenow and Ruane (2020))

I Measured allocative efficiency (AE) declines in U.S. manufacturing, especially
post-2000

I Due to rising dispersion in revenue productivity (TFPR) and increasing correlation
between TFPR and TFPQ (Blackwood et al. (2021))
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What is Causing the Decline in Measured Allocative Efficiency in the US?

Authors’ calculations using Census micro data of U.S. manufacturing, 1972-2015.
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Our Approach
Decompose Standard Allocative Efficiency Measure

I Scale vs. Input Mix Distortions

I Many sources of measured misallocation, some frictions/distortions impact all inputs
equally, others impact factor mix
I Pure scale sources: markups, measurement error in revenue
I Pure mix sources: heterogeneous technologies
I Mix and scale effects: adjustment frictions

I We develop a decomposition that distinguishes scale and mix components.
I We find both components are important

I Industry Contributions

I Decline in AE is largely a within-industry phenomenon, characteristic of most
industries, but...

I Much of the overall decline can be explained by a few narrowly defined industries

To-do List:

I Shocks vs. Responsiveness and misallocation
I Construct model with candidate mechanisms

I Compare decompositions simulated output to decompositions of dataBlackwood-Haltiwanger-Wolf Allocating Misallocation 5/29



The Framework
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Composite distortion in HK

I Under common assumptions, ARPX ∝ MRPX , and so should be equalized across plants

I Commonly used measure of productivity TFPRCS variation is solely due to distortions
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Identifying and Decomposing Distortions

I Can estimate plant-level distortion from TFPRCS : τis ∝ Ris

∏j X
αjs
ijs

I Under CRS, can obtain estimate of Ais (sometimes called TFPQ): Ais ∝ R
1

ρs
is

∏j X
αjs
ijs

I Need alternative procedures under NCRS (Blackwood et al., 2021)

I For individual distortions, need an assumption (Nj equations, Nj + 1 unknowns)
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I Note, if no distortions, Ris
TCis

= 1
ρsγs

,
αjs
cijs

= 1 ∀j
I Example to motivate: Only idiosyncratic distortion are markups (τijs = 0)

I Markup: µis = Ris/TCis ∝ (1− τR
is )
−1 ; cijs = αjs ∀j

I Only scale effects, no mix effects
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Scale vs. Mix Decomposition: Our Normalization

Idea: Normalize distortions so that mix only impacted by input distortions, markup by τR
is

(
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What does this mean in words?

I Common distortions across inputs (the full extent or “scale” of the plant) loaded on τR
is .

I Heterogeneity in plant-level markups is due to dispersion in scale distortion.

I Variation in input mix loaded on input distortion
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Scale vs. Mix Decomposition

With these assumptions/results in hand, some considerations:

I Can identify scale vs. mix distortions with readily computable moments.

I The “distortions” themselves should be taken seriously, not literally (think latent variables
approach)

I Normalizing means we are building in assumptions, which help with interpretation

I Many sources of misallocation (e.g., adjustment frictions) have both mix and scale effects.

I Pure scale sources include: markups, measurement error in revenue (only)

I Pure mix sources potentially includes specification error (e.g., heterogeneous technologies)

I Different effects on measured and true AE: some of these (i.e., measurement and
specification error) imply decline in measured but not actual AE

I Also... you can now forget about γs , which will now be 1
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Key Equations: Allocative Efficiency Decomposition
With a heave dose of algebra, can show Sectoral TFP :
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Key Equations: Allocative Efficiency Decomposition
Sectoral TFP
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Key Equations: Allocative Efficiency Decomposition
Sectoral TFP
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AE−rev also interpretable as AE due to mix distortions only.
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Key Equations: Allocative Efficiency Decomposition
Sectoral TFP
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Key Equations: Allocative Efficiency Decomposition
Sectoral TFP
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Data

CMP Dataset: 1972-2015

I Multi-year collaborative project between Census and BLS to produce microproductivity
dataset

I ASM/CM data (ASM sample only, weighted): revenue, expenditures, inputs, industry

I Capital stock built using perpetual inventory method

I External data on rental prices, deflators, etc. from BLS, NBER, BEA

I Cleaning: trim 1% tails on Average Revenue products, only include plants with positive
measured profit

Implementation

I Key parameters (output elasticities, demand elasticities) estimated within the dataset
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One last detail... Parameters

We do not obtain parameter values from external sources, which has the following implications:

1. Internally consistent estimation of αjs ’s using cost shares requires τjs = τks ∀j , k .

2. Given (1), estimate of ρsγs from DeLoecker Warzynski method requires:(
1− τR

S

)
= (1 + τsj ) ∀j =⇒ (1 + τijs) =

αjs

cijs
(1)

3. Our normalization + (1) =⇒ τjs = 0, ∀j .

4. Likewise (1)+(2)+(3) =⇒ τR
s = 0.
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Scale/mix distortions about equally important. AE much higher without TFPQ dispersion even
with idiosyncratic distortions, suggesting correlation between TFPQ and TFPR is important.
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AE and Covariance between “Fundamentals” and “Distortions”

Why does TFPQ dispersion matter so much?

I Most of the literature focused on dispersion in TFPRCS (distortions)
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Whole of the covariance structure matters:standard deviations of distortions and fundamentals,
AND correlation
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Moments of TFPQ and “Distortions”

Decomposition shows rising dispersion in both scale and mix distortions.
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Moments of TFPQ and “Distortions”: 1972-2015

Increased correlation between TFPQ and overall distortion has both scale and mix components.
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How Much of This is an Industry Story?
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A Closer Look at Aggregate AE

Q = ∏
s

Qθs
s

Turns out, this implies a similar structure for both aggregate TFP and AE:

AE = ∏
s

AE θs
s

Taking logs:
log (AE ) = ∑

s

θs log (AEs)

This is very nice! Can easily be separated/decomposed. Changes too:

∆log (AEt) = ln (AEt)− ln (AEt−1)

Note: Does not need to be t − 1 to t, can be any two periods
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FHK Industry Decomposition

∆ln(AEt) = ∑
s

θs,t−1∆ln (AEs,t)︸ ︷︷ ︸
Within

+∑
s

(θs,t − θs,t−1) ln (AEs,t−1)︸ ︷︷ ︸
Between

+∑
s

(θs,t − θs,t−1)∆ln (AEs,t−1)︸ ︷︷ ︸
OP Covariance

Log Change Within Between OP Cov.
in AE Term

Baseline AE −0.668 −0.496 −0.0647 −0.1073
Revenue Distortions Only −0.143 −0.1026 −0.0263 −0.0141
Mix Distortions Only −0.1211 −0.1313 −0.0303 0.0404

Table: FHK Decomposition of Allocative Efficiency Change from 1997 to 2011
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No Refineries Counterfactual: 1972-2015
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FHK Industry Decomposition

Log Change Within Between OP Cov.
in AE Term

Total MFG −0.668 −0.496 −0.0647 −0.1073
Refineries −0.3329 −0.0993 −0.0592 −0.1745
Automobiles −0.0715 −0.1191 0.0024 0.0452
Plastics −0.0238 −0.0181 −0.0006 −0.0051

Table: Industry Decomposition of Allocative Efficiency Change from 1997 to 2011
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Discussion of Industry Analysis

I On the one hand, declining AE is a broad-based phenomenon in the manufacturing sector

I On the other hand, three industries (in particular one) greatly influences the overall
decline

I How to handle these industries?

1. Determine if they share enough similarities with broader sector to serve as
illustrations

2. Explore the idiosyncratic factors contributing to industry-specific declines
I Refineries: Oil prices, fracking, weather, pipeline reversals, regulation, high fixed costs

I Lessons for aggregation

I Does Cobb-Douglas give undue influence to individual industries?
I What are costs/benefits to alternative demand structures for macroeconomists?

I We want to preserve tractability for this class of models: useful accounting
I Can supplement with more flexible models

I Input-Output
I “Roundabout” production readily implemented (Typically amplifies decline in AE)
I Importance of I-O emphasized by Baqaee and Farhi (2020, etc.)
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Summary
Key Findings:

I Both scale and mix distortions about equally important for declining AE (literature has
focused mostly on scale!)

I Importance of TFPQ dispersion

I Declining AE is a broad-based phenomenon, but quantitatively, a few industries dominate

Tentative Implications for Specific Mechanisms (work in progress):

I Rising idiosyncratic markups or revenue measurement error can account for at most half
of declining AE (scale)

I Rising heterogeneity in production technology can account for at most half of declining
(measured) AE (mix)

I Either multiple mechanisms at work or mechanism (e.g., adjustment costs) that has
both scale and mix effects

I Alternate Aggregation

I Industry specific explanations are important for the aggregate
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Next Steps

I Explore responsiveness in manufacturing sector

I Employment and Materials

I Construct quantitative model, simulate, compare output

I E.g. we know adjustment cost model can generate dispersion in TFPR and lower
responsiveness in employment
I Correlation between TFPQ and TFPR?
I Mix vs. scale distortions?

I Discuss role of individual industries

I Explore alternative aggregation
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