Lab 7 - t-Tests Goal: To gain experience with hypothesis tests for a mean, and to become familiar with using Rcmdr to run such hypothesis tests. ### Part 1 – A One-Sample t-Test We'll continue using our classroom data. For the purposes of this lab, we're going to treat our class as a random sample of Amherst College students. You may or may not agree with this, but we'll assume it is true. Let's focus on the heights of Amherst College students. We'll consider the HEIGHT variable. According to the National Health Statistics Report number 10 (October 22, 2008), the average height of 20+ American males is 69.5 inches and the average height of 20+ American females is 64 inches. Some summary statistics and graphs of the class data are given below. We'll begin by testing whether the mean height of Amherst College males differs from the national average of 69.5 inches by hand. To do that, compute the sample mean and standard deviation for HEIGHT by GENDER. #### Go to: Statistics → Summaries → Numerical Summaries Select HEIGHT as the variable. Click the "Summarize by Groups" button and select GENDER as the grouping variable. - Q1] Give the sample size, sample mean, and standard deviation of HEIGHT for both genders. - **Q2**] Discuss whether the assumptions of the one-sample *t*-test are satisfied. - **Q3**] State the hypotheses for testing whether the mean height of Amherst College males is more than that of the national average. - **Q4**] Compute the test statistic value $\left(t_{n-1} = \frac{\bar{y} \mu_0}{s}\right)$. - **Q5**] The *p*-value of this test can be found using the *t*-Table in your textbook as I described in class. You can also use Rcmdr. Go to: Distributions → Continuous distributions → t distribution → t probabilities Input the *t*-statistic value, degrees of freedom, and whether you want the upper or lower tail probability. What is the *p*-value of your test? - **Q6**] What do you conclude from your hypothesis test? - **Q7**] Compute and interpret the 90% confidence interval for the mean height of Amherst College men. #### A one-sample *t*-test using Rcmdr Rcmdr can also do hypothesis tests for us, but it needs the raw data. Let's read in the classroom data we've used before. Note that it is still available on the course CMS site. To open it in **Rcmdr**, follow the following steps: - 1. Click Rcmdr Window, and select **Data > Import data > from Excel**, **Access**, **or dBase data set...**. - 2. In the window that opens, enter a **name** you would like to call your data set, e.g. *Class*. Click OK. - 3. Find the data set file from wherever you saved it, click **Open**. In the window that opens, select the spreadsheet with the "cleaned" data and then click OK. To run the test on men, we need to subset the data. Go to Data → Active data set → Subset active data set You can include all variables, or uncheck that box and only include HEIGHT. Enter **Gender** == "Male" into the subset expression box (note I've used two equals signs here) Give the new dataset a name. #### Now, go to Statistics \rightarrow Means \rightarrow Single-sample t test - Highlight the GENDER variable - Select the ">" alternative hypothesis and set the null hypothesis value To compute a confidence interval, rerun the "Single-sample t test" only using " \neq " in the alternative hypothesis. **Q8**] Compare the Rcmdr results to those you got by hand. ## Part 2 – A Two-Sample t-Test We use a two-sample *t*-test to compare the means from two different groups. We'll use it to compare the mean heights of male Amherst College students versus female Amherst College students. **Q9**] Discuss whether the assumptions of the two-sample *t*-test are satisfied. **Q10**] State the hypotheses for testing whether the mean height of Amherst College males is more than that of Amherst College females. Q11] Compute the test statistic value. It is given here: $t_{df} = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$. The degrees of freedom calculation is much more complicated now, though. $$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2}$$ **Q12**] The *p*-value of this test can be found using the *t*-Table in your textbook as I described in class. You can also use Rcmdr. Go to: Distributions \rightarrow Continuous distributions \rightarrow t distribution \rightarrow t probabilities Input the *t*-statistic value, degrees of freedom, and whether you want the upper or lower tail probability. What is the *p*-value of your test? Q13] What do you conclude from your hypothesis test? Q14] Compute and interpret the 95% confidence interval for difference in the mean heights of Amherst College men and women. $(\bar{y}_1 - \bar{y}_2) \pm t_{df} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$. ### A two-sample *t*-test using Rcmdr Rcmdr can also do hypothesis tests for us, but it needs the raw data. Let's read in the classroom data we've used before. Note that it is still available on the course CMS site. Now, go to Statistics → Means → Independent samples t test - Highlight the GENDER variable for "Groups" and HEIGHT as the "reponse" - Select the appropriate alternative hypothesis and set the null hypothesis value - Leave the test on "No" for "Assume equal variances To compute a confidence interval, rerun the test, only using "\neq" in the alternative hypothesis. Q15] Compare the Rcmdr results to those you got by hand. #### Part 3 – A Matched-Pairs t-Test Some studies are interested in comparing the result of a treatment or study where two measurements are made on the same subject. Before/after studies are good examples of this. In such a situation, we do not have independent groups, so the usual two-sample *t*-test cannot be used. A matched pairs *t*-test is used in this situation. The basic idea is that we take the difference between the two measurements, and focus on those. We can do a one-sample *t*-test on the *differences*. **Durability of shock absorbers.** A manufacturer of automobile shock absorbers was interested in comparing the durability of its shocks with that of the shocks produced by its biggest competitor. To make the comparison, one of the manufacturer's and one of the competitor's shocks were randomly selected and installed on the rear wheels of each of six cars. After the cars had been driven 20,000 miles, the strength of each test shock was measured, coded, and recorded. Results of the examination are shown in the table. | Car Number | Manufacturer's Shock | Competitor's Shock | Difference | |------------|----------------------|--------------------|------------| | 1 | 8.8 | 8.4 | | | 2 | 10.5 | 10.1 | | | 3 | 12.5 | 12.0 | | | 4 | 9.7 | 9.3 | | | 5 | 9.6 | 9.0 | | | 6 | 13.2 | 13.0 | | Enter these data into Rcmdr. Go to Data -> New data set Give the data a name. A data editor will open and you can input the data. Doubleclicking the "Var" at the top of the columns will bring up a window where you can each variable. I named my dataset "Shocks" and gave the manufacturer data the name "OEM" and the competitor data the name "Comp". We can compute the difference and add it to our dataset by going into the script window and typing: Shocks\$Difference <- Shocks\$OEM - Shocks\$Comp You'll have to replace "Shocks" with your dataset name, and "OEM" and "Comp" with your variable names, too. Now, you've added column of differences to your dataset. Q16] Explain why the data are collected as matched pairs. Q17] Do the data present sufficient evidence to conclude that there is a difference in the mean strength of the two types of shocks after 20,000 miles of use? Use $\alpha = 0.05$. By hand: Do a one-sample *t*-test using the differences By Rcmdr: Go to Statistics \rightarrow Means \rightarrow Paired t test | Two-tail probability | 0.20 | 0.10 | 0.05 | 0.02 | 0.01 | 1 | |---|----------------------------|----------------|----------------|----------------|----------------|------| | One-tail probability | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | | | Table T df | × | | | | | df | | Values of t_{α} 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 1 | | 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 2 | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 3 | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 4 | | | | | | | | | | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5 | | 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 6 | | $\frac{\alpha}{2}$ $\frac{\alpha}{2}$ 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 7 | | 8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 8 | | $-t_{\alpha/2}$ 0 $t_{\alpha/2}$ 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 9 | | Two tails 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 10 | | 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 11 | | 12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 12 | | 13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 13 | | 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 14 | | 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 15 | | t_{α} 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 16 | | One tail 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 17 | | 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 18 | | 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 19 | | | | | | | | | | 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 20 | | 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 21 | | 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 22 | | 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 23 | | 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 24 | | 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 25 | | 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 26 | | 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 27 | | 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 28 | | 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 29 | | 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 30 | | 32 | 1.309 | 1.694 | 2.037 | 2.449 | 2.738 | 32 | | 35 | 1.306 | 1.690 | 2.030 | 2.438 | 2.725 | 35 | | 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 40 | | 45 | 1.301 | 1.679 | 2.014 | 2.412 | 2.690 | 45 | | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 50 | | 60 | 1.299 | 1.671 | 2.009 | 2.390 | 2.660 | 60 | | 75 | 1 mm 1 mm 1 mm 1 mm 1 mm 1 | | | | | 75 | | 100 | 1.293
1.290 | 1.665
1.660 | 1.992
1.984 | 2.377
2.364 | 2.643
2.626 | 100 | | 120 | 1.290 | 1.658 | 1.984 | 2.358 | 2.626 | 120 | | | | | | | | | | 140 | 1.288 | 1.656 | 1.977 | 2.353 | 2.611 | 140 | | 180 | 1.286 | 1.653 | 1.973 | 2.347 | 2.603 | 180 | | 250 | 1.285 | 1.651 | 1.969 | 2.341 | 2.596 | 250 | | 400 | 1.284 | 1.649 | 1.966 | 2.336 | 2.588 | 400 | | 1000 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | 1000 | | <u>∞</u> | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | ∞ | | Confidence levels | 80% | 90% | 95% | 98% | 99% | |