Math 221: Transition to Theoretical Mathematics - 01 (Professor Alvarado)

Print Name (first, last): Allison Tanguay

I worked with/used the following sources: Ryan Alvarado, textbook, ...

1. Let $U:=\{0,1,2,3,4,5,6,7,8,9,10\}$. List out the elements in each set (write its elements within braces).
(a) $S:=\left\{x \in U: x^{2}<46\right\}$

Answer: $S=\{0,1,2,3,4,5,6\}$
(b) $T:=\left\{x \in U: x^{2}-3 x=-2\right\}$

Answer:

$$
\begin{gathered}
x^{2}-3 x=-2 \\
x^{2}-3 x+2=0 \\
(x-2)(x-1)=0 \\
x=2 \text { or } x=1 \\
T=\{1,2\}
\end{gathered}
$$

2. Let $A:=\{1,2,3,4,5\}$. Write each of the following sets in the form $\{x \in A: p(x)\}$, where $p(x)$ is a condition on x. (See problem 1 to get an idea of what $p(x)$ could be.)
(a) $B:=\{2,3,4\}$

Answer: $B=\{x \in A:(x-2)(x-3)(x-4)=0\}$
(b) $C:=\{1,2,4,5\}$

Answer: $C=\{x \in A: x \neq 3\}$
3. Let $A:=\{a,\{a\},\{a,\{a\}\}\}$. How many elements are in the set A. For each of the following parts, answer true or false. Explain briefly your answer.
Answer: There are three elements in the set A.
(a) $a \in A$

Answer: True since the element a is in the set A.
(b) $a \subseteq A$

Answer: False because a is not a set and therefore cannot be a subset of A.
(c) $\{a\} \subseteq A$

Answer: True since the element a is in the set A, so $\{a\} \subset A$.
(d) $\{a\} \in A$

Answer: True since the set $\{a\}$ is an element of the set A.
4. Give an example of three sets, A, B, and C, such that $A \in B, B \in C$ and $A \notin C$.

Answer: Let

$$
\begin{gathered}
A=\{a\} \\
B=\{\{a\}\}=\{A\} \\
C=\{\{\{a\}\}\}=\{B\}
\end{gathered}
$$

5. Let $U:=\{-3,-2,-1,0,1,2,3\}$. Which of the following sets are equal?
(a) $A:=\{n \in U:|n|<2\}$

$$
A=\{-1,0,1\}
$$

(b) $B:=\left\{n \in U: n^{2} \leq 1\right\}$

$$
B=\{-1,0,1\}
$$

(c) $C:=\left\{n \in U: n^{3}=n\right\}$

$$
C=\{-1,0,1\}
$$

(d) $D:=\{-1,0,1\}$
(e) $E:=\left\{n \in U: n^{2} \leq n\right\}$

$$
E=\{0,1\}
$$

Therefore, the first four sets are equal, i.e. $A=B=C=D$, but E is not equal to the others.
6. Let $S=\{1,2,3,4,5\}, T=\{3,4,5,7,8,9\}, U=\{1,2,3,4,9\}, V=\{2,4,6,8\}$. Find each of the following sets.
(a) $S \cap U$

Answer: $S \cap U=\{1,2,3,4\}$.
(b) $(S \cap T) \cup U$

Answer: $(S \cap T) \cup U=\{3,4,5\} \cup U=\{1,2,3,4,5,9\}$.
(c) $(S \cup V) \backslash U$

Answer: $(S \cup V) \backslash U=\{1,2,3,4,5,6,8\} \backslash U=\{5,6,8\}$.
(d) $(S \backslash U) \cup(V \backslash U)$

Answer: $(S \backslash U) \cup(V \backslash U)=\{5\} \cup\{6,8\}=\{5,6,8\}$.
(e) $(S \cup V) \backslash(T \cap U)$

Answer: $(S \cup V) \backslash(T \cap U)=\{1,2,3,4,5,6,8\} \backslash\{3,4,9\}=\{1,2,5,6,8\}$
(f) $(S \times V) \backslash(T \times U)$

Answer:

$$
\begin{aligned}
& \begin{array}{r}
(S \times V)=\{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8) \\
\\
(4,2),(4,4),(4,6),(4,8),(5,2),(5,4),(5,6),(5,8)\}
\end{array} \\
& \begin{array}{r}
(T \times U)=\{(3,1),(3,2),(3,3),(3,4),(3,9),(4,1),(4,2),(4,3),(4,4),(4,9) \\
(5,1),(5,2),(5,3),(5,4),(5,9),(7,1),(7,2),(7,3),(7,4),(7,9) \\
(8,1),(8,2),(8,3),(8,4),(8,9),(9,1),(9,2),(9,3),(9,4),(9,9)\}
\end{array} \\
& \begin{array}{r}
(S \times V) \backslash(T \times U)=\{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8), \\
\\
(3,6),(3,8),(4,6),(4,8),(5,6),(5,8)\}
\end{array}
\end{aligned}
$$

(g) $(V \backslash T) \times(U \backslash S)$

Answer: $V \backslash T=\{2,6\}$ and $U \backslash S=\{9\}$. Then

$$
(V \backslash T) \times(U \backslash S)=\{(2,9),(6,9)\}
$$

7. Let $U:=\{-4,-3,-2,-1,0,1,2,3,4\}$. If $X:=\left\{n \in U: n^{2}<11\right\}$ and $A:=\left\{n \in X: \frac{n}{2} \in \mathbb{N}\right\}$, then find $X \backslash A$.
Answer: $X=\{-3,-2,-1,0,1,2,3\}$ and $A=\{-2,2\}$. Then $X \backslash A=\{-3,-1,0,1,3\}$.
8. Which of the following sets are partitions of $A=\{1,2,3,4,5\}$? Explain briefly why or why not.
(a) $A_{1}:=\{\{1,3\},\{2,5\}\}$

Answer: A_{1} is not a partition of A because $4 \in A$ and 4 is not an element of either of the sets in A_{1}. (The union of the sets in A_{1} is not equal to A.)
(b) $A_{2}:=\{\{1,2\},\{3,4,5\}\}$

Answer: A_{2} is a partition of A because $\{1,2\} \cup\{3,4,5\}=A$ and $\{1,2\} \cap\{3,4,5\}=\emptyset$.
(c) $A_{3}:=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\}\}$

Answer: A_{3} is not a partition of A because the sets in A_{3} are not mutually disjoint. For example, $\{1,2\} \cap\{2,3\} \neq \emptyset$.
9. Suppose $A:=\{e, 0\}$ and $B:=\{0,1\}$. Write out the indicated sets by listing their elements.
(a) $A \times B$

Answer: $A \times B=\{(e, 0),(e, 1),(0,0),(0,1)\}$
(b) $B \times A$

Answer: $B \times A=\{(0, e),(0,0),(1, e),(1,0)\}$
(c) $A \times A$

Answer: $A \times A=\{(e, e),(e, 0),(0, e),(0,0)\}$
(d) $A \times \emptyset$

Answer: $A \times \emptyset=\emptyset$

