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Abstract

This thesis concerns the number of zeros of a multivariable polynomial f over a finite field. More
specifically, the zeta-function of f is defined in terms of a certain power series with coefficients
determined by the number of zeros of f over various finite fields. Our main result is Dwork’s
Theorem, stating that the zeta-function of f is in fact a rational function, i.e., a quotient of two

polynomials, each with rational coefficients.
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Chapter 1

Background

1.1 Algebraic Geometry

Throughout this section, let K be a field and let n be a positive integer.

Definition 1.1. We define n-dimensional affine space over K, denoted A", to be the set of ordered

n-tuples (x1,...,x,) where each z; € K.

The notation A% is used instead of K™ to emphasize that we are thinking of the set as a set

merely of points, not as a vector space.

Definition 1.2. Let f(X1,...,X,) € K[X1,...,X,] be a non-zero polynomial in n variables. Then
the affine hypersurface defined by f in A% is defined to be

Hy={(x1,...,2p) € A | f(z1,...,2,) =0}
We define the dimension of Hy to be the number n — 1.

Although our main theorem will be concerned only with affine space, we also have the following

definition.

Definition 1.3. We define n-dimensional projective space over K, denoted P, to be the set of
equivalence classes of A}?H —{(0,...,0)}, where we declare (z¢,z1,...,2,) to be equivalent to

(Y0, Y15 - - - Yn) if and only if there is a A € K — {0} such that y; = Az; for alli =0,1,...,n.



Projective n-space can be viewed as containing affine n-space, as follows. Consider the map

A% — P defined by
(1,...,2y) — equivalence class of (z1,...,zy,1).

Thus the image of A’ consists of all of P} except for the equivalence classes of (n + 1)-tuples of
the form (z1,...,x,,0). Meanwhile, that hyperplane is isomorphic to IP’?{_I under the one-to-one

correspondence sending
equivalence class of (z1,...,2,,0) — equivalence class of (z1,...,x,).
Continuing in this fashion, and abusing notation slightly, we can write P% as the disjoint union
%= ATTUAY? U Ak U {point}.

Definition 1.4. Given a monomial az‘fl e 1:%”, the total degree d is defined to be d =di +-- -+ dj,.
We say a polynomial f(Xo,...,X,) € K[Xo,...,X,] is homogeneous of degree d if it is a linear
combination of monomials, each of which has the same total degree d.

Note that if f(Xo, ..., Xpn) € K[Xp,...,X,] is homogeneous and f(xg, ...,xy) = 0, then

f(Azo, ..., A\x,) =0 for all A € K — {0}. Thus, the following definition should make sense.

Definition 1.5. Let f(XO, ..., Xy) € K[Xo,...,X,] be a polynomial in n + 1 variables. Then the

projective hypersurface defined by f in P is defined to be
Hi ={(z0,21,...,23) € Pk | f(z0,71,...,2,) = O}
We conclude our first section with the following lemma.

Lemma 1.6. Let Q be an algebraically closed field. Then for any positive integers n and a, we

have

o Jn ifnla
>e-;

oo otherwise.
(=1



Proof. If n divides a, then

D= = 1=n

CeEN ceN CeN
¢n=1 ¢n=1 ¢r=1
If n does not divide a, let S = Z ¢% and let ¢, € Q be a primitive n*® root of unity; note that
Ccnefl
¢, exists because (2 is algebraically closed. Then (% - S = S. But (¢ # 1; s0 S = 0. O

1.2 Inclusion/Exclusion Principle

The following principle from Discrete Mathematics will be useful to us both in proving our main

theorem, and in proving some of its corollaries.

Proposition 1.7 (Inclusion/Exclusion Principle). Suppose A1, ..., A, are finite sets. Then

JAil=> 14— > Jan4+ Y |AnAnA] -+ D" AN N4,
=1 =1

1<i<j<n 1<i<j<k<n
Proof. We proceed by induction on n. The case n = 1 is trivial. Suppose the statement holds for

n sets. For n + 1 sets, we have
n+1 n n
‘ U Al = ‘(U/h) UAn+1‘ = ‘ UAi
i=1 i=1 i=1
n
- ‘ U A;
i=1

Note A; N Ay, is a finite set for all ¢, and hence we can now use our inductive hypothesis for the

+ ‘An+1‘ - ‘(014@) ﬂAn+1}
i—1

| Q)
=1

unions above. This gives us

n+1

U2l
i=1 i=1

- > }AiﬂAj‘—F > )AmAijk‘—-~+(—1)”+1)Am--ﬂAn

1<i<j<n 1<i<j<k<n

+‘An+1)

—(zn: AimAnH‘— S ’AmAjﬂAnH’—lr 3 ‘AmAijkmAnH’—-~+(—1)”“’A1m--mAnHD

=1 1<i<j<n 1<i<j<k<n
n+1
:Z Az’— Z )AiﬂAj‘-F Z ‘AiﬂAjﬂAk‘—"'+(—1)n+2‘Alﬂ~"ﬂAn+1‘.
=1 1<i<j<n+1 1<i<j<k<n+1
Thus the Inclusion/Exclusion principle holds for all integers n > 1. O



1.3 Statement of Dwork’s Theorem

We end our introductory chapter by stating our main theorem and outlining the remainder of the

thesis.

Definition 1.8. Let K be a field, and let n be a positive integer. Let f(X1,...,X,) € K[X1,...X,]

be a non-zero polynomial. For a field M containing K, we then define

He(M) = {(z1,...,2n) € Ay | f(z1,...,2,) =0}

Given f € Fy[X1,...,X,], we then form the following sequence of natural numbers:
N = #(Hy(Fys)).

Let 1+ TQ[T] denote the set of power series in 7" with rational coefficients and constant term
1. We are now ready to define the zeta-function we will be considering in this thesis, after which

we can formally state Dwork’s Theorem.

Definition 1.9. Let n be a positive integer. Then the zeta-function of Hy over the field F, is
defined to be the power series

Z(Hy[Fy;T) = exp (D NT*/s) € 1+ TQ[T])

oo
Here, exp(T) = ZT " /n! € Q[[T]] is considered as a formal power series, and the composition
n=0
is simply composition of formal power series.
At first glance it is not at all clear what sort of properties such an infinite power series might

have. It is thus all the more surprising that the following result holds.

Theorem 1.10 (Dwork). The zeta function of any affine hypersurface is a ratio of two polynomials

with coefficients in Q.

How does one go about proving such a theorem? Before we go any further, we begin with a few

examples to illustrate how the zeta-function works.



First, recall from calculus that the Maclaurin series of —log(1 — T') is
o
—log(1-T) = ZTS/S.
s=1
Example 1.11. The zeta-function Z(Aﬁq/Fq; T) of the space Ag is 1/(1—q"T).

Proof. In this case we have N, = #A”qs = ¢"%, and hence

exp (iNsTs/s> = exp (i(q"T)Ws) = exp ( —log(1 — q”T)) =1/(1-¢"T). O
s=1

s=1

1
1—q¢'T"

n
Example 1.12. The zeta-function Z(Pg_/Fg; T) of the space Py, is H
i=0
Proof. Recall that we have the disjoint union
PL = AT UAL 2. U AL U{point}.

Thus, Ny = ¢*" + ¢*" Y + ... + ¢° + 1, so that

n

oo n oo 1
exp(ZNsTs/s> :Hexp(ZqSiTs/s> :Hl—qiT' O
s=1 i=0 s=1

=0

Remark 1.13. Note that strictly speaking, we have only defined the zeta-function for an affine
o0

hypersurface. However, we can still consider exp (ZNSTS / s) using the obvious choice for our

s=1
{Ns}s>1, namely the sequence of integers defined by Ng = #Pﬁqs for s > 1.

Example 1.14. The zeta-function Z(Hy/Fy;T) for Hy defined by f = x1x4 — 2223 — 1 is f:q%?;.

Proof. In order to calculate Ng, we consider two cases:

Case 1. 3 = 0. Then z1x4 — zox3 = 1 becomes x4 = 1. Since x9 is out of the equation, it can
be any element of IFys. Thus, there are ¢° choices for 2. Meanwhile, z1 can be any element of IF;S.
Then x4 = (x1)"! is already determined. Hence there are ¢°(¢° — 1) = ¢** — ¢° points in H; with
z3 = 0.

Case 2. z3 # 0. Then x1 and x4 can be any elements of Fys, and 23 can be any element of IF‘;s.

But this completely determines xo, so that there are ¢°¢®(¢° — 1) = ¢*° — ¢** points in H 7 with



I3 ?é 0.
Thus Ny = #(Hf(Fg:)) = ¢* — ¢** 4+ ¢* — ¢* = ¢* — ¢°. So Z(H/Fy; T) becomes
exp (Zi’il g7/ 8) 1—qT

= . O
exp (Zzil qSTS/s) 1-¢°T

Dwork’s Theorem is the first part of a series of conjectures known as the Weil Conjectures,
named after André Weil, which provide detailed information about the zeta-function. First pro-
posed in the late 1940’s, the Weil Conjectures were proved in their entirety by 1974. However, it
was Bernard Dwork’s proof in 1959 of the rationality of the zeta-function that was the first signif-
icant step towards a full proof. For Dwork’s original paper, see [1]. For a partial statement of the
Weil Conjectures, we refer the reader to Appendix B.

In order to prove that the rationality of the zeta-function holds in general, there is much work
to be done. The following is a brief summary of our remaining chapters. In Chapter 2, we introduce
the reader to Q, along with a few well-known functions in p-adic analysis that will be useful to us
later on. Chapter 3 defines several lesser-known functions, and uses them to prove results that will
be necessary for the following chapter. It is there in Chapter 4 that the heart of our proof lies, as
we show that the zeta-function is p-adic meromorphic. Chapter 5 serves as a bit of an interlude, in
which we consider precisely when a power series can be written as a rational function. The thesis
concludes with Chapter 6, in which we restate and then prove Dwork’s Theorem along with several

corollaries.



Chapter 2

Qp and p-adic Analysis

2.1 Metrics and Absolute Values

Definition 2.1. Given a nonempty set X, a metric on X is a function d : X x X — [0, 00) such
that for all z,y,z € X :

(1) d(z,y) = 0 if and only if z = y.

(2) d(z,y) = d(y, z).

(3) d(z,y) < d(z,2) + d(z,y).

Definition 2.2. Given a field K, an absolute value is a function || - || : K — [0, 00) such that for
z,y € K:

(1) |lz|l = 0 if and only if x = 0.

@) llz -yl = ll=ll - lyll-

B3) llz +yll < llzll + llyll-

The two definitions above may appear to be rather similar. In fact, they are intimately related,

as can be seen in the following proposition.

Proposition 2.3. Let K be a field and let || - || be an absolute value on K. Then d(x,y) = ||z — y||

1S a metric.

Proof. Let z,y,z € K.

(1) d(z,y) =0 <= |z—y]|=0 <= x—y=0<= =y, where the first equivalence



is by definition of d, and the second is a property of | - ||.

(2) Note that ||1]] = ||1-1|| = |[1]| - ||1]]- Since 1 # 0, we have [|1]] # 0. Thus ||1|| = 1. Hence
1= |1 = [[(=1)(=D)|| = | = 1|| - || = 1||. Since || — 1|| > 0 by the definition of an absolute value, we
have || — 1|]| = 1. Hence,

d(z,y) = lz =yl = [(=D(y —2)| = | =1 - [ly = 2l = lly — =[| = d(y, z).
@3) dlz,y) = llz =yl = Iz = 2) + (z =Wl < [lz = zl| + ||z = yll = d(z, 2) + d(2, ). ]

Thus with the above proposition in mind, we have the following definition.

Definition 2.4. We say a metric d on a field K is induced by an absolute value || - || if d is defined
by d(z,y) = [lz =yl
Example 2.5. Let K = Q. Then the absolute value |z| induces a metric d(z,y) = |z — y| which

is the usual concept of distance on the real number line. We will denote this absolute value by

|- |oo = | - | solely for notational convenience.
One might wonder if there are other, less familiar absolute values on Q.

Definition 2.6. Let p be any prime number. For any nonzero integer a, let ord, a be the highest
power of p which divides a, i.e., the greatest m such that ¢« = 0 mod p™. If a = 0, we write

ord, a = oco. For a rational number z = a/b, we define ord, z to be ord, a — ord, b.

Remark 2.7. Note that the definition of ord,, is well-defined for elements of Q : If a/b = ¢/d, then

ordy, a — ord, b = ord, ¢ — ord, d. Note also that ord,(zy) = ord, x + ord, y for all z,y € Q.

Example 2.8. Let = 40 = 23 - 5. Then ordy z = ord, 40 = 3.
Let y = 5/81 = 5/3*. Then ord3 y = ords(5/81) = ordz5 — ord3 81 =0 — 4 = —4.
Let z = —31/7. Then ords z = ords(—31) —ords 7=0—0 = 0.

Proposition 2.9. Consider the map |- |, : Q — [0,00) defined by:

’$| — p*Ordpx, fo#(h
7 o, if = 0.

Then | - |, is an absolute value on Q.



Proof. 1t is clear that |- |, satisfies properties (1) and (2) of absolute values. For property (3), note
that for any r,s € Z we have ord,(r + s) > min{ord, r,ord, s}. After all, if p™|r and p™|s, then
p"|(r + s). With this in mind, given z,y € Q, we write = a/b and y = ¢/d in lowest terms, so
that z + y = (ad + bc) /bd. Now ord,(x + y) = ordp(ad + bc) — ord, b — ord, d. Hence,
ord,(z +y) > min{ord,(ad), ord,(bc)} — ord, b — ord, d

= min{ord, a + ord, d, ord, b + ord,, ¢} — ord, b — ord, d

= min{ord, a — ord, b, ord, ¢ — ord, d}

= min{ord, z, ord, y}.
Thus [ + yl, = p~ o) < max{p~ 2, p= v} = mas{faly, [yl } < [l + Iyl =

Note that we actually proved a stronger inequality above than property (3). This leads us to

the following definition.

Definition 2.10. Let K be a field. An absolute value || - || on K is non-Archimedean if
[l 4yl < max{[z[], ly|[} for all z,y € K.
A metric d on X is non-Archimedean if
d(z,y) < max{d(z, z),d(z,y)} for all z,y,z € X.

Thus ||, is a non-Archimedean absolute value on Q. Note also that a non-Archimedean absolute

value always induces a non-Archimedean metric, since then:

d@,y) = llz —yll = Iz — 2) + (z — )| < max{le —yl.llz - y[|} = max{d(z, 2), d(y, 2)}.

Now that we have established that | - |, is an absolute value on Q, a natural question to ask
is: Why bother studying this particular absolute value? Before answering this, we provide the

following two definitions.

Definition 2.11. Two metrics d; and d2 on a nonempty set X are said to be equivalent if there exist
c1,¢2, € (0,00) such that for all z,y € X we have: di(z,y) < cida(z,y) and da(z,y) < codi(z,y).

We say two absolute values are equivalent if they induce equivalent metrics.



Definition 2.12. The trivial absolute value on a field K is given by ||0|| = 0 and ||z|| = 1 for all
x € K —{0}. (Note that this does in fact give an absolute value.) Any other absolute value is thus

said to be nontrivial.

The following characterization of absolute values on the rational numbers is due to Alexander

Ostrowski.

Theorem 2.13 (Ostrowski). Every nontrivial absolute value || - || on Q is equivalent to | - |, for

some prime p or for p = oo.

Proof. The proof of this is elementary but not particularly pertinent, and thus is omitted. See [2,

pp. 3 — 5. O

Working with an absolute value such as |-|, can have strange consequences. Consider a “triangle”
with vertices 0,z,y € K, and hence sides of length ||z, |ly||, and ||z — y||, where || - || is a non-
Archimedean absolute value on K. The following proposition says that (at least) two of these lengths

are equal. Thus every “triangle” in K is isosceles.

Proposition 2.14 (Isosceles Triangle Principle). Let K be a field with non-Archimedean absolute
value || - ||, and let z,y € K with |[z|| # |[yll. Then ||z £ y|| = max{{|x]|, [y[|}-

Proof. Without loss of generality, suppose ||z|| < ||y||. Then

[z =yl < max([lz]], [yl) = llyll = llz — (= — Y| <max(||z[], |z —yl)) = = = yl,
where the final equality follows since ||y|| £ ||z||. Therefore, we have ||y|| = ||x — y||. For ||z + y||,
we have [z +yl| = [lz — (=y)|| = max{|[z[|, | — yll} = max{[lz]|, [[y]}- [

As another example of a surprising property of non-Archimedean absolute values, consider the

following definitions.

Definition 2.15. Let K be a field. Let || - || be a non-Archimedean absolute value on K. Let

r € RT, and let a € K. Then we define the open disc of radius r with center a to be
Dy(r7)={z e K |||z —a| <r}.

10



Similarly, we define the closed disc of radius r with center a to be
Dy(r)y={z e K |||z —al <r}.
Finally, we let D(r) = Do(r) and D(r~) = Do(r™).

With this definition in mind, it will turn out that any point in a disc can serve as the center.

We make this idea precise with the following proposition.

Proposition 2.16. Let K be a field and let || - || be a non-Archimedean absolute value on K. Let
a,be K, with b € Dy(r). Then
D, (r) = Dy(r).

Proof. Consider x € Dy(r). Then |z — a|| < r by definition of a closed disc. Thus,
[z =0l = [[(z — a) + (a = b)|| < max{[|lz —al|, la = [} <,
so that x € Dy(r). Similarly, we have that = € Dy(r) implies © € D,(r). Hence D,(r) = Dy(r). O

Remark 2.17. Note that the same proof shows the above proposition for open discs, where we

simply replace < with < .

Propositions 2.14 and 2.16 serve as an introduction to how how strange the non-Archimedean
world can be. Bearing them in mind, we are now ready to move on and use one specific non-

Archimedean absolute value, | - |,, to construct the field of p-adic numbers known as Q.

2.2 Qp Q,and Z,

The reader familiar with a construction of R from Q using Cauchy sequences of rational numbers
should see a strong resemblance in the constructions of the following section.

Definition 2.18. Let K be a field and let ||-|| be an absolute value on K. A sequence {aq, az,as, ...}
is Cauchy (with respect to | - ||) if for every real number € > 0 there is a positive integer N such
that for all natural numbers m,n > N, we have ||a,, — a,|| < e. We say that K is complete (with

respect to || - ||) if every Cauchy sequence of points in K has a limit that is also in K.

11



Definition 2.19. Consider the set of sequences of rational numbers that are Cauchy with respect
to | - |p. We say two such Cauchy sequences {a;} and {b;} are equivalent if |a; — b;|, — 0 as i — oo.
Then @, is defined to be the set of equivalence classes of Cauchy sequences. Elements of Q, are

called p-adic rational numbers.

Given equivalence classes a and b of Cauchy sequences as in Definition 2.19, choose any repre-
sentatives {a;} € a and {b;} € b. We then define a - b to be the equivalence class represented by the
Cauchy sequence {a;b;}. Similarly, we define a + b to be {a; + b;} and a — b to be {a; — b;}. For
multiplicative inverses, given a Cauchy sequence a, we can pick {a;} € a with no zero terms; we
then use the sequence {1/a;}, which will be Cauchy unless {a;} is equivalent to {0}. It is easy to
check that these operations are well-defined.

The set Q,, of equivalence classes of Cauchy sequences forms a field with addition, multiplication,
and inverses defined as above. We can also view Q C @, by identifying an element x € Q with the
equivalence class of the constant sequence {z,z,...} in Q,.

To see that + and - on @, obey the distributive law, consider a,b,c € Q,. Choose sequences
{a;},{bi},{ci} to be their respective representatives. Then a(b + ¢) is the equivalence class of
{ai(b; + ¢i)} = {aib; + a;c;}, which also lies in the equivalence class of ab + ac. The other field
axioms hold similarly.

Given a Cauchy sequence {a;} that does not tend to 0, we can find a real number ¢ > 0 and an
integer N1 so that whenever n > Ny, we have |a,|, > ¢ > 0. Since the sequence is Cauchy, we can
also find an integer Ny such that whenever m,n > Ny we have |a,—ap|p < c. Let N = max{Ny, Na}.
Then

n,m>N = |ap — am|p < max{|an|p, |am|p}-

By the Isosceles Triangle Principle, we thus have |a,|, = |am|p for all n,m > N. We can now extend

| - |p to Qp in the following natural way.

Definition 2.20. Let a € Q, be represented by the Cauchy sequence {a;}. Then we define
lalp = nh—>ngo |anp-

12



Thus Q, is complete with respect to |- |p; i.e., every | - [,-Cauchy sequence in @, converges.

We now wish to extend |- |, not only to Qp, but any field K that is a finite extension of Q,.
Given such a finite extension Q, C K, view K as a finite-dimensional vector space over Q,. Thus,
given « € K, we have a linear map K — K defined by multiplication by «. Since the map is linear,

it has an associated matrix, A,, for any given Q, basis of K.

Definition 2.21. Let K be a finite field extension of Q,. Given o € K, let A, be the matrix
corresponding to multiplication by . Then we define the norm function N, : K — Qp by

NK/Qp (O[) = det(Aa).

Theorem 2.22. Let Q, C K be a finite extension of degree n. Then the function |-|, : K — [0, 00)
defined by

]y = [N/, (@)l

is a non-Archimedean absolute value on K extending the p-adic absolute value on Q.

Proof. (Sketch.) Let o, 8 € K. We have |a|, = 0 if and only if [N/, (@), = 0; since Nk q,(a) €
Qp, this happens if and only if Ny /@p(a) = (. But this, in turn, occurs only when multiplication
by « is not invertible. Since K is a field, this happens only when o = 0. For the second property,
by properties of determinants, we have N /g, (a - 8) = Ng/q,(@) - Ni/qg,(8). Then take n'™® roots
of each side.

In order to show our new absolute value is the same as our old one when restricted to Q,,
let @ € Qp. It is then clear from our determinant definition that Ng /g, () = a™. Thus, [a| =
a2y = |al,.

We omit the proof that our new absolute value is non-Archimedean, as it is tedious and takes

us too far afield. For a full proof of this, see [2, p. 62] or [3, p. 151] O

Given an algebraic closure @p of Qp, the absolute value extends to Qp as follows. For any
a € Qp, let K C Q, be any finite extension of Q, containing «, and define ||, as in Theorem 2.22.

Such a field K always exists (e.g., K = Qp(«)), and it is easy to check that this definition of |/,

13



is independent of the choice of K. It follows easily that |- |, is an absolute value on @p that agrees
with the definition in Theorem 2.22 on any finite subextension Q, C K.

Unfortunately, @p, unlike @, and its finite extensions, is no longer complete. By the same
process we used to construct Q,, we can define a field €2, consisting of equivalence classes of Cauchy
sequences on Q,. Then Q, embeds (via constant sequences) into (2, and the absolute value | - |,
extends to €. It is here in 2 that we will be carrying out our p-adic analysis, as motivated by the

following theorem.

Theorem 2.23. The field €2 is closed and complete with respect to | - |p.

Proof. Omitted. See [2, pp. 71 — 73]. O
Having successfully built Q, up to €2, we now take a step in the reverse direction and consider

a set contained within Q.

Definition 2.24. We define the p-adic integers to be the set Z, = {a € Q, | |al, < 1}. An element

of Zy, is a called a p-adic integer.

Note that Z C Z,, : Given n € Z, can write n = p’-r, where £ > 0 and p does not divide 7. Then
Inl, =p~F < 1.
Proposition 2.25. Z, is a subring of Q,, i.e., Z, C Q, is closed under sum, difference, and

product.
Proof. Let a,b € Zy, i.e., |a|, <1 and |b|, < 1. Then |a+0b| < max{|a|,, |b[,} < 1. Thus |a+b|, <1,
so that a + b € Z,. The proof for a — b is similar. For a - b, we have |ab|, = |a|p|b], < 1-1 = 1.
Hence ab € Z,,. O
Definition 2.26. If a,b € Q,, we write a = b (mod p") if |a — b|, < p™™.

Note that a = b(mod p") if and only if (a —b)/p"™ € Z,.

Lemma 2.27. A sequence {a,} is a Cauchy sequence with respect to a non-Archimedean absolute
value || - || if and only if

lim |ap4+1 — anl| = 0.
n—oo
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Proof. The forward implication is clear. For the reverse implication, if m = n + r, then

Ham - an” = ||an+r — Qptr—1 T Apgr—1 — Qpgr—2 + -+ * + Gpt1 — an”
< max{||ansr — tngr—1|; | @ntr— — angr—2|,- - ., [|[@ng1 — anll},
since the absolute value is non-Archimedean. The lemma thus follows. O
o0
Theorem 2.28. An infinite series Z an with a, €  converges if and only if
n=0
lim a, = 0.
n—oo

Proof. A series converges if and only if the sequence of its partial sums converges. Note that a,
is the difference between the n'™ and (n — 1) partial sum. Thus, if a, tends to 0, it follows from
Lemma 2.27 that the sequence of partial sums is a Cauchy sequence. Therefore, since €2 is complete,

this sequence of partial sums converges. O

For an instance in which one might use the above theorem, we first recall that D(r~) = Do(r™) =

{x e |z|, <r}

Proposition 2.29. Let f(X) € Z,[[X]] be a power series whose coefficients are all p-adic integers.

Then f(X) converges in D(17), the open disc of radius 1 about the origin in .

oo
Proof. Let f(X) = ZanX”, with a,, € Z,. Let x € D(17). Then |z|, < 1 and |a,|, <1 for all n.

n=0

Thus

lan®"|p < |x[; — 0 as n — oo.

Thus, by Theorem 2.28, f(x) converges for all z € D(17). O

2.3 Teichmiiller Representatives

Just as we sometimes work not with integers but rather with their representatives mod p, in later
chapters we will sometimes want to replace p-adic integers by another special set of representatives.
However, in order to prove the existence of these representatives, we must invoke the following

lemma named after Kurt Hensel, who was the first to describe p-adic numbers back in 1897.

15



m
Theorem 2.30 (Hensel’s Lemma). Let F(z) = Zcz-xi be a polynomial with ¢; € Z, for all

i=0
n—1
i=1,...,m. Let F'(z) = Zz -c;z'™1 denote the formal derivative of F. Let ag € Zy, such that
i=0

F(ag) = 0mod p and F'(ag) # 0 mod p. Then there exists a unique a € Zy, such that
F(a) =0 and a = ag mod p.
Proof. We begin with the following claim.
Claim 2.31. There exists a unique sequence of integers {an}n>1, such that for all n > 1 we have:
(1) F(ay) =0 mod p™t!
(2) ant+1 = a, mod p”
(3) 0 <a, < p"ti
Proof. We define the sequence (and prove its properties) inductively.

For n =1, let ap be the unique integer in {0,1,...,p — 1} such that ayp = ag(mod p). Then (2)
and (3) will hold if and only if a; = ag + byp, for some 0 < b; < p — 1. Expanding F'(ag + b1p), we
have

F(a1) = F(ao + bip) = Y _ ci(ao + bip)’
= (ciab +ical tbip)  (mod p?)

F(do) + F'(ao)bip (mod p?).

Since F'(ap) # 0, there is a unique integer by € {0,1,...,p — 1} such that F(ag) + F'(ao)bip =
0(mod p?). Tt follows immediately that a; = @o + b1p is the unique integer satisfying (1) — (3).
Now suppose we already have ag, . . ., an,—1. As before, from (2) and (3), we need a,, = a,—1+0b,p"

for some 0 < b, < p — 1. Expanding F(a,—_1 + b,p™) as for n = 1, we have
F(apn) = F(an_1 + bpp") = Flan_1) + F'(an_1)bpp™(mod p"Tt).

But we know by our inductive hypothesis that F(a,,_1) = 0(mod p™). Write F(a,_1) = ap™(mod p™*1),

for a € {0,1,...,p — 1}, so that F(a,) = 0(mod p"*!) becomes
ap” + F'(a,_1)b,p" = 0(mod p™*1). (2.1)
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Hence o + F'(ay—1)by, = 0(mod p). Since a,,—1 = ag(mod p), we have
F'(an-1) = F'(ao) # 0(mod p).

Thus, there is a unique b,, € {0,...,p — 1} such that equation (2.1) holds. Hence a,, = a—1 + b, p"

uniquely satisfies the desired properties. ]

We are now ready to prove Hensel’s Lemma. In the notation of Claim 2.31, let a = ag + bip +
bop? + - - -, the so-called base p expansion of a, which we will see converges later in Theorem 2.28.
For all n > 0, we have F(a) = F(a,) = 0(mod p"*!). Hence F(a) = 0. To prove uniqueness,
suppose that there were another such @ € Z,. Then we would have a different sequence {ay,}n>1,

satisfying (1) — (3) of Claim 2.31. But that would violate the uniqueness statement of the claim. [

Proposition 2.32. For any prime p, Q, contains exactly p solutions ao,...,a,—1 to the equation

P —x =0, where a; = i(mod p). In fact, a; € Z, for all i.

Proof. Let F(x) = 2P — z, so that F'(z) = paP~! — 1 as in Hensel’s Lemma. For b=0,...,p — 1,
we have F(b) = 0(mod p), and F'(b) = pb?~! —1 = —1 # 0(mod p). Thus, Hensel’s Lemma gives

us the desired ag, ...,ap—1 € Z, C Q). O

The set {ao, ..., ap—1} in Proposition 2.32 of p-adic numbers is named after Oswald Teichmiiller,
who like Hensel was a German mathematician. Unfortunately, whereas Hensel was known for his
invention of p-adic numbers, Teichmiiller is instead known for being a passionate supporter of the

National Socialists.

Definition 2.33. The p-adic numbers {aq, . .., a,—1} in Proposition 2.19 are called the Teichmiiller

representatives of {0,...,p —1}.

2.4 log(l+ X), exp(X), and T(X,Y)

In order to prove our main theorem, there are three specific functions which will be particularly

useful. Before introducing them, we will need the following two concepts.
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oo

Definition 2.34. Given a power series f(X) = ZanX” with a; € Q, we define the radius of
n=0

convergence of f to be

1
r=——+..
lim sup ]an|113/n
Thus 1/r is the least real number such that for any C' > 1/r there are only finitely many n > 0

such that \an\}/n > C.

Proposition 2.35. Given a series f(X) € Q[[X]] and radius r as above, then for any x € Q, the

series converges if |x|, < r and diverges if |x|, > 7.

Proof. If x|, < r, we write |z|, = (1 —&)r for € € (0,1]. Then |a,2"|, = (r|an|p1/")”(1 —¢)". With

only finitely many n for which ]an|21,/ " >1/(r — ier), we have

1— n 1— n
lim |a,z"[, < lim (ﬁ) = lim ( 18) =0.
n—o00 n—oo \ (1 — §g)rr) n—oo \] — 5€
Thus, the series converges by Theorem 2.28. Similarly, if |z|, > r, write |z|, = (1 + ¢)r for

e € (0,00). then a,z™ + 0 as n — oo. This completes the proof and thus justifies our use of the

term “radius of convergence” above. O

o
Example 2.36. Consider the series g(X) = Z(—l)"“X"/n. Writing a,, = (—1)"*1/n, we have
n=1

ordp 7 and hence lim \an\;,/ " = 1. Thus, the series g(z) converges if |z|, < 1 and diverges if
n—oo

|anlp = P
|z|, > 1. When |z|, = 1, we have |a,2"|, = p>% ™ > 1. Hence lan|p|z[}; #+ 0 and the series diverges.

Thus ¢g(X) converges only on the disc D(17).

o0

Example 2.37. Let h(X) = ZX”/n!. Then h has radius of convergence p~/®=1), To see why,
n=0
note that
= |n = n n
ordy(n!) = Zz; L?J < ;pl = T

where the first equality can be shown as follows: Write n! =1-2---(n —1)-n, and note that there
are [%J numbers between 1 and n divisible by p. Similarly, there are L%J numbers between 1 and

n divisible by p?, and continuing in this fashion it is easy to see why the equality holds. Hence
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lanl, = |1/nl], = po%™ < p/®=D_ Thus r > p~1/P=1 5o that the series h(z) converges when
‘x|p < pil/(pfl)_
Now suppose |z|, = p~/@®=1 Let n = p™. Then
m—1

p

ordy(n!) = ord,(p™!) < 1+p+---+p™ 1 = —
p—

and therefore ord,(z"/n!) = p™ord,z — p™~1/(p — 1). However, ord, z = 1/(p — 1), yielding

ord,(z" /n!) = b P = .
p—1 p—-1 p—1

Thus |a,2"|, = |2"/n!|, 4 0 as n — oco. Hence, the series diverges when |z|, = p~'/(»=1). By

Property 2.35, it must also diverge for |z, > pl/(=1),

The reader may notice that our functions g(X) and h(X) above have power series representations
very similar to the classical Maclaurin Series for log(1+ X') and exp(X). Indeed, the only difference
is that the coefficients of g and h are considered as elements of ), not C. Thus, we make the

following definition.

Definition 2.38. The p-adic logarithm, denoted log,,, is defined to be the function

log,(1+X): D(17) = Q,  defined by log,(1+X) =Y (-1)""X"/n.

n=1

The p-adic exponential function, denoted exp,, is defined to be the function
oo
exp,(X) : D(p—l/(l’—l)f) — €, defined by exp,(X) = ZX”/n!.
n=0

These p-adic analogs of log and exp have many (though not all) of the properties familiar to us

from classical mathematics.

Theorem 2.39. (i) log,(14+x) converges forx € D(17), and exp,(z) converges forx € D(p~ V=17,
(ii) log,(1 + X) +log,(1 +Y) = log, ((1 +X)(1+ Y)), and exp,(X) exp,(Y) = exp,(X +Y).
(iii) log, (1 + exp,(z) — 1) = =, and exp, (log,(1 +z)) =1+ for x € D(p~ /=17,
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Proof. (Sketch.) For the proof of (i), see Examples 2.36 and 2.37, respectively. For (ii), we simply

manipulate power series. For exp,(X), let =,y € D(pfl(pfl)_). Then

expp(w +y) = Z = —Z!y)n - Z % (Z) "_kyk
o n=0"" k=0
N1 n! n—k, k _ R A
B z—%kzn'(n_k)k! v Z_: (n —k)! k!
=0 k=0 n=0 k=0
o0y -k
C(EEED -enoeno
- =

The proof for log,(1 + X) is similar. We omit the proof of part (iii), and refer the reader to [3, pp.
117 - 118] or [2, pp. 79 — 81]. 0

We finish this section by introducing a function Y(X,Y) € Q[[X, Y]] which will play a crucial
role in the proof of our main theorem. To understand it, note that the expression (14 Y)* should

be understood to mean exp, (X log,(1+Y)).

Definition 2.40. Define T(X,Y) € Q[[X,Y]] by
TX,Y)=1+Y)* [+ Py =Xt
i>1
Note that we need only finitely many terms in the above product to obtain the coefficient
of X"Y™ so that T(X,Y) is a well-defined infinite series ) am ,X"Y™ € 1 + XQ,[[X,Y]] +
YQ,[[X,Y]]. The series T will prove useful later, in Lemma 3.6, to establish a certain identity of

exponentials.

Proposition 2.41. The infinite series T(X,Y) =3 ampaX"Y™ € 1+ XQ,[[X, Y]] +YQ,[[X, Y]]

has coefficients am pn € Zyp.

Proof. Omitted. See [2, p. 95]. O
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Chapter 3

Traces, Linear Maps, and Linear
Operators

3.1 Characters and Lifts

We begin with the following definition.

Definition 3.1. Let G be a finite group. Let 2* denote the multiplicative group of nonzero

numbers in §2. Then an Q-valued character of G is a homomorphism ¢ : G — Q*.

Note that since G is finite, we have 1(a)# = 1 for all @ € G. Thus the image of G under a

character is contained in the set of roots of unity in €.

Definition 3.2. Let [, be a finite field with ¢ = p® elements. For any a € F,, we define the trace
of a to be

s—1

Tra:a+ap+ap2+...+ap

Remark 3.3. We can give an interpretation of the trace in terms of Galois Theory. From Fact
A.10, we know that Gal(F,/F,) consists entirely of automorphisms of the form o;(a) = a?', so that

Tra= Z o(a).

o€Gal(F, /Fp)

Proposition 3.4. Let ¢ € Q be a pt* root of unity. Let p be prime, let s > 1 be an integer, and let

Tra

q=p°. For any a € F), the map a +— ¢ is an Q-valued character of the additive group of Fy.
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Proof. Let I' = Gal(F,/Fp). By Remark 3.3 and the fact that Frob, € I', we have

(Tra)? = Froby,( Z Frob,( Z o(a) =Tra,
oel oel

so that Tra € IF,,. Also, we have
Tr(a+b) =Y o(a+b) = a(a)+o(b) = Tr(a) + Tr(b),
oel oel

so that @ + b — gTr(a—i-b) — gTra+Trb _ Tra  Trb n

Our goal for the rest of this section will be to find a p-adic power series whose evaluation at
the Teichmiiller representative t € Q of a, is equal to ¢T*%. Later on, we will use this Teichmiiller
lifting to establish a nice relationship between a polynomial f and the sequence {N}s>1 described
in Section 3 of Chapter 1.

Fix a primitive p*® root of unity € € 2, and let A = ¢ — 1.

Proposition 3.5. ordy) A =1/(p — 1).

zP—1
z—1"7

fay= V2L (pfl>xp—2+...+ <g>x+ @

Case 1. If |\, > \p|1/ P~ then AE > plplAl5 for all 0 < i < p — 2. Then, by the Isosceles

Proof. Since € is aroot of 2P~' + ...+ x4+ 1= we see that A is a root of

Triangle Principle, |f(\)|, = A5~ # 0, a contradiction.

Case 2. If |\, < [p|p/®™", then |AE™! < |p|, and [p|,|Ai], < |p|, for all 1 < i < p— 2. So
|f(N)]p = Iplp # 0, again a contradiction.

Therefore, |\, = |p[1/p Y ie., ordp A =1/(p—1). O

We now seek a p-adic expression for
(1 + )\)t—l—tp—l—ti"?—l-...—i—tpSil — €Tra'
Ideally, we would like a function © such that ©(T) = £7, to get

@(t)@(tp) .. @(tps_l) — Et+tp+---+tp571 — aTra.
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Unfortunately, it is not even clear what €7 would mean. Instead, we define a slightly more compli-
cated function, but one that actually does the trick.

Recall the series T(X,Y) € Q[[X, Y]], introduced in Section 4 of Chapter 2, and given by

TX,Y) = (1+ V)Y [+ y?) X =",
j>1

We consider T(X,Y) as a series in X with Y fixed, so that

oo oo
TXY)=> (X" amnY™), amn €%y,
n=0 m=n

where we use the fact that T(X,Y) is a product of power series, each of which has its coefficients

am,n = 0 for m < n. We now set
OT) =T(T,\) => a7,
n=0

o0

where a, = Z amnA". Since X" divides each term of a, and an,., € Z,, we have ord,a, >
m=n

n/(p —1). Thus, in particular, ©(t) converges for t € D(p~/P=D7),

Lemma 3.6. Let p be prime, let s > 1 be an integer, and let ¢ = p*. Let a € Fy, and let t € Q be

the corresponding Teichmiller representative. Then

s—1

O)O(tP)--- (" ) =tre,

=¢£

Proof. We begin by observing that the following identity holds in Q[[Y]]:

1

- pyp? pS—1
T(t,Y)T(tp7Y)...’r(tp5 Y) = (14 Yt et ‘

To see this, note that after cancellation, the left hand side is

3

1+ Y)t+tp+...+tps_1 (1+ Yp)(t”s —t)/p(l + YI?Q)(tPSJrl —tp)/P2(1 + Yp3)(tps+2 ")/
: 2 s—1
But tP° = t, leaving (1 + V) +# .4+ a5 desired. Substituting Y = X gives

1

O(HO(H) - O ") = (1 4 A+t _ Tra, 0
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Thus, given a field F, with ¢ = p® elements, and ¢ € 2 the Teichmiiller representative of a € Iy,
we have found a p-adic power series O(T)O(T?) ---O(T?" ") which gives ¢ when evaluated at ¢.
Moreover, since our lifting © converges for t € D(p_l/ (7’_1)_), we have convergence on some disc
in ) containing the closed unit disc. This is especially important because we will be working with

the Teichmiller representatives, which have absolute value 1.

3.2 Linear Operators and Traces

Throughout this section, fix n > 1 an integer.

Definition 3.7. We denote by R the ring of formal power series in n indeterminates over 2:
R = Q[[X1, Xo,..., X,]]

Given v = (u1,...,un) € N, we use the notation X" = X" XJ?... X! Furthermore, for
q € Z*, we write qu = (qu1,...,quy,). (The ¢’s we will later be considering will be of the form
q = p® for p prime, but the following definitions make sense for any positive integer ¢.) Let U be
the set of all ordered n-tuples of nonnegative integers, so that we can characterize R by

Rz{ZauXu|au€Q}.

uelU

Under this characterization, we can thus view R as a vector space over ().
We now define three linear maps over ) from R to itself that will be of importance throughout

the proof of Dwork’s Theorem.

Definition 3.8. For each G € R we define a linear map, also denoted G : R — R, by r — GT.

For each ¢ € Z" we define a linear map Tj, : R — R by

r= Z ay X" — Ty(r) = Z aguX".

uelU uelU

Finally, we define ¥, ¢ =T,0G: R — R.

In order to get a better feel for what is going on with the map ¥, g, we have the following

example.
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Example 3.9. Let G = Z guwX"”. Then
welU

\I/q,G(Xu) = Tq( Z ngw+u) = Tq( Z gw—uXw> = Z gqv—uXU,
uelU welU vel
where we understand g, to be 0 if not all coordinates of u are nonnegative.

Proposition 3.10. Let G(z) = ngx” € R, and define G4(X) = G(X19) = Z 9o X1, Then
velU velU

GoTy=T40Gq=Yyq,.

Proof. Given r € R, write r = Z a, X". Then Ty(r) = Z aq X", and hence

uelU ueU
(10) = (S 00) (S a0x”) = 3 (S )™
velU uelU welU wveU

where we have substituted w = u + v. (As before, we understand a,, to be 0 if any coordinates of
u are negative.)
On the other hand, consider

Gy(r) = (ZQUXW)<Z%X“) = Z (ngaw,(N,)Xw.

velU uelU wel wveU

Let b, = Z GvQuw—qu- Note that b, € (1 since it is a finite sum. Thus,
velU

T, (Gq(r)) =S buxv =Y (Z gvaqv_qw)Xw -3 (Z aq(v_w)gv>Xw - G(Tq(r)>. O

welU welU veU welU veU

Next, we define a particular set Ry C R with some nice properties.

n
Definition 3.11. Define || - || on U by |Ju|| = Zul Now let
i=1

welU

Ry = {G: Zng“’ €ER ‘ for some M > 0, ord, g, > M|w|| for all w € U}.

Thus, Ry consists of power series whose coefficients approach zero particularly rapidly in Q. We
will see in Proposition 4.1 that given a in the closed disc of radius 1 about the origin, ©(aX") € Ry.

This will be especially useful to us in light of the following proposition.
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Proposition 3.12. Ry is closed under multiplication and under the map T, : G +— G|,

Proof. Closure under multiplication is clear. For closure under 7, suppose G = Z guwr” € Ry.

welU
Then there is some N > 0 such that ord, g, > N||w|| for all w € U. Note that ||qw|| = g|lw]|. Let

M = N/q > 0. Then for all w € U,
ordy ggw > Njw|| = Mq|w|| = M||qw]. O

Definition 3.13. Let V be a finite dimensional vector space over a field K, and let {a;;} denote
the matrix of a map A : V — V with respect to a basis. Then the trace of A is defined to be
TrA= Z Qg5 .
i>0

Note that given this definition, the trace of A is independent of our choice of basis. However,
since R is an infinite dimensional vector space over €2, we will want to have a more general definition
of trace.
Definition 3.14. Let A : R — R be a linear operator such that A(X") = Z ayp X" for all u € U.

vel

We say that A is admissible if for all h(X) = Z b, X" € Ry, we have that Z Auwby converges,
uelU uelU

and A() " buX") =D byA(XY).

uelU uelU

Definition 3.15. Let A : Ry — Ry be admissible. Define a,, € §2 for each u,v € U by A(X") =

Z auy X". We then define the trace of A, denoted Tr(A), to be Z Ay, if this sum converges in 2.
velU uelU

Remark 3.16. We see from Example 3.9 that ¥ = W, 4 fits the conditions of Definition 3.15 and

sends elements X* to Z Gqu—uX". Hence
velU

Tr(V) = Z Jqu—u = Z 9(g—1)us

uelU uelU

which clearly converges for G € Ry.

Using the above value for Tr(¥), we can now state and prove our main lemma for this section.
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Lemma 3.17. Let p be prime, let v > 1 be an integer, and let ¢ = p". Let G € Ry, let ¥ = ¥, g,

and let s > 1. Then Tr(¥®) converges, and

(¢ -1)"Tr(¥) = Y G@)GE)G@")--Ga),
zeQm
za® =1
where we use the notation x = (x1,...,x,) € Q" and 27 = 1 to mean 29 = 1 for all

J
17=12,...,n.

Proof. We begin with the following claim.

Claim 3.18. Let s > 1 be an integer. Let G € Ry, and let G4(X) = G(X9). Then
\IJ;G = \I’qS,G-quGqS,l-

Proof. We proceed by induction on s. When s = 1 this is obvious. Suppose Vo =VYe¢.c6,6

qsfl

and consider \I/ZJE;I By our inductive hypothesis, we have

UG = Va0 Y6 = Ve GGG © Ve =Ty 0 (G- Gy Gyo1) 0 Ty 0 G (3.1)

By Proposition 3.10, Gys-1 0Ty = Ty 0 (Gys—1)g = Ty 0 Gs-1., = Ty 0 Ggs. Thus, we move T to the

left s times, transforming (3.1) to

Ty o (G-Gy---Gyo1) 0Tyo G =Ty oTyo (Gy-Gp -Gy -G) =Tps1 0 (G- Gy--Gys). O

To prove the Lemma, let H = G- G4+ Ggs1 = Z hoX™. Since G € Ry and Ry is closed

wel
under the map G — G, we have G € Ry for each i =1,...,s — 1. Since Ry is also closed under

multiplication, we have H € Ry. Therefore, we know from Claim 3.18 and Example 3.9 that

THXY) = U5 (X)) = Vo g (X) =D hgopuX".
uelU

Thus, as in Remark 3.16 with h in place of g and ¢° in place of ¢, we see that

Tr(U%) =Y hguu= Y higs—1yu-

uelU ueU
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Since H € Ry, we know that |h;|, — 0 as i — oo. Thus the trace converges.

Fix w = (wy,...,w,) € U. By Lemma 1.6, we note that for each i = 1,2,...,n, we have

Z {q—l) if (¢° —1)|w; foralli=1,...,n
z;

otherwise.
;€0
qs—l -1
Thus,
n s n . s .
. -1 if —D|w; foralli=1,...,n
R 1((D DD I A
- - = 0 otherwise.
zeQn =1 pa%-1_4
z?°—1=1 i
Hence,

Z H(m):Zhw Z ¥ =(¢°—1)" Zh(qs_l (¢° — 1)" Tr(¥*). O

zEQM welU zEQM uelU
The above lemma will play a crucial role in proving the main theorem of Chapter 4. Having

successfully extended the definition of a trace to handle infinite vector spaces, we will now need a

final section in order to similarly extend the definition of a determinant.

3.3 Determinants

Let K be a field and let A be an 7 x r matrix with entries a;; € K. Let T' be an indeterminate, and

let 1 denote the r x r identity matrix I,. Then 1 — AT is an r X r matrix with entries in K [T, and
det(1 — AT) Z b T,

with
bm = (71)m Z Sgn(a)aul,a(ul)auz,a(u2)~~~aum,a(um)v

1<up < <um<r
ceSH{ut,...,um})

where S(X) is the group of permutations on X.
We wish to extend the above discussion to linear operators on R. Suppose that A : Ry — Ry
is an admissible linear operator. Motivated by the discussion of det(1 — AT') above, we define the

expression det(1 — AT) to be

det(1 — AT) Zb ™ € Q[[T]],
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where

b = (=1)™ > S81(0) Gy o (ur) Cun o (u2) Gty 0 ()
1<ug < <um
oeS({u1,...,um})

This definition of det(1 — AT') still makes sense as a formal power series in Q[[7T]], as long as the
expression for each b, converges.

Let G = Z guwT™ € Ry, so that for some M we have ord, g,, > M||w| for all w € U. Recall
welU
that ¥ sends elements X“ to Z Gqu—uX". We then have
vel

m m
Ordp(gqa(u1)—u1gqa(uz)—u2 T gqU(Um)_Um> > M Z an(ul) - ul” - M(q - 1) Z Hqu
i=1 =1
Thus, ord, b,, — 00 as m — oo. More precisely, order U according to modified lexographic order,
i.e., define u > w if ||ul] > ||w]|, or if ||u]| = ||w| and uy > wq, or if ||u|| = ||w|| and u; = w; and

ug > wa, etc. Let V.={u € U | w> u}. Then #—IVZ |lui|] — oo as #V — oo. Hence
ueV

1
— ord,, by, — 00 as m — o0,
m

so that
det(1 = UT) = > b, T
m=0

is well-defined and has an infinite radius of convergence.

Proposition 3.19. Let A be a square matriz with entries in Q). Then we have the following identity

of formal power series in Q[[T]]:
det(1 — AT) = exp, ( -y Tr(As)Ts/s).
s=1

Proof. Recall that the determinant and trace are invariant under a change of basis. Since {2 is an
algebraically closed field, A is conjugate to an upper triangular matrix, for example, its Jordan
Canonical form [6, Chapter 7]. That is, there is an invertible matrix C' such that CAC~! is upper

triangular. Without loss of generality, then, we may assume that A, and hence A® for each s > 1,
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is upper triangular. Thus,

r

det(1 — AT) = H(l —a;T) = ﬁexpp <logp(1 - aiiT)) = ﬁexpp ( - i(an’T)s/s)
i=1

=1 i=1 s=1

exp,, < - i i afiTS/s) = exp, < - i Tr(AS)TS/3> O

s=1 i=1

We now generalize Proposition 3.19. Fix an admissible linear operator A : Ry — Ry given by

A XY Zan”.
vel

Definition 3.20. List the elements of U in order as uq; < ug < ... according to graded lexico-

graphic order. For A : Ry — Ry admissible as above, and n > 1, we define A,, to be the matrix

{@uu; F1<ij<n.

Remark 3.21. Intuitively, what we are doing here is thinking of A as representing an “infinite
matrix” that maps elements from Ry to Ry. We can then think of A, as the n X n matrix formed
from the upper left-hand corner of our infinite matrix. The hope is that for sufficiently large n, we
can somehow capture enough information about A to let us carry out our analysis using regular

(i.e., finite) matrices.

Definition 3.22. Let B be any matrix with coefficients in Q. Then we define |B| = max |(B);;/p-
27]

Similarly, for A : Ry — Ry admissible, we define |A| = max|a;;|, if this maximum exists.
irj

Definition 3.23. Let A : Ry — Ry be admissible, and suppose for any § > 0 there is an integer
L such that for all i we have |ailp, |as|, < d whenever £ > L. Then we say A converges, or is

convergent.
Note that if A is convergent in the above sense, then this implies that Tr(A) exists.

Proposition 3.24. Suppose A converges. Then for all € > 0, there exists an integer N > 1 such
that for all n > N, all coefficients of the power series det(1 — AT) — det(1 — A, T) € Q[[T]] have

p-adic absolute value less than .
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Proof. Note first that |A| exists, and let M = |A|. By definition, the coefficient of 7" in det(1—AT)
is
oo
by, = (—1)™ Z sgn(o) H Ay o (ui)-
1<u) < <um =1
oeS({u,...,um})
Similarly, the coefficient of T in det(1 — A,,T") is

bm = (_1)m Z Sgn(g)aul,a(m)aw,a(ug) Qo () ¢
1<uy < <um<n
ceSH{ut,....,um})

Therefore,
n
by, — by, = (=)™ Z sgn(o) H Ay o (us)-
U ey Uy 11 i=1
Um, >N
o€S({ur,....um})
m—1
But ) H Qupo(us)| < M™ 1 Given € > 0, the convergence of A implies that we can find L such
i=1 P

that for all n > L and all i, we have |ani|, < e¢/M™ L. Given n > L, then for all uy, ..., um—1 >1

and u,, > n, we have

m m—1
T o], = [aumotun| | TT Gwow| < gpms - M =2
Uz ,0(Us — |Pum,0(um Ui ,0 (Ui m—1 - =
i=1 P Pl r M
Thus, since | - |, is non-Archimedean,
m
|br, — b |p < max { Haui,a(ui) , <E O
U yeens U —12>1 .
wmon =1

JGS({ul,...,um})
Proposition 3.25. Let A : Ry — Ry converge and be admissible, and let M = |A|. Then for

all € > 0, there is an integer N > 1 such that for all integers n > N and s > 1, we have
| Tr(A®) — Tr ((An)*)]p < M5 Le.

Proof. We begin with a claim.

Claim 3.26. For all ¢ > 0, there is an integer N > 1 such that |A® — (A,)°| < M* e for all

n > N.
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Proof. We proceed by induction on s. The base case of s = 1 is trivial. For our inductive hypothesis,

suppose the claim holds for s. Observe that |(A4,)°| < |A®] < M*® for all n. Thus,
|ASTE — (A5 = [ASA — (A,)% A, = |ASA — ASA, 4+ ASA, — (A,)* A,
= [A°(A = Ap) + An(A” = (4n)”)]
< max{[A%] - [A — Apl, [An| - [A® = (4n)°|} < M,
where the triangle inequality for operators is immediate from that for 2 and by Definition 3.22. [
Thus, given € > 0, we choose N as in Claim 3.26. Then for all n > N, we have
‘Tr(AS) —Tr ((An)s) ‘p <|AS = (A,)%] < M5 g,
where the last inequality follows Claim 3.26. O

oo
Ultimately we will want to show that exp, ( - Z Tr(AS)TS/s) and exp,, ( Z Tr ( Ts/s>
=1

have p-adically close coefficients. Thus, we begin l;y showing the following 1nequahty over a disc.

Proposition 3.27. Let A be as above with M = |A|. Let € > 0. Then for |t|, < 1/(pM) and n
sufficiently big, we have

<e.
p

3T ST,
s=1

s=1

Proof. Observe that |p®/s|, < 1 for all integers s > 1. Let ¢ > 0. Then there exists an integer N
such that for all n > N,

‘_ Tr (A%) _ZTr(

S=

—‘ZTrAS — Tr((

< M le|pf /8],  ME < 8/./\/1,

/s

where the first inequality is by Proposition 3.25. Thus we can replace ¢ with e M to obtain the
desired result. O

o0 o0

Definition 3.28. Let f = ZaiTi and let g = Z b;T" be power series in Q[[T]]. Given r > 0, we
=0 i=0

define

1f = gllr = max{|a, — bn|pr"}.
n>0
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Thus, if f and g converge on the closed disc D(r), then for all x € D(r),

£(@) = 9@)lp = | > (aw ~ b)a"| <I1f =gl
i=1

Lemma 3.29. Suppose nh_)ngo fn = [ in Q[T]] and g € Q[[T]]. Suppose further there are radii
r,p > 0 such that:

(1) g converges on D(p),

(2) f and f, converge on D(r), and

(3) Ifllr < p and || fullr < p,
where (2) and (3) hold for n sufficiently large. Then lim go f, = go f with respect to || - ||, i.e.,
n—oo

for all e > 0, there exists N such that for all n > N, we have ||go fn, —go f|» < e.
oo
Proof. Write g(T') = Z b, T". Pick N > 1 so that for all m > N, we have that f and f, converge

n=0
on D(r) with || f|l+, || fullr < p. Then for any m > N,

lg(fm)=g(Dle = 1D S on(F" = L)l = 1D b (f = F) £ S 2 b o 24 ™D
n=0

n=0

But
lon (/" 4o+ ")l < L where L = max { max{||flr, | fm[l-}" " - [bulp}-
Since g(f) and g(fm) converge, L exists. Hence,

lg(fm) = g(Olr < WIf = Fnllr L

Let € > 0. For sufficiently large m, we have || f — fill» < L/e. Thus || g(fm) — 9(f)]r < &. O

Corollary 3.30. Let € > 0. Then there exists an integer N such that whenever n > N,

<e.
r

H exp, (— Z Te(U*)T°/s) — exp,, ( — Z Tr(A3)T*/s)
s=1

s=1

Proof. Let p = ]p|11,/(p_1). Let f = —ZTr (TN T°/s, let fr, = —ZTr ((Am)*)T*/s, and let
s=1 s=1

g(T) = exp(T). Since f and fp, conver_ge on some disc D(r) and have zero constant term, there
exist N and r so that ||f||,, ||fm|lr < p for m sufficiently large. The corollary then follows from
Lemma 3.29. O
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We now combine the above results in the following theorem.

Theorem 3.31. Let ¥ = ¥, for q a prime power and G € Ry. Then the series det(1 — UT)
is a well-defined element of Q[[T]] with infinite radius of convergence, and we have the following

identity of formal power series in Q[[T]]:

oo

det(1 — ¥T) = exp, (— Z Tr(U°*)T%/s).

s=1
Proof. Take € > 0. By Proposition 3.24, we can find N; such that whenever n > Ny, the coefficients

of det(1 — ¥T') — det(1 — A,T) have p-adic absolute value less than e, hence
| det(1 — OT) —det(1 — A, T)|, < e
for any 0 < r < 1. Note that A, is a regular (i.e., finite) matrix, giving the strict equality
det(1 — A, T) = exp, ( ZTr Ts/s>

by the discussion at the start of this section. But we know from Corollary 3.30 that we can find

Ny and r > 0 such that whenever n > No,

H exp ( - Z Tr(\I/S)Ts/s> — exp < Z Tr(( Ts/s> <e.
s>1 s>1
Set N = max{Ni, N2}, so that
o0
H det(1 — UT) — exp, ( - ZmAS)TS/s) <e.
T
s=1
Letting € go to 0, we have that
[e.e]
H det(1 — UT) — exp, ( = Tr(As)Ts/s) -
s=1 "
Since r > 0, the desired inequality now follows immediately from the definition of || - ||,. O
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Chapter 4

The Zeta-Function is p-adic
Meromorphic

We begin by stating and proving the following proposition which will be useful later on. Recall

that Ry was defined in Definition 3.11 and © was defined just prior to Lemma 3.6.

Proposition 4.1. Let X" = X;" --- X and let a € D(1), the closed disc of radius 1 about the

n
origin. Then ©(aX™) € Ry.
i .
Proof. The result is trivially true if ||w| = 0; so suppose ||w|| > 0. Recall O(T) = ZajT], where

=0
ord(aj) > j/(p—1). Thus,

D
Oaxy - X1 = 3 4yl X7 = 3 g, X,
§=0 velU

where g, = aja’ when v = jw for some j € N, and g, = 0 otherwise. Note that a € D(1) means

la|l, <1, ie., orda > 0. Hence, for v = jw,
ord(gy) = j - ord(a) 4+ ord(a;) > ord(a;) > j/(p —1). (4.1)
Note also that ||v|| = j||w]||, so that j = ||v||/||w||. Combining this with (4.1) yields

ord(gv) > [lvll/ (Ilwll(p — 1)).

Let M = 1/(||lw|/(p — 1)). Then ord(g,) > M]|lv|| for v = jw, and of course the same inequality

holds for v not of this form, since then g, = 0. Hence ©(aX") € Ry. O
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Definition 4.2. A power series in Q[[T]] with infinite radius of convergence is said to be p-adic

entire. The quotient of two p-adic entire functions is said to be p-adic meromorphic.

Observe that the product of p-adic entire functions is entire, and thus the product of meromor-
phic functions is meromorphic.

The following Theorem is the main result of this section.

Theorem 4.3. Let f € Fy[X1,...,X,]. Then Z(H;/Fy;T) € Z[[T]] C Q[[T]] is a ratio of entire

functions in 1 + TQI[T]], and thus is p-adic meromorphic.

Proof. For the hypersurface Hy defined by f(X1,...,X,) € Fy[X1,..., X,], we proceed by induc-
tion on n, the number of variables. If n = 0, then Hy is empty, N, = 0 for all s, the zeta-function
is identically 1, and our assertion is trivially true. Now suppose it holds for 1,...,n — 1 variables.

We now set the following definitions.
N = #{(z1,...,2n) € (F;s)n | f(x1,...,2,) =0},

Z'(Hy[Fg;T) = exp (Y NJT/s).
s>1

This leads us to the following claim.

Claim 4.4. It suffices to show that Z'(Hy/Fq;T) = exp(d_ ooy NiT®/s) is p-adic meromorphic.

Proof. Note first that Z(Hy/Fy; T) = Z'(Hy/Fg; T) - exp(3_ac(Ns — N.)T%/s). Next, note that
the exp factor on the right-hand side is the zeta-function for the (possibly not disjoint) union
of the hypersurfaces H;, where H; is the common zero set of f and X;. It is clear that the
zeta-function for H; is the same as that for H;, the zero set of fi(Xl, oy Xic1, Xig1, - X)) =
f(Xn, o Xim1,0, Xq1, .., X)) € Fo[ X, ..., Xi—1, X1, ..., Xy]. There are then three cases for
the zeta-function of these H;.

Case 1. H; = (). Then the zeta-function for H; is 1.

Case 2. H; is a copy of qu_l contained in Aﬁq. In this case, we have shown explicitly in

Example 1.11 that the zeta-function is p-adic meromorphic.
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Case 3. H; is a lower dimensional hypersurface and hence meromorphic by our inductive

hypothesis. More generally, given any iy,...,4,, let H(i1,...,i,) be the common zero set of f and
Xiyy--.,X;,. Then the associated zeta-function is the same as that of Fl(il, ceyip) C Aﬁq_r, the
zero set of ﬁllr eF,l..., Xil, e Xir, ...], where lezr (z1,...,2y) is defined to be f(z1,...,zy)

with z;,,...,x;, replaced by 0’s. Thus the zeta-function Z(H (i1,...,4,)/Fq;T) is meromorphic by
hypothesis.
By the Inclusion/Exclusion Principle, we have
No—No=|UJmE| =", |- > [HynHy |+ Y |Hy 0 Hy 0 Hy| — x| () Hyy-
i i1 i1 <io i1 <io<i3
But H;, N...NH;, = H(i1,...,i), so that the associated zeta-function Z(ﬁ(il, e ,z'r)) is p-adic
meromorphic as shown above. Thus, exp (i(N s— N)T®/ s) is a product of p-adic meromorphic

s=1
functions, and hence meromorphic. O

To prove our theorem for Z'(Hy/Fq;T), we begin by fixing notation. Let ¢ = p”, and fix an
integer s > 1. For a € Fys, let t € ) denote its Teichmiiller representative. Given a p™ root of

unity €, we know from Lemma 3.6 that we can write:

rs—1

ee = ()OOt ) - 0’ ).

Next we will need to make use of the following claim.

Claim 4.5.

s _ : —
ver ¢ —1, ifu=0.
Proof. We will show the equivalent identity

Z 5Tr($u) _ 0, if u € F;s
.Z‘EIFqs qs’ lf U= 07

from which the claim follows immediately. Let S = Z T @) Now set y = — a, so that
Z‘EFqs

S = Z 6T‘r(au—&-yu) _ Z ETr(au)ETr(yu) _ 6TY(au) Z ETr(yu) _ ETr(au) . S. (42)
y€Fys yEFys yEFys
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If w =0, then S = Z g% = ¢®. If u # 0, we know from Remark A.9 and Claim A.11 that there
IE]FQS
is an element b € F s with nonzero trace in F,. Thus, eTr®) £ 1. By equation (4.2), § = ¢™®) . g,

Since ™(®) £ 1, we have S = 0.

We now consider the sum
Z Tr(acof 1, Z Z E'I‘r(xof(xl,...,xn)) _ qué - (qs o 1)n7 (4_3)
20,...,.Tn €F 20€F s 21,...,2n €F

where the final equality is by Claim 4.5 with © = 29 and u = f(x1,...,2,), and by analyzing the
following two cases.

Case 1. f(z1,...,2,) = 0. Summing across all zy € IF(;S, this will add ¢°* — 1 to the sum in
(4.3). Since this occurs N/ times, a total of (¢° — 1) N} = ¢°N. — N/ is contributed to the sum.

Case 2. f(x1,...,z,) # 0. Summing across all xg € IF';S, this will add —1 to the sum in (4.3).
This will occur for all but the N} points from the first case, thus adding ((¢* — 1)" — N)(-1) =
Ng—(¢° =1

We are thus left with ¢ N, — N, + N. — (¢° —1)" = ¢°N. — (¢° — 1)", as claimed in (4.3).

Next, replace the coefficients in Xof(X1,...,X,) € Fy[Xo, X1,...,X,] with their Teichmiiller

representatives. This gives us a new function

N
F(Xo,X1,..., Xn) = Y _a; X" € Q[Xo, X1,..., X],
i=1
where each a; € Q) satisfies a?s = a;, and where w; = (w;p, w;1 ..., wip) € U.

By (4.3) and Lemma 3.6, we have

qué = (qS — 1)" + Z ET‘I'($Of(Z17---7$n))

x
xo,...,xnelF

=(¢-1)"+ Z H O(a;x (al xpwl) o @(afm_lxprsflwi).
ZO,-- ,an]F
We then define
N B 1
G(Xo,...,Xn) = H@(aini)@( PXPUi) ... O P wny,
=1



whence
EN=(-D)"+ Y G@) -G Ga’) -G ). (4.4)
20,0 EFgS
But we know from Proposition 4.1 that @(afj xv wi) € Ry. Since Ry is closed under multiplication,

we have

G(Xo, ce ,Xn) € Ry C QHX(), .. ,Xn]]

By Lemma 3.17, equation (4.4) gives
sar!l S n S n+1 S
¢°Ny = (¢° = 1)" +(¢" = )" Te(¥?),

where ¥ = ¥, ¢ = T, o G. By the binomial theorem,

n n+1

=S (D)o S (e

1=0
and hence
n n+1 n+1 ( )
Nl _ 1 7 s(n—i—1) s(n=1) Tp(TS).
=30 () e (e

We then define A by
A(T) = det(1 — AT') = exp, ( ZTr Ts/s)

so that

[e.9]

Z/(H;[Fy;T) = exp, ( SN /s)

s=1

= ﬁ [epr (i qs(”_i_l)T‘g/s>
i=0 s=1

DT =0 (")

X H [expp (qu L \IIS)TS/S)
i n n+1
( n i— lT)( 1) +1 +1

where we note our use of Theorem 2.38. Hence by Theorem 3.31, each term in this product is a

)

)

:]:

A(’”T

=1

p-adic entire function of the desired form, raised to an integer power. Thus Z'(Hy/F4; T) is p-adic

meromorphic. ]
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Chapter 5

A Rational Function Criterion

Before proving our main theorem, we must first establish the following criterion for when a power

series can be written as a rational function.

(0.9]
Theorem 5.1. Let K be any field. Let F(T) = ZaiTi € K|[[T]]. For m,s > 0, let As,, be the
i=0

following (m + 1) x (m + 1) matriz:

Qg Asi1 s As4+m
As+1 As42 ccr As4m41
Qs+m QAs+m+1 Qs+2m

Let Dy, = det(Agm). Then F(T) is a rational function if and only if there exist non-negative

integers m and S such that Ds,, =0 for all s > S.

Proof. For the forward implication, suppose F(T') = P(T')/Q(T), where
P(T) =) _bT,Q(T)=> T € K[T],
i=0 i=0

and Q(T) # 0. Thus F(T) - Q(T) = P(T), so that equating coefficients of T for i > max(n,m)

gives:
m

Z ai,erj Cm—j = 0. (51)
7=0
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Let S = max(0,n —m + 1). For s > S, applying (5.1) with i = s+m,s+m+1,...,s+ 2m gives

AsCm + As41Cm—1 + +* + aspmeco =0

As41Cm + Qs42Cm—1 +++ + Asymy1c0 =0

AstmCm + Qs4m1Cm—1 + +* + asp2mco = 0,

so that (co,c1,...,¢m) - As;m = 0 under matrix multiplication. Thus, since @ # 0, we have
Dy, = det(Ag ) =0 for s > S.

For the reverse implication, note that m = 0 implies F' is a polynomial and we are done. So
without loss of generality, let m > 1 be the smallest positive integer such that for some non-negative

integer S we have Dy, = 0 for all s > S.

Claim 5.2. Dy ,,—1 # 0 for all s > S.

Proof. Suppose that Ds,,—1 = 0 for some s > S. Then some nontrivial linear combination of the
first m rows ro,r1,...7m—1 of Ag,y is 0 in all but perhaps the last column. Let 7 be the first row
with nonzero coefficient in this linear combination, that is, there are aq, ..., ®y—r—1 € K such that
the row vector ry, differs from ayrg 1 +aorgio+- - -+ Qm_k_17m—1 in at most the last column. In our
matrix A ,,, we now subtract the above linear combination from row ry, leaving the determinant
D; , = 0 unchanged. This leaves us with two cases:

(1) k > 0. Then our new matrix looks like

as As41 te As+m
As+1 Ags42 s Qs4m+1

0 0 J6]
Qs+m QAsym+1 Qs2m

Consider the square matrix consisting of all but the first row and last column above. Since there

is a row consisting entirely of 0’s, we see that this matrix has determinant 0. On the other hand,
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our new matrix was formed from A, ,,—1 by row operations that did not involve the deleted first
row. Thus Dsy1m—1 = 0.

(2) k = 0. This gives us

0 0 . 3
As+1 As+42 o Qs4mAtl
Qs+m QAs+m+1 Qs+2m

If = 0, then the m x m matrix formed by deleting the last row and first column has determinant
0. However, this matrix came from row operations on A1 ,,-1, none of which involved the deleted
last row. Thus, Dst1,m—1 = 0. On the other hand, if 3 # 0, then the m x m matrix formed by
deleting the first row and last column has determinant zero; but this matrix is exactly As1m—1,
so that Dsi1,m—1 = 0 since D, = 0.

By induction, then, we have Dy ,,—1 = 0 for all ¢ > S, contradicting the minimality of m. O

Thus Ds,, = 0 and Ds ,,—1 # 0 for any s > S. Hence we can find a linear combination of the
rows in A ,, which vanishes, and in which the coefficient of the last row is nonzero. In particular,
for any s > S, the last row 7,1 of As,, is a linear combination of the preceding rows ro, 71, ..., 7n.

So any solution to

asCm + as41Cm—1+ - + agymco = 0

AS4m—1Cm + AS+mCm—1 + - + as42m—1c0 = 0
is also a solution to
aAS+mCm + Gstm+1Cm—1 + -+ + As129mCo = 0,

and, by induction, to the equation
asCm + s41Cm—1 + +* + Gspmeo = 0

m o
for every s > S. That is, for all s > S the coefficent of 75T in (Z ciTi> . <Z a,-Ti> is 0. Thus
i=0 i=1
0 .
F(T) = Z a;T" is a quotient of two polynomials. O
i=1
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Chapter 6

Dwork’s Theorem

6.1 Proof of the Theorem

Proposition 6.1. The coefficient of T® in Z(H/Fq;T) is bounded above by ¢™

Proof. We begin by observing that Ny < #A]’qus = ¢"°. Thus the coefficients of Z(Hy/Fy;T) =

o0

o0
exp(z N T?/s) are clearly less than or equal to those of exp(Z(q”s)Ts/s). But
s=1 s=1

exp(>_(¢")T*/s) = exp(d_(q"T)*/s) = exp(—log(1 — ¢"T)) = 1/(1 = ¢"T Z qT".

s=1 s=1

Lemma 6.2. Z(H;/F;T) € 1+ TZ[[T]].

Proof. For any P = (1,...,xy,) € Hf(F,), define y(P) to be the minimal positive integer such that

z; € Fuwp) foralli=1,...,n. Fix r > 1, and consider a point P € H(F,) such that u(P) =r.

Claim 6.3. For all 0 € Gal(Fy/F,) — {e}, we have o(P) # P.

Proof. Suppose o € Gal(IF;- /) satisfies o(P) = P. Let L be the fixed field L = (Fyr)(oy = {7 €
Fgr | o(x) = x}. Since o fixes P, we know that P € H¢(L). Thus, by the minimality of r, we have
L =TF,, so that (o) = {e}. O

Thus, P has # Gal(F,/F,) = r distinct Galois conjugates in Fgr. Given P € Hy(Fgr), we

can view P as also sitting inside Hy(Fg2r), Hy(Fgs:),.... Note that F(,ry: are the only algebraic
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extensions of Fyr. Letting r and P vary, we define

P(r) ={P € Hy(Fyr) : p(P) = 7}.

We can now write our zeta function Z(Hy/Fy;T) as

e e rt
exp(ZNTs/s> —exp(Z Z Ts/s> —exp(Z Z ZT ) (6.1)
s=1 PeHf(Fys) r=1 PeP(r) t=1
i 3 = —% log(1 —T"). Applying this fact to (6.1) gives

Z(Hf/IFq;T):exp<Z Z —%log(l—Tr))

r=1 PeP(r)
= exp (D0~ log(1— T7) - #{P(r)}).
r=1

However, the previous paragraph implies that r|#{P(r)}. We can thus write #{P(r)} =r-n,,

for some n, € N. This gives us

exp(Z —n, - log( 1—T’") ]T:O[(l_TT) Tzﬁ(iTjT)mel+Z[[T]]. O

r=1 r=1 j:O

Before we prove Dwork’s Theorem, we state the following classical result of p-adic analysis.

Theorem 6.4 (p-adic Weierstrass Preparation Theorem). If B(T) € Q[[T]] is a p-adic entire
function, then for any R there exists a polynomial P(T) and a p-adic power series H(T) € 1 +
TQ[T]] which converges and is non-zero on the closed disc D(R) of radius R, such that B(T) =
P(T)-H(T).

Proof. Omitted. See [2, pp. 105 — 106]. O
We are now ready to prove our main result.
Theorem 6.5 (Dwork). The zeta function of any affine hypersurface is a ratio of two polynomials

with coefficients in Q.

44



Proof. For brevity, we use the notation Z(T') = Z(Hy/F4;T). We showed in Theorem 4.3 that
Z(T) € 14+TZ[[T]] is p-adic meromorphic, so we can write Z(T') = A(T')/B(T), where A(T'), B(T) €
1+TQ[[T7]] are p-adic entire functions. Applying the Weierstrass Preparation Theorem to B(T') with
R = ¢*, there exist a polynomial P(T) € 1+ TQ[T] and a p-adic power series H(T) € 1+ TQ[[T]]
that converges and is non-zero on D(¢?*"), such that B(T) = P(T) - H(T). In particular, H(T)
has a reciprocal G(T') € 1+ TQ[[T]] that is also convergent on D(¢?"), and thus we can write
B(T) = P(T)/G(T). Let F(T) = A(T) - G(T), which converges on D(q?") since G(T) converges on

D(g*") and A(T) is p-adic entire. To summarize, we have:

where F(T) € 1+ TQ[[T]] converges on D(¢*") and P(T) =1+ TQ[T).
For the remainder of the proof, write F\(T') = Z bT" € 1+ TQ[T)], P(T) = Z T €1+ TQ[T),
1=0 1=0

and Z(T) = > a;T" € 1+ TZ[[T]].
i=0
Fix m = 2e + 1, so that m > 2e. (Note e = deg P.) Let A, be the (m + 1) x (m + 1) matrix

as As41 s As4+m
Qg1 Q542 o OQs4mAtl
Qs+m QAs+m+1 Qs+2m

and let Dy, = det(As ). We will show that Dg , = 0 for s sufficiently large, and then Lemma 6.1
will imply that Z(T') is a rational function.
Equating coefficients in F(T') = P(T) - Z(T) gives

bjte = Qjye + ClAjre—1 + C20j1e—2 + ...+ Cety. (6.2)

With the ¢;’s as coefficients, we can use linear combinations of the columns in Ay, to form B, ,,

the (m + 1) x (m + 1) matrix

as As+1 cee Qste—1 bs+e T bs-‘,—m
As41 As42 te Aste bs+e+1 te bs+m+1
Gs4+m QAstm+1  *°°  OAsdmie—1 bs+m+e to bs+2m
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Note that going from A, ,, to Bs,, leaves the determinant unchanged, since the coefficient of a;.
in (6.2) is 1. We thus use Bg p, to help estimate Ds p,.

By Proposition 6.1, we know that |a;|s < ¢"". In our matrix As,, then,

|asriloo < ") < @52 for each i =0, ..., 2m.

Thus we have the crude estimate
|Ds,m|oo < (m + 1)| . qn(s+2m)(m+1) — (m + 1)| . q2nm(m+1)qns(m+1)‘

Next, we use our matrix Bsm, to estimate |Ds |- Pick @ € Q such that |a, = ¢?". Then

oo

F(a) = Zb@' -a' converges, since a € D(¢*"). So for sufficiently large i, we have bilp - 4™ =
i=0

|bi - '], < 1, or equivalently, |b;|, < ¢~

i

Note that Dy, = det(Bs,y,) is a sum of terms, each of which is a product of e of the a;’s and
(m+1—e) of the b;’s. But since each a; € Z C Zj,, we have |a;|, < 1. Thus each of the terms in the
sum has p-adic absolute value bounded above by (max |b;],)™ ! ~¢. Hence, |D; |, is also bounded
above by (max |b;],)™ 7€ < g 2ms(mt1=e) for s sufficiently large. Recall that m = 2e + 1 > 2e, so
that

—2ns(m+1—e) _ —ns(2m+2—2e) —ns(m+2)
[Dsmlp < q =q <q :

We now multiply together our two bounds, to get

1)! . g2rm(m+1)
|Ds,m‘p . |Ds,m‘oo < qfns(m+2) . (m + 1)| . q2nm(m+1)qns(m+1) _ (’ITL + ) q < 17

q’I’LS

for s sufficiently large.
Note that Dy ,, € Z, since each a; € Z. Suppose Ds p, is non-zero, and let £ = ordy,(Ds ). Then

we can write Dy, = p’ - r, where p does not divide r. Then
oo = |1 7] = |p_€ 'pz “Too = p_z ) ‘pé “Tloo = |[Ds;mlp * [Dsymloc < 1.

But r € Z, so r = 0, and hence Dy, = p‘r = 0, a contradiction. Thus Dy = 0 and Dwork’s

Theorem is proved. O
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6.2 Corollaries of Dwork’s Theorem

Before going any further, we pause to reflect on Dwork’s Theorem and its significance for solving

systems of polynomial equations over finite fields. More specifically, the following proposition tells

t U

us that we can write any Ny as Z a; — Z B; for some finite set of complex numbers ai,..., o
i=1 i=1

and (1,...,By. Since a finite number of Ny is sufficient to determine all of the «; and f3;, we will

thus have a simple formula with which we can explicitly compute all the remaining Nj.

o0
N,
Proposition 6.6. Z(T) = exp( E —STS) is a rational function P(T)/Q(T) with coefficients in
s
s=1

Q having no poles or zeros at T = 0, if and only if there exist aq,...,ar € C and (1,...,0, € C

such that .
NS:Zaf—Zﬂf, foralls=1,2,3,...,

i=1 =1

(1 — BiT) have all coefficients in Q.

¢
where H(l —o;T),
=1

u
=1 =

Proof. Suppose N is of the above form. That is,
Ne=ai+...4a — (B +...+55).

Then our zeta-function Z(T') is

2(T) = [ exp (St (@0T/5) [, (~log(1 - a/7)) M (-6

[Ty exp (Lo (577)/s) Iz (= log(l=6T)) - Tisy (1 = i)

Thus Z(T') = P(T)/Q(T) is a rational function with coefficients in Q, and Z(0) = P(0) = Q(0) = 1.

For the reverse implication, suppose Z(T') € Q(T), and write

Z(T) = gg;, where P(T),Q(T) € 1+ TQ[T].

Motivated by equation (6.3), let «q,...,a; be the reciprocals of the roots of Q(7T), listed with
multiplicity. Similarly, let fi,...,3, be the reciprocals of the roots of P(T), also listed with

multiplicity. We thus obtain the desired result. O
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Definition 6.7. Let K be a field and let f1,..., fm € K[X1,...,X,]. If M is a field containing K,
then
Hp (M) ={(z1,...,20) € Ay | fi(z1,...,2p) =0forali=1,...,m}

is the affine variety defined by f1,..., fm.

Corollary 6.8 (Dwork’s Theorem for Affine Varieties). Let fi,..., fm € Fo[X1,...,X,] and let

Ny = #(Hy,, 1,.(Fgs)). Define Z(T) = exp (Z NSTS/3>. Then Z(T) € Q(T).
s>1

Proof. The case m = 1 is Dwork’s Theorem. For m = 2, observe that

Ns = #(Hfl,fz(Fqs)) = #(Hfl (]Fqs)) + #(Hfz(]Fqs)) - #(Hfl'fz(Fqs))a

so that Z(T) is a product of rational functions by Dwork’s Theorem. For the general case, note

that

.
Hfil'“fi»r (Fqs) = ﬂ Hfij (]Fqs)'
j=1

Thus by the Inclusion/Exclusion Principle from Chapter 1, we have

No= " #(Hy, (Fe)) = Y #(Hy, g, (Fg)) +-+

i1<m i1<io<m
S #Hpy g, F)) o+ (CD)™ R (H g, (Fye)).
i1<-<ir<m
Hence Dwork’s Theorem implies Z (T') is a product of rational functions. O

Definition 6.9. Let K be any field, and let f € K[Xj, ..., X,] be a homogeneous polynomial. If

M is a field containing K, then

Hf(M) = {(1'07"'7'%'71) € IPﬂ]%/[ | f(x(]v“-axn) = 0}
is the projective hypersurface defined by f.

Corollary 6.10 (Dwork’s Theorem for Projective Hypersurfaces). Let f € Fy[Xo,...,X,] be

a homogeneous polynomial, and let Ny = #(H;(Fys)). Define Z(T) = exp (ZNSTS/S). Then
s>1

Z(T) € Q(T).
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Proof. Recall that ]P’%qs can be written as the disjoint union Aﬁqs U Aﬁq‘sl U---u A%Fqs U {point}.
But there is clearly a bijection between the sets ﬁf N Aqus and Hy,(Fgs), where fi(xo,...,xi—1) =
f(zo,...,2i-1,1,0,...,0) € Fy[zo,...,z;—1]. Thus, applying Dwork’s Theorem to the Hy, (Fgs)’s

gives the desired result. O

Definition 6.11. Let K be any field, and let fi,..., fi, € K[Xy,...,X,] be homogeneous poly-

nomials. If M is a field containing K, then
Hfh..-,fm(K) = {(1‘0, R ,.%'n) S P?{ ’ fi(x(), Ce ,.Z'n) =0 foralli= 1,... ,m}
is the projective variety defined by f1,..., fm.

Corollary 6.12 (Dwork’s Theorem for Projective Varieties). Let fi,..., fm € F¢[Xo,..., Xy] be

-----

s>1

Z(T) € Q(T).

Proof. As in the proof of Corollary 6.8, we use the Inclusion/Exclusion Principle to show

No= D #(Hp (Fe)) = >, #(Hpy s, (Fyr) oo+

i1<m 11<t2<m
Y #Hpyeg, Fg)) + oo ()™ (Hyy o, (Fge))-
1< <ip<m
Thus by Corollary 6.10, Z(T) is a product of rational functions. O
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Appendix A

Galois Theory

We include below a brief review of some results from Galois Theory. For more on the subject, as

well as complete proofs of the following facts, see [4].
Definition A.1. If L is a field, then an automorphism of L is a field isomorphism ¢ : L — L.

Definition A.2. Given a ring homomorphism of fields ¢ : F' — L, we say that L is a field extension

of F via ¢.

Definition A.3. Let L and F be fields, with F' C L a finite extension. Then the Galois group
Gal(L/F) is the set

{o: L — L | o is an automorphism of L, and o(a) = a for all a € F'}.

Proposition A.4. Gal(L/F) is a group under composition.

Proof. Suppose 0,7 € Gal(L/F). Then o o 7 is an automorphism because o, T are. Also, if a € F,
then o o 7(a) = o(7(a)) = o(a) = a, since o, 7 are the identity on F. Thus we have a well-defined
operation on Gal(L/F'). Note also that composition of functions is associative. The identity map
1z : L — L is an automorphism and restricts to the identity on F, so that 1; € Gal(L/F'). Clearly
ogolp =100 = o for all 0 € Gal(L/F). Thus 1, is the identity element of Gal(L/F). Given
o € Gal(L/F), then because ¢ is an automorphism, its inverse 0~! : L — L is an automorphism
as well. If a € F, then a = o(a), so that 0~ !(a) = 07 '(0(a)) = a. Hence 0~ € Gal(L/F). Thus

Gal(L/F) satisfies the group criterion. O
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Definition A.5. Let F' C L be a finite extension of fields with Galois group Gal(L/F’). Given a
subgroup H C Gal(L/F), the fized field of H is

Ly={a€L|o(a)=aforaloeH}.
Note also that Ly is in fact a field, and F' C Ly C L.

Definition A.6. Let F' C L be a field extension, and note that L forms a vector space over F.
(a) L is a finite extension of F' if L is a finite-dimensional vector space over F.
(b) The degree of L over F, denoted [L : F, is defined to be dimpL if L is a finite extension of F,

and oo otherwise.

Definition A.7. An extension F' C L is called a Galois extension if it is a finite extension where

F is the fixed field of Gal(L/F) acting on L.

We now consider a particularly nice automorphism, named after the German mathematician

Ferdinand Georg Frobenius.

Fact A.8. Let p be prime and let s > 1 be an integer. Let ¢ = p", and denote by Fy the field of
q elements. Then the map Frob, : Fgs — F, defined by Froby(a) = a? is an automorphism of Fys
that is the identity on Fy; i.e., Frob, € Gal(Fgs /Fy).

Remark A.9. Since Galois groups are closed under composition, we see that (Frobq)i :Fys — Ty
defined by (Frob,)!(a) = a? is an element of Gal(F,s /F,). In particular, a — a? is an automorphism

of Fys that is the identity on F,.

Fact A.10. Let p be prime. If ¢ = p", then Gal(Fys/Fy) = Z/sZ. In particular, Gal(Fys /Fy) =

{(Froby)*:i=0,1,...,s — 1} is a cyclic group of order s.

We conclude our discussion of Galois Theory with the following claim concerning linear combi-

nations of automorphisms.

Claim A.11. Let oq,...,0, be distinct automorphisms of a field K. Then there is no nontrivial

linear combination ) a;o; with a1, ...,a, € K such that ) a;o;(x) =0 for every x € K.
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Proof. Suppose our claim is false and consider such a linear combination,
aro1(z) + ...+ apop(x) = 0. (A.1)

Without loss of generality, we assume that n > 1 is minimal, and that each a; is non-zero. In fact,
if n =1, then 1 = 01(1) = 0, a contradiction; so n > 1. Since o1 # 0, there must be some y € K

such that o1(y) # on(y). Note that y # 0. We now substitute zy for x in (1.1) to get
aro1(zy) + ...+ apop(zy) =0,

for all x € K. Thus

aro1(x)o1(y) + ... + apon(x)on(y) = 0. (A.2)

Multiplying (1.1) by o1(y) and subtracting the result from (1.2) gives

as (Ul(y) - Jg(y))ag(:l:) +...+ay, (al(y) — an(y))an(x) =0.

But the coefficient of oy, (2) is an (01(y) — 04 (y)) # 0, contradicting the minimality of n. O
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Appendix B

The Weil Conjectures

We say a projective hypersurface H 7 is smooth if the partial derivatives of f with respect to all
n variables never vanish simultaneously. Let § be the Betti number of H 7 where the k' Betti
number of a space X is related to the k™ homology group of a certain manifold corresponding to

X. Then for the case of a smooth projective hypersurface, the Weil Conjectures say:

(i) Z(ﬁf/IE‘q;T) =P(T)*'/(1-T)1—q¢T)--- (1 —¢"'T)), where P(T) € 1+ TZ[T) has degree
B, and where we take P(T) when n is even and P(T)~! when n is odd.
(ii) If o is a reciprocal root of P(T'), then so is ¢" 'a.

(iii) The complex absolute value of each of the reciprocal roots of P(T) is ¢(»~1/2.
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