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Abstract

This thesis concerns the number of zeros of a multivariable polynomial f over a finite field. More

specifically, the zeta-function of f is defined in terms of a certain power series with coefficients

determined by the number of zeros of f over various finite fields. Our main result is Dwork’s

Theorem, stating that the zeta-function of f is in fact a rational function, i.e., a quotient of two

polynomials, each with rational coefficients.

i



Acknowledgements

I would like to thank my parents, grandparents, siblings, and dog, for their constant words (and

barks) of encouragement. I would also like to thank the Amherst College math department, who

took me in as a lowly Math 11 student and convinced me to continue my mathematical education

with Math 12, 13, 15, 21, 26, 28, 31, 34, 37, 42, 44, 77, and 78. Of course, I would especially like

to thank Professor Benedetto, who introduced me to p-adic numbers and mathematical research

during a summer REU, gave me the opportunity to be a teaching assistant for an introductory

Calculus class, was extremely involved in the thesis writing process from start to finish, and taught

me that the plural of the word “genus” is “genera.”

ii



Index of Notation

N {0, 1, 2, . . .} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q Rational Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fq field of q elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

PnK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Hf (M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Z(Hf/Fq;T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Da(r−), Da(r), D(r−), D(r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Qp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

NK/Qp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Q̄p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Zp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

logp, expp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Υ(X,Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Θ(T ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

G : R→ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



Tq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Ψq,G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Tr(Λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

An . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

‖f − g‖r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

N ′s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Z ′(Hf/Fq;T ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

As,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Ds,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



Contents

1 Background 1

1.1 Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Inclusion/Exclusion Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Statement of Dwork’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Qp and p-adic Analysis 7

2.1 Metrics and Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Qp, Ω, and Zp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Teichmüller Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 log(1 +X), exp(X), and Υ(X,Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Traces, Linear Maps, and Linear Operators 21

3.1 Characters and Lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Linear Operators and Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 The Zeta-Function is p-adic Meromorphic 35

5 A Rational Function Criterion 40

6 Dwork’s Theorem 43

6.1 Proof of the Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Corollaries of Dwork’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



Bibliography 49

A Galois Theory 51

B The Weil Conjectures 54

vi



Chapter 1

Background

1.1 Algebraic Geometry

Throughout this section, let K be a field and let n be a positive integer.

Definition 1.1. We define n-dimensional affine space over K, denoted An
K , to be the set of ordered

n-tuples (x1, . . . , xn) where each xi ∈ K.

The notation An
K is used instead of Kn to emphasize that we are thinking of the set as a set

merely of points, not as a vector space.

Definition 1.2. Let f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] be a non-zero polynomial in n variables. Then

the affine hypersurface defined by f in An
K is defined to be

Hf = {(x1, . . . , xn) ∈ An
K | f(x1, . . . , xn) = 0}.

We define the dimension of Hf to be the number n− 1.

Although our main theorem will be concerned only with affine space, we also have the following

definition.

Definition 1.3. We define n-dimensional projective space over K, denoted PnK , to be the set of

equivalence classes of An+1
K − {(0, . . . , 0)}, where we declare (x0, x1, . . . , xn) to be equivalent to

(y0, y1, . . . , yn) if and only if there is a λ ∈ K − {0} such that yi = λxi for all i = 0, 1, . . . , n.
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Projective n-space can be viewed as containing affine n-space, as follows. Consider the map

An
K ↪→ PnK defined by

(x1, . . . , xn) 7→ equivalence class of (x1, . . . , xn, 1).

Thus the image of An
K consists of all of PnK except for the equivalence classes of (n + 1)-tuples of

the form (x1, . . . , xn, 0). Meanwhile, that hyperplane is isomorphic to Pn−1
K under the one-to-one

correspondence sending

equivalence class of (x1, . . . , xn, 0) 7→ equivalence class of (x1, . . . , xn).

Continuing in this fashion, and abusing notation slightly, we can write PnK as the disjoint union

PnK = An−1
K ∪ An−2

K . . . ∪ A1
K ∪ {point}.

Definition 1.4. Given a monomial xd1
1 · · ·xdnn , the total degree d is defined to be d = d1 + · · ·+ dn.

We say a polynomial f̃(X0, . . . , Xn) ∈ K[X0, . . . , Xn] is homogeneous of degree d if it is a linear

combination of monomials, each of which has the same total degree d.

Note that if f̃(X0, . . . , Xn) ∈ K[X0, . . . , Xn] is homogeneous and f̃(x0, . . . , xn) = 0, then

f̃(λx0, . . . , λxn) = 0 for all λ ∈ K − {0}. Thus, the following definition should make sense.

Definition 1.5. Let f̃(X0, . . . , Xn) ∈ K[X0, . . . , Xn] be a polynomial in n+ 1 variables. Then the

projective hypersurface defined by f̃ in PnK is defined to be

H̃f̃ = {(x0, x1, . . . , xn) ∈ PnK | f̃(x0, x1, . . . , xn) = 0}.

We conclude our first section with the following lemma.

Lemma 1.6. Let Ω be an algebraically closed field. Then for any positive integers n and a, we

have ∑
ζ∈Ω

ζn=1

ζa =

{
n if n|a
0 otherwise.
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Proof. If n divides a, then ∑
ζ∈Ω

ζn=1

ζa =
∑
ζ∈Ω

ζn=1

(ζn)k =
∑
ζ∈Ω

ζn=1

1 = n.

If n does not divide a, let S =
∑
ζ∈Ω

ζn=1

ζa, and let ζn ∈ Ω be a primitive nth root of unity; note that

ζn exists because Ω is algebraically closed. Then ζan · S = S. But ζan 6= 1; so S = 0.

1.2 Inclusion/Exclusion Principle

The following principle from Discrete Mathematics will be useful to us both in proving our main

theorem, and in proving some of its corollaries.

Proposition 1.7 (Inclusion/Exclusion Principle). Suppose A1, . . . , An are finite sets. Then

∣∣ n⋃
i=1

Ai
∣∣ =

n∑
i=1

∣∣Ai∣∣− ∑
1≤i<j≤n

∣∣Ai ∩Aj∣∣+
∑

1≤i<j<k≤n

∣∣Ai ∩Aj ∩Ak∣∣− · · ·+ (−1)n+1
∣∣A1 ∩ · · · ∩An

∣∣.
Proof. We proceed by induction on n. The case n = 1 is trivial. Suppose the statement holds for

n sets. For n+ 1 sets, we have∣∣∣ n+1⋃
i=1

Ai

∣∣∣ =
∣∣∣( n⋃

i=1

Ai

)
∪An+1

∣∣∣ =
∣∣∣ n⋃
i=1

Ai

∣∣∣+
∣∣∣An+1

∣∣∣− ∣∣∣( n⋃
i=1

Ai

)
∩An+1

∣∣∣
=
∣∣∣ n⋃
i=1

Ai

∣∣∣+
∣∣∣An+1

∣∣∣− ∣∣∣ n⋃
i=1

(
Ai ∩An+1

)∣∣∣.
Note Ai ∩ An+1 is a finite set for all i, and hence we can now use our inductive hypothesis for the

unions above. This gives us∣∣∣ n+1⋃
i=1

Ai

∣∣∣ =
n∑
i=1

∣∣∣Ai∣∣∣− ∑
1≤i<j≤n

∣∣∣Ai∩Aj∣∣∣+ ∑
1≤i<j<k≤n

∣∣∣Ai∩Aj∩Ak∣∣∣−· · ·+(−1)n+1
∣∣∣A1∩· · ·∩An

∣∣∣+∣∣∣An+1

∣∣∣
−
( n∑
i=1

∣∣∣Ai∩An+1

∣∣∣− ∑
1≤i<j≤n

∣∣∣Ai∩Aj∩An+1

∣∣∣+ ∑
1≤i<j<k≤n

∣∣∣Ai∩Aj∩Ak∩An+1

∣∣∣−· · ·+(−1)n+1
∣∣∣A1∩· · ·∩An+1

∣∣∣)

=
n+1∑
i=1

∣∣∣Ai∣∣∣− ∑
1≤i<j≤n+1

∣∣∣Ai ∩Aj∣∣∣+
∑

1≤i<j<k≤n+1

∣∣∣Ai ∩Aj ∩Ak∣∣∣− · · ·+ (−1)n+2
∣∣∣A1 ∩ · · · ∩An+1

∣∣∣.
Thus the Inclusion/Exclusion principle holds for all integers n ≥ 1.
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1.3 Statement of Dwork’s Theorem

We end our introductory chapter by stating our main theorem and outlining the remainder of the

thesis.

Definition 1.8. Let K be a field, and let n be a positive integer. Let f(X1, . . . , Xn) ∈ K[X1, . . . Xn]

be a non-zero polynomial. For a field M containing K, we then define

Hf (M) = {(x1, . . . , xn) ∈ An
M | f(x1, . . . , xn) = 0}.

Given f ∈ Fq[X1, . . . , Xn], we then form the following sequence of natural numbers:

Ns = #(Hf (Fqs)).

Let 1 + TQ[T ] denote the set of power series in T with rational coefficients and constant term

1. We are now ready to define the zeta-function we will be considering in this thesis, after which

we can formally state Dwork’s Theorem.

Definition 1.9. Let n be a positive integer. Then the zeta-function of Hf over the field Fq is

defined to be the power series

Z(Hf/Fq;T ) = exp
( ∞∑
s=1

NsT
s/s
)
∈ 1 + TQ[[T ]].

Here, exp(T ) =
∞∑
n=0

Tn/n! ∈ Q[[T ]] is considered as a formal power series, and the composition

is simply composition of formal power series.

At first glance it is not at all clear what sort of properties such an infinite power series might

have. It is thus all the more surprising that the following result holds.

Theorem 1.10 (Dwork). The zeta function of any affine hypersurface is a ratio of two polynomials

with coefficients in Q.

How does one go about proving such a theorem? Before we go any further, we begin with a few

examples to illustrate how the zeta-function works.
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First, recall from calculus that the Maclaurin series of − log(1− T ) is

− log(1− T ) =
∞∑
s=1

T s/s.

Example 1.11. The zeta-function Z(An
Fq/Fq;T ) of the space An

Fq is 1/(1− qnT ).

Proof. In this case we have Ns = #An
Fqs = qns, and hence

exp
( ∞∑
s=1

NsT
s/s
)

= exp
( ∞∑
s=1

(qnT )s/s
)

= exp
(
− log(1− qnT )

)
= 1/(1− qnT ).

Example 1.12. The zeta-function Z(PnFq/Fq;T ) of the space PnFq is
n∏
i=0

1
1− qiT

.

Proof. Recall that we have the disjoint union

PnK = An−1
K ∪ An−2

K . . . ∪ A1
K ∪ {point}.

Thus, Ns = qsn + qs(n−1) + · · ·+ qs + 1, so that

exp
( ∞∑
s=1

NsT
s/s
)

=
n∏
i=0

exp
( ∞∑
s=1

qsiT s/s
)

=
n∏
i=0

1
1− qiT

.

Remark 1.13. Note that strictly speaking, we have only defined the zeta-function for an affine

hypersurface. However, we can still consider exp
( ∞∑
s=1

NsT
s/s
)

using the obvious choice for our

{Ns}s≥1, namely the sequence of integers defined by Ns = #PnFqs for s ≥ 1.

Example 1.14. The zeta-function Z(Hf/Fq;T ) for Hf defined by f = x1x4 − x2x3 − 1 is 1−qT
1−q3T

.

Proof. In order to calculate Ns, we consider two cases:

Case 1. x3 = 0. Then x1x4 − x2x3 = 1 becomes x1x4 = 1. Since x2 is out of the equation, it can

be any element of Fqs . Thus, there are qs choices for x2. Meanwhile, x1 can be any element of F×qs .

Then x4 = (x1)−1 is already determined. Hence there are qs(qs − 1) = q2s − qs points in Hf with

x3 = 0.

Case 2. x3 6= 0. Then x1 and x4 can be any elements of Fqs , and x3 can be any element of F×qs .

But this completely determines x2, so that there are qsqs(qs − 1) = q3s − q2s points in Hf with

5



x3 6= 0.

Thus Ns = #(Hf (Fqs)) = q3s − q2s + q2s − qs = q3s − qs. So Z(Hf/Fq;T ) becomes

exp
(∑∞

s=1 q
3sT s/s

)
exp

(∑∞
s=1 q

sT s/s
) =

1− qT
1− q3T

.

Dwork’s Theorem is the first part of a series of conjectures known as the Weil Conjectures,

named after André Weil, which provide detailed information about the zeta-function. First pro-

posed in the late 1940’s, the Weil Conjectures were proved in their entirety by 1974. However, it

was Bernard Dwork’s proof in 1959 of the rationality of the zeta-function that was the first signif-

icant step towards a full proof. For Dwork’s original paper, see [1]. For a partial statement of the

Weil Conjectures, we refer the reader to Appendix B.

In order to prove that the rationality of the zeta-function holds in general, there is much work

to be done. The following is a brief summary of our remaining chapters. In Chapter 2, we introduce

the reader to Qp along with a few well-known functions in p-adic analysis that will be useful to us

later on. Chapter 3 defines several lesser-known functions, and uses them to prove results that will

be necessary for the following chapter. It is there in Chapter 4 that the heart of our proof lies, as

we show that the zeta-function is p-adic meromorphic. Chapter 5 serves as a bit of an interlude, in

which we consider precisely when a power series can be written as a rational function. The thesis

concludes with Chapter 6, in which we restate and then prove Dwork’s Theorem along with several

corollaries.
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Chapter 2

Qp and p-adic Analysis

2.1 Metrics and Absolute Values

Definition 2.1. Given a nonempty set X, a metric on X is a function d : X ×X → [0,∞) such

that for all x, y, z ∈ X :

(1) d(x, y) = 0 if and only if x = y.

(2) d(x, y) = d(y, x).

(3) d(x, y) ≤ d(x, z) + d(z, y).

Definition 2.2. Given a field K, an absolute value is a function ‖ · ‖ : K → [0,∞) such that for

x, y ∈ K :

(1) ‖x‖ = 0 if and only if x = 0.

(2) ‖x · y‖ = ‖x‖ · ‖y‖.

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The two definitions above may appear to be rather similar. In fact, they are intimately related,

as can be seen in the following proposition.

Proposition 2.3. Let K be a field and let ‖ · ‖ be an absolute value on K. Then d(x, y) = ‖x− y‖

is a metric.

Proof. Let x, y, z ∈ K.

(1) d(x, y) = 0 ⇐⇒ ‖x− y‖ = 0 ⇐⇒ x− y = 0 ⇐⇒ x = y, where the first equivalence
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is by definition of d, and the second is a property of ‖ · ‖.

(2) Note that ‖1‖ = ‖1 · 1‖ = ‖1‖ · ‖1‖. Since 1 6= 0, we have ‖1‖ 6= 0. Thus ‖1‖ = 1. Hence

1 = ‖1‖ = ‖(−1)(−1)‖ = ‖− 1‖ · ‖− 1‖. Since ‖− 1‖ ≥ 0 by the definition of an absolute value, we

have ‖ − 1‖ = 1. Hence,

d(x, y) = ‖x− y‖ = ‖(−1)(y − x)‖ = ‖ − 1‖ · ‖y − x‖ = ‖y − x‖ = d(y, x).

(3) d(x, y) = ‖x− y‖ = ‖(x− z) + (z − y)‖ ≤ ‖x− z‖+ ‖z − y‖ = d(x, z) + d(z, y).

Thus with the above proposition in mind, we have the following definition.

Definition 2.4. We say a metric d on a field K is induced by an absolute value ‖ · ‖ if d is defined

by d(x, y) = ‖x− y‖.

Example 2.5. Let K = Q. Then the absolute value |x| induces a metric d(x, y) = |x − y| which

is the usual concept of distance on the real number line. We will denote this absolute value by

| · |∞ = | · | solely for notational convenience.

One might wonder if there are other, less familiar absolute values on Q.

Definition 2.6. Let p be any prime number. For any nonzero integer a, let ordp a be the highest

power of p which divides a, i.e., the greatest m such that a ≡ 0 mod pm. If a = 0, we write

ordp a =∞. For a rational number x = a/b, we define ordp x to be ordp a− ordp b.

Remark 2.7. Note that the definition of ordp is well-defined for elements of Q : If a/b = c/d, then

ordp a− ordp b = ordp c− ordp d. Note also that ordp(xy) = ordp x+ ordp y for all x, y ∈ Q.

Example 2.8. Let x = 40 = 23 · 5. Then ord2 x = ord2 40 = 3.

Let y = 5/81 = 5/34. Then ord3 y = ord3(5/81) = ord3 5− ord3 81 = 0− 4 = −4.

Let z = −31/7. Then ord5 z = ord5(−31)− ord5 7 = 0− 0 = 0.

Proposition 2.9. Consider the map | · |p : Q→ [0,∞) defined by:

|x|p =

{
p− ordp x, if x 6= 0;
0, if x = 0.

Then | · |p is an absolute value on Q.
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Proof. It is clear that | · |p satisfies properties (1) and (2) of absolute values. For property (3), note

that for any r, s ∈ Z we have ordp(r + s) ≥ min{ordp r, ordp s}. After all, if pm|r and pm|s, then

pm|(r + s). With this in mind, given x, y ∈ Q, we write x = a/b and y = c/d in lowest terms, so

that x+ y = (ad+ bc)/bd. Now ordp(x+ y) = ordp(ad+ bc)− ordp b− ordp d. Hence,

ordp(x+ y) ≥ min{ordp(ad), ordp(bc)} − ordp b− ordp d

= min{ordp a+ ordp d, ordp b+ ordp c} − ordp b− ordp d

= min{ordp a− ordp b, ordp c− ordp d}

= min{ordp x, ordp y}.

Thus |x+ y|p = p− ordp(x+y) ≤ max{p− ordp x, p− ordp y} = max{|x|p, |y|p} ≤ |x|p + |y|p.

Note that we actually proved a stronger inequality above than property (3). This leads us to

the following definition.

Definition 2.10. Let K be a field. An absolute value ‖ · ‖ on K is non-Archimedean if

‖x+ y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ K.

A metric d on X is non-Archimedean if

d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X.

Thus |·|p is a non-Archimedean absolute value on Q. Note also that a non-Archimedean absolute

value always induces a non-Archimedean metric, since then:

d(x, y) = ‖x− y‖ = ‖(x− z) + (z − y)‖ ≤ max{‖x− y‖, ‖z − y‖} = max{d(x, z), d(y, z)}.

Now that we have established that | · |p is an absolute value on Q, a natural question to ask

is: Why bother studying this particular absolute value? Before answering this, we provide the

following two definitions.

Definition 2.11. Two metrics d1 and d2 on a nonempty set X are said to be equivalent if there exist

c1, c2,∈ (0,∞) such that for all x, y ∈ X we have: d1(x, y) ≤ c1d2(x, y) and d2(x, y) ≤ c2d1(x, y).

We say two absolute values are equivalent if they induce equivalent metrics.
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Definition 2.12. The trivial absolute value on a field K is given by ‖0‖ = 0 and ‖x‖ = 1 for all

x ∈ K −{0}. (Note that this does in fact give an absolute value.) Any other absolute value is thus

said to be nontrivial.

The following characterization of absolute values on the rational numbers is due to Alexander

Ostrowski.

Theorem 2.13 (Ostrowski). Every nontrivial absolute value ‖ · ‖ on Q is equivalent to | · |p for

some prime p or for p =∞.

Proof. The proof of this is elementary but not particularly pertinent, and thus is omitted. See [2,

pp. 3 – 5].

Working with an absolute value such as |·|p can have strange consequences. Consider a “triangle”

with vertices 0, x, y ∈ K, and hence sides of length ‖x‖, ‖y‖, and ‖x − y‖, where ‖ · ‖ is a non-

Archimedean absolute value on K. The following proposition says that (at least) two of these lengths

are equal. Thus every “triangle” in K is isosceles.

Proposition 2.14 (Isosceles Triangle Principle). Let K be a field with non-Archimedean absolute

value ‖ · ‖, and let x, y ∈ K with ‖x‖ 6= ‖y‖. Then ‖x± y‖ = max{‖x‖, ‖y‖}.

Proof. Without loss of generality, suppose ‖x‖ < ‖y‖. Then

‖x− y‖ ≤ max(‖x‖, ‖y‖) = ‖y‖ = ‖x− (x− y)‖ ≤ max(‖x‖, ‖x− y‖) = ‖x− y‖,

where the final equality follows since ‖y‖ 6≤ ‖x‖. Therefore, we have ‖y‖ = ‖x − y‖. For ‖x + y‖,

we have ‖x+ y‖ = ‖x− (−y)‖ = max{‖x‖, ‖ − y‖} = max{‖x‖, ‖y‖}.

As another example of a surprising property of non-Archimedean absolute values, consider the

following definitions.

Definition 2.15. Let K be a field. Let ‖ · ‖ be a non-Archimedean absolute value on K. Let

r ∈ R+, and let a ∈ K. Then we define the open disc of radius r with center a to be

Da(r−) = {x ∈ K | ‖x− a‖ < r}.
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Similarly, we define the closed disc of radius r with center a to be

Da(r) = {x ∈ K | ‖x− a‖ ≤ r}.

Finally, we let D(r) = D0(r) and D(r−) = D0(r−).

With this definition in mind, it will turn out that any point in a disc can serve as the center.

We make this idea precise with the following proposition.

Proposition 2.16. Let K be a field and let ‖ · ‖ be a non-Archimedean absolute value on K. Let

a, b ∈ K, with b ∈ Da(r). Then

Da(r) = Db(r).

Proof. Consider x ∈ Da(r). Then ‖x− a‖ ≤ r by definition of a closed disc. Thus,

‖x− b‖ = ‖(x− a) + (a− b)‖ ≤ max{‖x− a‖, ‖a− b‖} ≤ r,

so that x ∈ Db(r). Similarly, we have that x ∈ Db(r) implies x ∈ Da(r). Hence Da(r) = Db(r).

Remark 2.17. Note that the same proof shows the above proposition for open discs, where we

simply replace ≤ with < .

Propositions 2.14 and 2.16 serve as an introduction to how how strange the non-Archimedean

world can be. Bearing them in mind, we are now ready to move on and use one specific non-

Archimedean absolute value, | · |p, to construct the field of p-adic numbers known as Qp.

2.2 Qp, Ω, and Zp

The reader familiar with a construction of R from Q using Cauchy sequences of rational numbers

should see a strong resemblance in the constructions of the following section.

Definition 2.18. Let K be a field and let ‖·‖ be an absolute value on K. A sequence {a1, a2, a3, . . .}

is Cauchy (with respect to ‖ · ‖) if for every real number ε > 0 there is a positive integer N such

that for all natural numbers m,n > N, we have ‖am − an‖ < ε. We say that K is complete (with

respect to ‖ · ‖) if every Cauchy sequence of points in K has a limit that is also in K.
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Definition 2.19. Consider the set of sequences of rational numbers that are Cauchy with respect

to | · |p. We say two such Cauchy sequences {ai} and {bi} are equivalent if |ai − bi|p → 0 as i→∞.

Then Qp is defined to be the set of equivalence classes of Cauchy sequences. Elements of Qp are

called p-adic rational numbers.

Given equivalence classes a and b of Cauchy sequences as in Definition 2.19, choose any repre-

sentatives {ai} ∈ a and {bi} ∈ b. We then define a · b to be the equivalence class represented by the

Cauchy sequence {aibi}. Similarly, we define a + b to be {ai + bi} and a − b to be {ai − bi}. For

multiplicative inverses, given a Cauchy sequence a, we can pick {ai} ∈ a with no zero terms; we

then use the sequence {1/ai}, which will be Cauchy unless {ai} is equivalent to {0}. It is easy to

check that these operations are well-defined.

The set Qp of equivalence classes of Cauchy sequences forms a field with addition, multiplication,

and inverses defined as above. We can also view Q ⊂ Qp by identifying an element x ∈ Q with the

equivalence class of the constant sequence {x, x, . . .} in Qp.

To see that + and · on Qp obey the distributive law, consider a, b, c ∈ Qp. Choose sequences

{ai}, {bi}, {ci} to be their respective representatives. Then a(b + c) is the equivalence class of

{ai(bi + ci)} = {aibi + aici}, which also lies in the equivalence class of ab + ac. The other field

axioms hold similarly.

Given a Cauchy sequence {ai} that does not tend to 0, we can find a real number c > 0 and an

integer N1 so that whenever n ≥ N1, we have |an|p ≥ c > 0. Since the sequence is Cauchy, we can

also find an integerN2 such that wheneverm,n ≥ N2 we have |an−am|p < c. LetN = max{N1, N2}.

Then

n,m ≥ N =⇒ |an − am|p < max{|an|p, |am|p}.

By the Isosceles Triangle Principle, we thus have |an|p = |am|p for all n,m > N. We can now extend

| · |p to Qp in the following natural way.

Definition 2.20. Let a ∈ Qp be represented by the Cauchy sequence {ai}. Then we define

|a|p = lim
n→∞

|an|p.
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Thus Qp is complete with respect to | · |p; i.e., every | · |p-Cauchy sequence in Qp converges.

We now wish to extend | · |p not only to Qp, but any field K that is a finite extension of Qp.

Given such a finite extension Qp ⊂ K, view K as a finite-dimensional vector space over Qp. Thus,

given α ∈ K, we have a linear map K → K defined by multiplication by α. Since the map is linear,

it has an associated matrix, Aα, for any given Qp basis of K.

Definition 2.21. Let K be a finite field extension of Qp. Given α ∈ K, let Aα be the matrix

corresponding to multiplication by α. Then we define the norm function NK/Qp : K → Qp by

NK/Qp(α) = det(Aα).

Theorem 2.22. Let Qp ⊂ K be a finite extension of degree n. Then the function | · |p : K → [0,∞)

defined by

|x|p = |NK/Qp(x)|1/np

is a non-Archimedean absolute value on K extending the p-adic absolute value on Qp.

Proof. (Sketch.) Let α, β ∈ K. We have |α|p = 0 if and only if |NK/Qp(α)|p = 0; since NK/Qp(α) ∈

Qp, this happens if and only if NK/Qp(α) = 0. But this, in turn, occurs only when multiplication

by α is not invertible. Since K is a field, this happens only when α = 0. For the second property,

by properties of determinants, we have NK/Qp(α · β) = NK/Qp(α) ·NK/Qp(β). Then take nth roots

of each side.

In order to show our new absolute value is the same as our old one when restricted to Qp,

let α ∈ Qp. It is then clear from our determinant definition that NK/Qp(α) = αn. Thus, |α| =

(|α|np )1/n = |α|p.

We omit the proof that our new absolute value is non-Archimedean, as it is tedious and takes

us too far afield. For a full proof of this, see [2, p. 62] or [3, p. 151]

Given an algebraic closure Q̄p of Qp, the absolute value extends to Q̄p as follows. For any

α ∈ Q̄p, let K ⊂ Q̄p be any finite extension of Qp containing α, and define |α|p as in Theorem 2.22.

Such a field K always exists (e.g., K = Qp(α)), and it is easy to check that this definition of |α|p
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is independent of the choice of K. It follows easily that | · |p is an absolute value on Q̄p that agrees

with the definition in Theorem 2.22 on any finite subextension Qp ⊂ K.

Unfortunately, Q̄p, unlike Qp and its finite extensions, is no longer complete. By the same

process we used to construct Qp, we can define a field Ω, consisting of equivalence classes of Cauchy

sequences on Q̄p. Then Q̄p embeds (via constant sequences) into Ω, and the absolute value | · |p

extends to Ω. It is here in Ω that we will be carrying out our p-adic analysis, as motivated by the

following theorem.

Theorem 2.23. The field Ω is closed and complete with respect to | · |p.

Proof. Omitted. See [2, pp. 71 – 73].

Having successfully built Qp up to Ω, we now take a step in the reverse direction and consider

a set contained within Qp.

Definition 2.24. We define the p-adic integers to be the set Zp = {a ∈ Qp | |a|p ≤ 1}. An element

of Zp is a called a p-adic integer.

Note that Z ⊂ Zp : Given n ∈ Z, can write n = p` · r, where ` ≥ 0 and p does not divide r. Then

|n|p = p−` ≤ 1.

Proposition 2.25. Zp is a subring of Qp, i.e., Zp ⊂ Qp is closed under sum, difference, and

product.

Proof. Let a, b ∈ Zp, i.e., |a|p ≤ 1 and |b|p ≤ 1. Then |a+b| ≤ max{|a|p, |b|p} ≤ 1. Thus |a+b|p ≤ 1,

so that a + b ∈ Zp. The proof for a − b is similar. For a · b, we have |ab|p = |a|p|b|p ≤ 1 · 1 = 1.

Hence ab ∈ Zp.

Definition 2.26. If a, b ∈ Qp, we write a ≡ b (mod pn) if |a− b|p ≤ p−n.

Note that a ≡ b(mod pn) if and only if (a− b)/pn ∈ Zp.

Lemma 2.27. A sequence {an} is a Cauchy sequence with respect to a non-Archimedean absolute

value ‖ · ‖ if and only if

lim
n→∞

‖an+1 − an‖ = 0.
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Proof. The forward implication is clear. For the reverse implication, if m = n+ r, then

‖am − an‖ = ‖an+r − an+r−1 + an+r−1 − an+r−2 + · · ·+ an+1 − an‖

≤ max{‖an+r − an+r−1‖, ‖an+r− − an+r−2‖, . . . , ‖an+1 − an‖},

since the absolute value is non-Archimedean. The lemma thus follows.

Theorem 2.28. An infinite series
∞∑
n=0

an with an ∈ Ω converges if and only if

lim
n→∞

an = 0.

Proof. A series converges if and only if the sequence of its partial sums converges. Note that an

is the difference between the nth and (n− 1)st partial sum. Thus, if an tends to 0, it follows from

Lemma 2.27 that the sequence of partial sums is a Cauchy sequence. Therefore, since Ω is complete,

this sequence of partial sums converges.

For an instance in which one might use the above theorem, we first recall thatD(r−) = D0(r−) =

{x ∈ Ω | |x|p < r}.

Proposition 2.29. Let f(X) ∈ Zp[[X]] be a power series whose coefficients are all p-adic integers.

Then f(X) converges in D(1−), the open disc of radius 1 about the origin in Ω.

Proof. Let f(X) =
∞∑
n=0

anX
n, with an ∈ Zp. Let x ∈ D(1−). Then |x|p < 1 and |an|p ≤ 1 for all n.

Thus

|anxn|p ≤ |x|np → 0 as n→∞.

Thus, by Theorem 2.28, f(x) converges for all x ∈ D(1−).

2.3 Teichmüller Representatives

Just as we sometimes work not with integers but rather with their representatives mod p, in later

chapters we will sometimes want to replace p-adic integers by another special set of representatives.

However, in order to prove the existence of these representatives, we must invoke the following

lemma named after Kurt Hensel, who was the first to describe p-adic numbers back in 1897.
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Theorem 2.30 (Hensel’s Lemma). Let F (x) =
m∑
i=0

cix
i be a polynomial with ci ∈ Zp for all

i = 1, . . . ,m. Let F ′(x) =
n−1∑
i=0

i · cixi−1 denote the formal derivative of F. Let a0 ∈ Zp such that

F (a0) ≡ 0 mod p and F ′(a0) 6≡ 0 mod p. Then there exists a unique a ∈ Zp such that

F (a) = 0 and a ≡ a0 mod p.

Proof. We begin with the following claim.

Claim 2.31. There exists a unique sequence of integers {an}n≥1, such that for all n ≥ 1 we have:

(1) F (an) ≡ 0 mod pn+1

(2) an+1 ≡ an mod pn

(3) 0 ≤ an < pn+1.

Proof. We define the sequence (and prove its properties) inductively.

For n = 1, let ã0 be the unique integer in {0, 1, . . . , p− 1} such that ã0 ≡ a0(mod p). Then (2)

and (3) will hold if and only if a1 = ã0 + b1p, for some 0 ≤ b1 ≤ p− 1. Expanding F (ã0 + b1p), we

have

F (a1) = F (ã0 + b1p) =
∑

ci(ã0 + b1p)i

≡
∑

(ciãi0 + iciã
i−1
0 b1p) (mod p2)

≡ F (ã0) + F ′(ã0)b1p (mod p2).

Since F ′(a0) 6≡ 0, there is a unique integer b1 ∈ {0, 1, . . . , p − 1} such that F (ã0) + F ′(ã0)b1p ≡

0(mod p2). It follows immediately that a1 = ã0 + b1p is the unique integer satisfying (1) – (3).

Now suppose we already have a0, . . . , an−1. As before, from (2) and (3), we need an = an−1+bnpn

for some 0 ≤ bn ≤ p− 1. Expanding F (an−1 + bnp
n) as for n = 1, we have

F (an) = F (an−1 + bnp
n) ≡ F (an−1) + F ′(an−1)bnpn(mod pn+1).

But we know by our inductive hypothesis that F (an−1) ≡ 0(mod pn).Write F (an−1) ≡ αpn(mod pn+1),

for α ∈ {0, 1, . . . , p− 1}, so that F (an) ≡ 0(mod pn+1) becomes

αpn + F ′(an−1)bnpn ≡ 0(mod pn+1). (2.1)
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Hence α+ F ′(an−1)bn ≡ 0(mod p). Since an−1 ≡ a0(mod p), we have

F ′(an−1) ≡ F ′(a0) 6≡ 0(mod p).

Thus, there is a unique bn ∈ {0, . . . , p− 1} such that equation (2.1) holds. Hence an = an−1 + bnp
n

uniquely satisfies the desired properties.

We are now ready to prove Hensel’s Lemma. In the notation of Claim 2.31, let a = ã0 + b1p+

b2p
2 + · · · , the so-called base p expansion of a, which we will see converges later in Theorem 2.28.

For all n ≥ 0, we have F (a) ≡ F (an) ≡ 0(mod pn+1). Hence F (a) = 0. To prove uniqueness,

suppose that there were another such ã ∈ Zp. Then we would have a different sequence {ãn}n≥1,

satisfying (1) – (3) of Claim 2.31. But that would violate the uniqueness statement of the claim.

Proposition 2.32. For any prime p, Qp contains exactly p solutions a0, . . . , ap−1 to the equation

xp − x = 0, where ai ≡ i(mod p). In fact, ai ∈ Zp for all i.

Proof. Let F (x) = xp − x, so that F ′(x) = pxp−1 − 1 as in Hensel’s Lemma. For b = 0, . . . , p− 1,

we have F (b) ≡ 0(mod p), and F ′(b) = pbp−1 − 1 ≡ −1 6≡ 0(mod p). Thus, Hensel’s Lemma gives

us the desired a0, . . . , ap−1 ∈ Zp ⊂ Qp.

The set {a0, . . . , ap−1} in Proposition 2.32 of p-adic numbers is named after Oswald Teichmüller,

who like Hensel was a German mathematician. Unfortunately, whereas Hensel was known for his

invention of p-adic numbers, Teichmüller is instead known for being a passionate supporter of the

National Socialists.

Definition 2.33. The p-adic numbers {a0, . . . , ap−1} in Proposition 2.19 are called the Teichmüller

representatives of {0, . . . , p− 1}.

2.4 log(1 + X), exp(X), and Υ(X, Y )

In order to prove our main theorem, there are three specific functions which will be particularly

useful. Before introducing them, we will need the following two concepts.
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Definition 2.34. Given a power series f(X) =
∞∑
n=0

anX
n with ai ∈ Ω, we define the radius of

convergence of f to be

r =
1

lim sup |an|1/np

.

Thus 1/r is the least real number such that for any C > 1/r there are only finitely many n > 0

such that |an|1/np > C.

Proposition 2.35. Given a series f(X) ∈ Ω[[X]] and radius r as above, then for any x ∈ Ω, the

series converges if |x|p < r and diverges if |x|p > r.

Proof. If |x|p < r, we write |x|p = (1− ε)r for ε ∈ (0, 1]. Then |anxn|p = (r|an|p1/n)n(1− ε)n. With

only finitely many n for which |an|1/np > 1/(r − 1
2εr), we have

lim
n→∞

|anxn|p ≤ lim
n→∞

( (1− ε)r
(1− 1

2ε)r)

)n
= lim

n→∞

( 1− ε
1− 1

2ε

)n
= 0.

Thus, the series converges by Theorem 2.28. Similarly, if |x|p > r, write |x|p = (1 + ε)r for

ε ∈ (0,∞). then anx
n 6→ 0 as n → ∞. This completes the proof and thus justifies our use of the

term “radius of convergence” above.

Example 2.36. Consider the series g(X) =
∞∑
n=1

(−1)n+1Xn/n. Writing an = (−1)n+1/n, we have

|an|p = pordp n, and hence lim
n→∞

|an|1/np = 1. Thus, the series g(x) converges if |x|p < 1 and diverges if

|x|p > 1. When |x|p = 1, we have |anxn|p = pordp n ≥ 1. Hence |an|p|x|np 6→ 0 and the series diverges.

Thus g(X) converges only on the disc D(1−).

Example 2.37. Let h(X) =
∞∑
n=0

Xn/n!. Then h has radius of convergence p−1/(p−1). To see why,

note that

ordp(n!) =
∞∑
i=1

⌊ n
pi

⌋
≤
∞∑
i=1

n

pi
=

n

p− 1
,

where the first equality can be shown as follows: Write n! = 1 · 2 · · · (n− 1) · n, and note that there

are
⌊
n
p

⌋
numbers between 1 and n divisible by p. Similarly, there are

⌊
n
p2

⌋
numbers between 1 and

n divisible by p2, and continuing in this fashion it is easy to see why the equality holds. Hence
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|an|p = |1/n!|p = pordp n! < pn/(p−1). Thus r ≥ p−1/(p−1), so that the series h(x) converges when

|x|p < p−1/(p−1).

Now suppose |x|p = p−1/(p−1). Let n = pm. Then

ordp(n!) = ordp(pm!) ≤ 1 + p+ · · ·+ pm−1 =
pm−1

p− 1
,

and therefore ordp(xn/n!) = pm ordp x− pm−1/(p− 1). However, ordp x = 1/(p− 1), yielding

ordp(xn/n!) =
pm

p− 1
− pm − 1

p− 1
=

1
p− 1

.

Thus |anxn|p = |xn/n!|p 6→ 0 as n → ∞. Hence, the series diverges when |x|p = p−1/(p−1). By

Property 2.35, it must also diverge for |x|p > p1/(p−1).

The reader may notice that our functions g(X) and h(X) above have power series representations

very similar to the classical Maclaurin Series for log(1+X) and exp(X). Indeed, the only difference

is that the coefficients of g and h are considered as elements of Ω, not C. Thus, we make the

following definition.

Definition 2.38. The p-adic logarithm, denoted logp, is defined to be the function

logp(1 +X) : D(1−)→ Ω, defined by logp(1 +X) =
∞∑
n=1

(−1)n+1Xn/n.

The p-adic exponential function, denoted expp, is defined to be the function

expp(X) : D(p−1/(p−1)−)→ Ω, defined by expp(X) =
∞∑
n=0

Xn/n!.

These p-adic analogs of log and exp have many (though not all) of the properties familiar to us

from classical mathematics.

Theorem 2.39. (i) logp(1+x) converges for x ∈ D(1−), and expp(x) converges for x ∈ D(p−1/(p−1)−).

(ii) logp(1 +X) + logp(1 + Y ) = logp
(

(1 +X)(1 + Y )
)
, and expp(X) expp(Y ) = expp(X + Y ).

(iii) logp(1 + expp(x)− 1) = x, and expp
(

logp(1 + x)
)

= 1 + x for x ∈ D(p−1/(p−1)−).
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Proof. (Sketch.) For the proof of (i), see Examples 2.36 and 2.37, respectively. For (ii), we simply

manipulate power series. For expp(X), let x, y ∈ D(p−1(p−1)−). Then

expp(x+ y) =
∞∑
n=0

(x+ y)n

n!
=
∞∑
n=0

1
n!

n∑
k=0

(
n

k

)
xn−kyk

=
∞∑
n=0

n∑
k=0

1
n!

n!
(n− k)k!

xn−kyk =
∞∑
n=0

n∑
k=0

xn−k

(n− k)!
yk

k!

=
( ∞∑
n=0

xm

m!

)( ∞∑
k=0

yk

k!

)
= expp(x) expp(y).

The proof for logp(1 +X) is similar. We omit the proof of part (iii), and refer the reader to [3, pp.

117 – 118] or [2, pp. 79 – 81].

We finish this section by introducing a function Υ(X,Y ) ∈ Ω[[X,Y ]] which will play a crucial

role in the proof of our main theorem. To understand it, note that the expression (1 + Y )X should

be understood to mean expp
(
X logp(1 + Y )

)
.

Definition 2.40. Define Υ(X,Y ) ∈ Q[[X,Y ]] by

Υ(X,Y ) = (1 + Y )X
∏
i≥1

(1 + Y pi)(Xpi−Xpi−1
)/pi .

Note that we need only finitely many terms in the above product to obtain the coefficient

of XnY m, so that Υ(X,Y ) is a well-defined infinite series
∑
am,nX

nY m ∈ 1 + XQp[[X,Y ]] +

YQp[[X,Y ]]. The series Υ will prove useful later, in Lemma 3.6, to establish a certain identity of

exponentials.

Proposition 2.41. The infinite series Υ(X,Y ) =
∑
am,nX

nY m ∈ 1 +XQp[[X,Y ]] + YQp[[X,Y ]]

has coefficients am,n ∈ Zp.

Proof. Omitted. See [2, p. 95].
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Chapter 3

Traces, Linear Maps, and Linear
Operators

3.1 Characters and Lifts

We begin with the following definition.

Definition 3.1. Let G be a finite group. Let Ω× denote the multiplicative group of nonzero

numbers in Ω. Then an Ω-valued character of G is a homomorphism ψ : G→ Ω×.

Note that since G is finite, we have ψ(a)#G = 1 for all a ∈ G. Thus the image of G under a

character is contained in the set of roots of unity in Ω.

Definition 3.2. Let Fq be a finite field with q = ps elements. For any a ∈ Fq, we define the trace

of a to be

Tr a = a+ ap + ap
2

+ . . .+ ap
s−1
.

Remark 3.3. We can give an interpretation of the trace in terms of Galois Theory. From Fact

A.10, we know that Gal(Fq/Fp) consists entirely of automorphisms of the form σi(a) = ap
i
, so that

Tr a =
∑

σ∈Gal(Fq/Fp)

σ(a).

Proposition 3.4. Let ε ∈ Ω be a pth root of unity. Let p be prime, let s ≥ 1 be an integer, and let

q = ps. For any a ∈ Fp, the map a 7→ εTr a is an Ω-valued character of the additive group of Fq.
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Proof. Let Γ = Gal(Fq/Fp). By Remark 3.3 and the fact that Frobp ∈ Γ, we have

(Tr a)p = Frobp(Tr a) =
∑
σ∈Γ

Frobp(σ(a)) =
∑
σ∈Γ

σ(a) = Tr a,

so that Tr a ∈ Fp. Also, we have

Tr(a+ b) =
∑
σ∈Γ

σ(a+ b) =
∑
σ∈Γ

σ(a) + σ(b) = Tr(a) + Tr(b),

so that a+ b 7→ εTr(a+b) = εTr a+Tr b = εTr a · εTr b.

Our goal for the rest of this section will be to find a p-adic power series whose evaluation at

the Teichmüller representative t ∈ Ω of a, is equal to εTr a. Later on, we will use this Teichmüller

lifting to establish a nice relationship between a polynomial f and the sequence {Ns}s≥1 described

in Section 3 of Chapter 1.

Fix a primitive pth root of unity ε ∈ Ω, and let λ = ε− 1.

Proposition 3.5. ordp λ = 1/(p− 1).

Proof. Since ε is a root of xp−1 + . . .+ x+ 1 = xp−1
x−1 , we see that λ is a root of

f(x) =
(x+ 1)p − 1

x
= xp−1 +

(
p

p− 1

)
xp−2 + . . .+

(
p

2

)
x+

(
p

1

)
.

Case 1. If |λ|p > |p|1/(p−1)
p , then |λ|p−1

p > |p|p|λ|ip for all 0 ≤ i ≤ p − 2. Then, by the Isosceles

Triangle Principle, |f(λ)|p = |λ|p−1
p 6= 0, a contradiction.

Case 2. If |λ|p < |p|1/(p−1)
p , then |λ|p−1

p < |p|, and |p|p|λi|p < |p|p for all 1 ≤ i ≤ p − 2. So

|f(λ)|p = |p|p 6= 0, again a contradiction.

Therefore, |λ|p = |p|1/(p−1)
p , i.e., ordp λ = 1/(p− 1).

We now seek a p-adic expression for

(1 + λ)t+t
p+tp

2
+...+tp

s−1

= εTr a.

Ideally, we would like a function Θ such that Θ(T ) = εT , to get

Θ(t)Θ(tp) · · ·Θ(tp
s−1

) = εt+t
p+···+tps−1

= εTr a.
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Unfortunately, it is not even clear what εT would mean. Instead, we define a slightly more compli-

cated function, but one that actually does the trick.

Recall the series Υ(X,Y ) ∈ Q[[X,Y ]], introduced in Section 4 of Chapter 2, and given by

Υ(X,Y ) = (1 + Y )X
∏
j≥1

(1 + Y pj )(Xpj−Xpj−1
)/pj .

We consider Υ(X,Y ) as a series in X with Y fixed, so that

Υ(X,Y ) =
∞∑
n=0

(
Xn

∞∑
m=n

am,nY
m
)
, am,n ∈ Zp,

where we use the fact that Υ(X,Y ) is a product of power series, each of which has its coefficients

am,n = 0 for m < n. We now set

Θ(T ) = Υ(T, λ) =
∞∑
n=0

anT
n,

where an =
∞∑
m=n

am,nλ
m. Since λn divides each term of an and am,n ∈ Zp, we have ordp an ≥

n/(p− 1). Thus, in particular, Θ(t) converges for t ∈ D(p−1/(p−1)−).

Lemma 3.6. Let p be prime, let s ≥ 1 be an integer, and let q = ps. Let a ∈ Fq, and let t ∈ Ω be

the corresponding Teichmüller representative. Then

Θ(t)Θ(tp) · · ·Θ(tp
s−1

) = εTr a.

Proof. We begin by observing that the following identity holds in Ω[[Y ]]:

Υ(t, Y )Υ(tp, Y ) · · ·Υ(tp
s−1
, Y ) = (1 + Y )t+t

p+tp
2
+...+tp

s−1

.

To see this, note that after cancellation, the left hand side is

(1 + Y )t+t
p+...+tp

s−1

(1 + Y p)(tp
s−t)/p(1 + Y p2

)(tp
s+1−tp)/p2

(1 + Y p3
)(tp

s+2−tp2 )/p3 · · · .

But tp
s

= t, leaving (1 + Y )t+t
p+tp

2
+...+tp

s−1

as desired. Substituting Y = λ gives

Θ(t)Θ(tp) · · ·Θ(tp
s−1

) = (1 + λ)t+t
p+...+tp

s−1

= εTr a.
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Thus, given a field Fq with q = ps elements, and t ∈ Ω the Teichmüller representative of a ∈ Fq,

we have found a p-adic power series Θ(T )Θ(T p) · · ·Θ(T p
s−1

) which gives εTr a when evaluated at t.

Moreover, since our lifting Θ converges for t ∈ D(p−1/(p−1)−), we have convergence on some disc

in Ω containing the closed unit disc. This is especially important because we will be working with

the Teichmüller representatives, which have absolute value 1.

3.2 Linear Operators and Traces

Throughout this section, fix n ≥ 1 an integer.

Definition 3.7. We denote by R the ring of formal power series in n indeterminates over Ω:

R = Ω[[X1, X2, . . . , Xn]].

Given u = (u1, . . . , un) ∈ Nn, we use the notation Xu = Xu1
1 Xu2

2 · · ·Xun
n . Furthermore, for

q ∈ Z+, we write qu = (qu1, . . . , qun). (The q’s we will later be considering will be of the form

q = ps for p prime, but the following definitions make sense for any positive integer q.) Let U be

the set of all ordered n-tuples of nonnegative integers, so that we can characterize R by

R =
{∑
u∈U

auX
u | au ∈ Ω

}
.

Under this characterization, we can thus view R as a vector space over Ω.

We now define three linear maps over Ω from R to itself that will be of importance throughout

the proof of Dwork’s Theorem.

Definition 3.8. For each G ∈ R we define a linear map, also denoted G : R→ R, by r 7→ Gr.

For each q ∈ Z+ we define a linear map Tq : R→ R by

r =
∑
u∈U

auX
u 7→ Tq(r) =

∑
u∈U

aquX
u.

Finally, we define Ψq,G = Tq ◦G : R→ R.

In order to get a better feel for what is going on with the map Ψq,G, we have the following

example.
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Example 3.9. Let G =
∑
w∈U

gwX
w. Then

Ψq,G(Xu) = Tq

(∑
u∈U

gwX
w+u

)
= Tq

(∑
w∈U

gw−uX
w
)

=
∑
v∈U

gqv−uX
v,

where we understand gu to be 0 if not all coordinates of u are nonnegative.

Proposition 3.10. Let G(x) =
∑
v∈U

gvx
v ∈ R, and define Gq(X) = G(Xq) =

∑
v∈U

gvX
qv. Then

G ◦ Tq = Tq ◦Gq = Ψq,Gq .

Proof. Given r ∈ R, write r =
∑
u∈U

auX
u. Then Tq(r) =

∑
u∈U

aquX
u, and hence

G
(
Tq(r)

)
=
(∑
v∈U

gvX
v
)(∑

u∈U
aquX

u
)

=
∑
w∈U

(∑
v∈U

aq(v−w)gv

)
Xw,

where we have substituted w = u + v. (As before, we understand au to be 0 if any coordinates of

u are negative.)

On the other hand, consider

Gq(r) =
(∑
v∈U

gvX
qv
)(∑

u∈U
auX

u
)

=
∑
w∈U

(∑
v∈U

gvaw−qv

)
Xw.

Let bw =
∑
v∈U

gvaw−qv. Note that bw ∈ Ω since it is a finite sum. Thus,

Tq

(
Gq(r)

)
=
∑
w∈U

bqwX
w =

∑
w∈U

(∑
v∈U

gvaqv−qw

)
Xw =

∑
w∈U

(∑
v∈U

aq(v−w)gv

)
Xw = G

(
Tq(r)

)
.

Next, we define a particular set R0 ⊂ R with some nice properties.

Definition 3.11. Define ‖ · ‖ on U by ‖u‖ =
n∑
i=1

ui. Now let

R0 =

{
G =

∑
w∈U

gwX
w ∈ R

∣∣∣ for some M > 0, ordp gw ≥M‖w‖ for all w ∈ U

}
.

Thus, R0 consists of power series whose coefficients approach zero particularly rapidly in Ω. We

will see in Proposition 4.1 that given a in the closed disc of radius 1 about the origin, Θ(aXw) ∈ R0.

This will be especially useful to us in light of the following proposition.
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Proposition 3.12. R0 is closed under multiplication and under the map Tq : G 7→ Gq.

Proof. Closure under multiplication is clear. For closure under Tq, suppose G =
∑
w∈U

gwx
w ∈ R0.

Then there is some N > 0 such that ordp gw ≥ N‖w‖ for all w ∈ U. Note that ‖qw‖ = q‖w‖. Let

M = N/q > 0. Then for all w ∈ U,

ordp gqw ≥ N‖w‖ = Mq‖w‖ = M‖qw‖.

Definition 3.13. Let V be a finite dimensional vector space over a field K, and let {aij} denote

the matrix of a map A : V → V with respect to a basis. Then the trace of A is defined to be

TrA =
∑
i≥0

aii.

Note that given this definition, the trace of A is independent of our choice of basis. However,

since R is an infinite dimensional vector space over Ω, we will want to have a more general definition

of trace.

Definition 3.14. Let Λ : R→ R be a linear operator such that Λ(Xu) =
∑
v∈U

auvX
v for all u ∈ U.

We say that Λ is admissible if for all h(X) =
∑
u∈U

buX
u ∈ R0, we have that

∑
u∈U

auvbu converges,

and Λ(
∑
u∈U

buX
u) =

∑
u∈U

buΛ(Xu).

Definition 3.15. Let Λ : R0 → R0 be admissible. Define auv ∈ Ω for each u, v ∈ U by Λ(Xu) =∑
v∈U

auvX
v. We then define the trace of Λ, denoted Tr(Λ), to be

∑
u∈U

auu, if this sum converges in Ω.

Remark 3.16. We see from Example 3.9 that Ψ = Ψq,G fits the conditions of Definition 3.15 and

sends elements Xu to
∑
v∈U

gqv−uX
v. Hence

Tr(Ψ) =
∑
u∈U

gqu−u =
∑
u∈U

g(q−1)u,

which clearly converges for G ∈ R0.

Using the above value for Tr(Ψ), we can now state and prove our main lemma for this section.
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Lemma 3.17. Let p be prime, let r ≥ 1 be an integer, and let q = pr. Let G ∈ R0, let Ψ = Ψq,G,

and let s ≥ 1. Then Tr(Ψs) converges, and

(qs − 1)n Tr (Ψs) =
∑

x∈Ωn

xqs−1=1

G(x)G(xq)G(xq
2
) · · ·G(xq

s−1
),

where we use the notation x = (x1, . . . , xn) ∈ Ωn, and xq
s−1

= 1 to mean xq
s−1

j = 1 for all

j = 1, 2, . . . , n.

Proof. We begin with the following claim.

Claim 3.18. Let s ≥ 1 be an integer. Let G ∈ R0, and let Gq(X) = G(Xq). Then

Ψs
q,G = Ψqs,G·Gq ···Gqs−1 .

Proof. We proceed by induction on s. When s = 1 this is obvious. Suppose Ψs
q,G = Ψqs,G·Gq ···Gqs−1

and consider Ψs+1
q,G . By our inductive hypothesis, we have

Ψs+1
q,G = Ψs

q,G ◦Ψq,G = Ψqs,G·Gq ···Gqs−1 ◦Ψq,G = Tqs ◦
(
G ·Gq · · ·Gqs−1

)
◦ Tq ◦G. (3.1)

By Proposition 3.10, Gqs−1 ◦ Tq = Tq ◦ (Gqs−1)q = Tq ◦Gqs−1·q = Tq ◦Gqs . Thus, we move Tq to the

left s times, transforming (3.1) to

Tqs ◦
(
G ·Gq · · ·Gqs−1

)
◦ Tq ◦G = Tqs ◦ Tq ◦

(
Gq ·Gq2 · · ·Gqs ·G

)
= Tqs+1 ◦

(
G ·Gq · · ·Gqs

)
.

To prove the Lemma, let H = G · Gq · · ·Gqs−1 =
∑
w∈U

hwX
w. Since G ∈ R0 and R0 is closed

under the map G → Gq, we have Gqi ∈ R0 for each i = 1, . . . , s− 1. Since R0 is also closed under

multiplication, we have H ∈ R0. Therefore, we know from Claim 3.18 and Example 3.9 that

Ψs(Xu) = Ψs
q,G(Xu) = Ψqs,H(Xu) =

∑
u∈U

hqsv−uX
v.

Thus, as in Remark 3.16 with h in place of g and qs in place of q, we see that

Tr(Ψs) =
∑
u∈U

hqsu−u =
∑
u∈U

h(qs−1)u.

27



Since H ∈ R0, we know that |hi|p → 0 as i→∞. Thus the trace converges.

Fix w = (w1, . . . , wn) ∈ U. By Lemma 1.6, we note that for each i = 1, 2, . . . , n, we have∑
xi∈Ω

xq
s−1
i =1

xwii =

{
(qs − 1) if (qs − 1)|wi for all i = 1, . . . , n
0 otherwise.

Thus, ∑
x∈Ωn

xqs−1=1

xw =
n∏
i=1

( ∑
xq
s−1
i =1

xwii

)
=

{
(qs − 1)n if (qs − 1)|wi for all i = 1, . . . , n
0 otherwise.

Hence, ∑
x∈Ωn

xqs−1=1

H(x) =
∑
w∈U

hw
∑
x∈Ωn

xqs−1=1

xw = (qs − 1)n
∑
u∈U

h(qs−1)u = (qs − 1)n Tr(Ψs).

The above lemma will play a crucial role in proving the main theorem of Chapter 4. Having

successfully extended the definition of a trace to handle infinite vector spaces, we will now need a

final section in order to similarly extend the definition of a determinant.

3.3 Determinants

Let K be a field and let A be an r× r matrix with entries aij ∈ K. Let T be an indeterminate, and

let 1 denote the r× r identity matrix Ir. Then 1−AT is an r× r matrix with entries in K[T ], and

det(1−AT ) =
r∑

m=0

bmT
m,

with

bm = (−1)m
∑

1≤u1<···<um≤r
σ∈S({u1,...,um})

sgn(σ)au1,σ(u1)au2,σ(u2)···aum ,σ(um),

where S(X) is the group of permutations on X.

We wish to extend the above discussion to linear operators on R. Suppose that Λ : R0 → R0

is an admissible linear operator. Motivated by the discussion of det(1− AT ) above, we define the

expression det(1− ΛT ) to be

det(1− ΛT ) =
∞∑
m=0

bmT
m ∈ Ω[[T ]],
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where

bm = (−1)m
∑

1≤u1<···<um
σ∈S({u1,...,um})

sgn(σ)au1,σ(u1)au2,σ(u2) · · · aum,σ(um).

This definition of det(1 − ΛT ) still makes sense as a formal power series in Ω[[T ]], as long as the

expression for each bm converges.

Let G =
∑
w∈U

gwT
w ∈ R0, so that for some M we have ordp gw ≥ M‖w‖ for all w ∈ U. Recall

that Ψ sends elements Xu to
∑
v∈U

gqv−uX
v. We then have

ordp(gqσ(u1)−u1
gqσ(u2)−u2

· · · gqσ(um)−um) ≥M
m∑
i=1

‖qσ(ui)− ui‖ = M(q − 1)
m∑
i=1

‖ui‖.

Thus, ordp bm → ∞ as m → ∞. More precisely, order U according to modified lexographic order,

i.e., define u ≥ w if ‖u‖ > ‖w‖, or if ‖u‖ = ‖w‖ and u1 > w1, or if ‖u‖ = ‖w‖ and u1 = w1 and

u2 > w2, etc. Let V = {u ∈ U | w ≥ u}. Then 1
#V

∑
u∈V
‖ui‖ → ∞ as #V →∞. Hence

1
m

ordp bm →∞ as m→∞,

so that

det(1−ΨT ) =
∞∑
m=0

bmT
m

is well-defined and has an infinite radius of convergence.

Proposition 3.19. Let A be a square matrix with entries in Ω. Then we have the following identity

of formal power series in Ω[[T ]]:

det(1−AT ) = expp
(
−
∞∑
s=1

Tr(As)T s/s
)
.

Proof. Recall that the determinant and trace are invariant under a change of basis. Since Ω is an

algebraically closed field, A is conjugate to an upper triangular matrix, for example, its Jordan

Canonical form [6, Chapter 7]. That is, there is an invertible matrix C such that CAC−1 is upper

triangular. Without loss of generality, then, we may assume that A, and hence As for each s ≥ 1,
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is upper triangular. Thus,

det(1−AT ) =
r∏
i=1

(1− aiiT ) =
r∏
i=1

expp
(

logp(1− aiiT )
)

=
r∏
i=1

expp
(
−
∞∑
s=1

(aiiT )s/s
)

= expp
(
−
∞∑
s=1

r∑
i=1

asiiT
s/s
)

= expp
(
−
∞∑
s=1

Tr(As)T s/s
)

We now generalize Proposition 3.19. Fix an admissible linear operator Λ : R0 → R0 given by

Λ : Xu 7→
∑
v∈U

auvX
v.

Definition 3.20. List the elements of U in order as u1 < u2 < . . . according to graded lexico-

graphic order. For Λ : R0 → R0 admissible as above, and n ≥ 1, we define An to be the matrix

{auiuj}1≤i,j≤n.

Remark 3.21. Intuitively, what we are doing here is thinking of Λ as representing an “infinite

matrix” that maps elements from R0 to R0. We can then think of An as the n× n matrix formed

from the upper left-hand corner of our infinite matrix. The hope is that for sufficiently large n, we

can somehow capture enough information about Λ to let us carry out our analysis using regular

(i.e., finite) matrices.

Definition 3.22. Let B be any matrix with coefficients in Ω. Then we define |B| = max
i,j
|(B)ij |p.

Similarly, for Λ : R0 → R0 admissible, we define |Λ| = max
i,j
|aij |, if this maximum exists.

Definition 3.23. Let Λ : R0 → R0 be admissible, and suppose for any δ > 0 there is an integer

L such that for all i we have |ai`|p, |a`i|p < δ whenever ` ≥ L. Then we say Λ converges, or is

convergent.

Note that if Λ is convergent in the above sense, then this implies that Tr(Λ) exists.

Proposition 3.24. Suppose Λ converges. Then for all ε > 0, there exists an integer N ≥ 1 such

that for all n ≥ N, all coefficients of the power series det(1 − ΛT ) − det(1 − AnT ) ∈ Ω[[T ]] have

p-adic absolute value less than ε.
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Proof. Note first that |Λ| exists, and letM = |Λ|. By definition, the coefficient of Tm in det(1−ΛT )

is

b̂m = (−1)m
∑

1≤u1<···<um
σ∈S({u1,...,um})

sgn(σ)
∞∏
i=1

aui,σ(ui).

Similarly, the coefficient of Tm in det(1−AnT ) is

bm = (−1)m
∑

1≤u1<···<um≤n
σ∈S({u1,...,um})

sgn(σ)au1,σ(u1)au2,σ(u2) · · · aum,σ(um).

Therefore,

b̂m − bm = (−1)m
∑

u1,...,um−1≥1
um>n

σ∈S({u1,...,um})

sgn(σ)
n∏
i=1

aui,σ(ui).

But
∣∣∣m−1∏
i=1

aui,σ(ui)

∣∣∣
p
≤ Mm−1. Given ε > 0, the convergence of Λ implies that we can find L such

that for all n ≥ L and all i, we have |ani|p < ε/Mm−1. Given n ≥ L, then for all u1, . . . , um−1 ≥ 1

and um > n, we have

∣∣∣ m∏
i=1

aui,σ(ui)

∣∣∣
p

=
∣∣∣aum,σ(um)

∣∣∣
p
·
∣∣∣m−1∏
i=1

aui,σ(ui)

∣∣∣
p
<

ε

Mm−1
· Mm−1 = ε.

Thus, since | · |p is non-Archimedean,

|b̂m − bm|p ≤ max
u1,...,um−1≥1

um>n

σ∈S({u1,...,um})

∣∣ m∏
i=1

aui,σ(ui)

∣∣
p
< ε.

Proposition 3.25. Let Λ : R0 → R0 converge and be admissible, and let M = |Λ|. Then for

all ε > 0, there is an integer N ≥ 1 such that for all integers n ≥ N and s ≥ 1, we have

|Tr(Λs)− Tr
(
(An)s

)
|p <Ms−1ε.

Proof. We begin with a claim.

Claim 3.26. For all ε > 0, there is an integer N ≥ 1 such that |Λs − (An)s| ≤ Ms−1ε for all

n ≥ N.
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Proof. We proceed by induction on s. The base case of s = 1 is trivial. For our inductive hypothesis,

suppose the claim holds for s. Observe that |(An)s| ≤ |Λs| ≤M s for all n. Thus,

|Λs+1 − (An)s+1| = |ΛsΛ− (An)sAn| = |ΛsΛ− ΛsAn + ΛsAn − (An)sAn|

= |Λs(Λ−An) +An(Λs − (An)s)|

≤ max{|Λs| · |Λ−An|, |An| · |Λs − (An)s|} ≤M sε,

where the triangle inequality for operators is immediate from that for Ω and by Definition 3.22.

Thus, given ε > 0, we choose N as in Claim 3.26. Then for all n ≥ N, we have∣∣Tr(Λs)− Tr
(
(An)s

)∣∣
p
≤ |Λs − (An)s| ≤M s−1ε,

where the last inequality follows Claim 3.26.

Ultimately we will want to show that expp
(
−
∞∑
s=1

Tr(Λs)T s/s
)

and expp
(
−
∞∑
s=1

Tr
(
(An)s

)
T s/s

)
have p-adically close coefficients. Thus, we begin by showing the following inequality over a disc.

Proposition 3.27. Let Λ be as above with M = |Λ|. Let ε > 0. Then for |t|p ≤ 1/(pM) and n

sufficiently big, we have ∣∣∣− ∞∑
s=1

Tr(Λs)
s

ts −
∞∑
s=1

Tr((An)s)
s

ts
∣∣∣
p
< ε.

Proof. Observe that |ps/s|p ≤ 1 for all integers s ≥ 1. Let ε > 0. Then there exists an integer N

such that for all n ≥ N,∣∣∣− ∞∑
s=1

Tr(Λs)
s

T s −
∞∑
s=1

Tr((An)s)
s

T s
∣∣∣
p

=
∣∣∣ ∞∑
s=1

Tr(Λs)− Tr((An)s)
∣∣∣
p

∣∣∣T s/s∣∣∣
p

≤Ms−1ε · |ps/s|p/Ms ≤ ε/M,

where the first inequality is by Proposition 3.25. Thus we can replace ε with εM to obtain the

desired result.

Definition 3.28. Let f =
∞∑
i=0

aiT
i and let g =

∞∑
i=0

biT
i be power series in Ω[[T ]]. Given r > 0, we

define

‖f − g‖r = max
n≥0
{|an − bn|prn}.
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Thus, if f and g converge on the closed disc D(r), then for all x ∈ D(r),

|f(x)− g(x)|p =
∣∣∣ ∞∑
i=1

(an − bn)xn
∣∣∣
p
≤ ‖f − g‖r.

Lemma 3.29. Suppose lim
n→∞

fn = f in Ω[[T ]] and g ∈ Ω[[T ]]. Suppose further there are radii

r, ρ > 0 such that:

(1) g converges on D(ρ),

(2) f and fn converge on D(r), and

(3) ‖f‖r ≤ ρ and ‖fn‖r ≤ ρ,

where (2) and (3) hold for n sufficiently large. Then lim
n→∞

g ◦ fn = g ◦ f with respect to ‖ · ‖r, i.e.,

for all ε > 0, there exists N such that for all n ≥ N, we have ‖g ◦ fn − g ◦ f‖r < ε.

Proof. Write g(T ) =
∞∑
n=0

bnT
n. Pick N ≥ 1 so that for all m ≥ N, we have that f and fn converge

on D(r) with ‖f‖r, ‖fn‖r ≤ ρ. Then for any m ≥ N,

‖g(fm)−g(f)‖r = ‖
∞∑
n=0

bn
(
fn−fnm

)
‖r = ‖

∞∑
n=0

bn
(
f−fm)(fn−1+fn−2fm+· · ·+ffmn−2+fmn−1)‖r.

But

‖bn
(
fn−1 + · · ·+ fm

n−1
)
‖r ≤ L, where L = max

n≥1

{
max
m
{‖f‖r, ‖fm‖r}n−1 · |bn|p

}
.

Since g(f) and g(fm) converge, L exists. Hence,

‖g(fm)− g(f)‖r ≤ ‖f − fm‖rL.

Let ε > 0. For sufficiently large m, we have ‖f − fm‖r < L/ε. Thus ‖g(fm)− g(f)‖r < ε.

Corollary 3.30. Let ε > 0. Then there exists an integer N such that whenever n ≥ N,∥∥∥ expp
(
−
∞∑
s=1

Tr(Ψs)T s/s
)
− expp

(
−
∞∑
s=1

Tr(Asn)T s/s
)∥∥∥
r
< ε.

Proof. Let ρ = |p|1/(p−1)
p . Let f = −

∞∑
s=1

Tr
(
(Ψs)

)
T s/s, let fm = −

∞∑
s=1

Tr
(
(Am)s

)
T s/s, and let

g(T ) = exp(T ). Since f and fm converge on some disc D(r) and have zero constant term, there

exist N and r so that ‖f‖r, ‖fm‖r < ρ for m sufficiently large. The corollary then follows from

Lemma 3.29.
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We now combine the above results in the following theorem.

Theorem 3.31. Let Ψ = Ψq,G for q a prime power and G ∈ R0. Then the series det(1 − ΨT )

is a well-defined element of Ω[[T ]] with infinite radius of convergence, and we have the following

identity of formal power series in Ω[[T ]]:

det(1−ΨT ) = expp
(
−
∞∑
s=1

Tr(Ψs)T s/s
)
.

Proof. Take ε > 0. By Proposition 3.24, we can find N1 such that whenever n ≥ N1, the coefficients

of det(1−ΨT )− det(1−AnT ) have p-adic absolute value less than ε, hence

‖ det(1−ΨT )− det(1−AnT )‖r < ε

for any 0 < r < 1. Note that An is a regular (i.e., finite) matrix, giving the strict equality

det(1−AnT ) = expp
(
−
∞∑
s=1

Tr
(
(An)s

)
)T s/s

)
by the discussion at the start of this section. But we know from Corollary 3.30 that we can find

N2 and r > 0 such that whenever n ≥ N2,∥∥∥ exp
(
−
∑
s≥1

Tr(Ψs)T s/s
)
− exp

(
−
∑
s≥1

Tr((An)s)T s/s
)∥∥∥

r
< ε.

Set N = max{N1, N2}, so that∥∥∥det(1−ΨT )− expp
(
−
∞∑
s=1

Tr(As)T s/s
)∥∥∥

r
< ε.

Letting ε go to 0, we have that∥∥∥det(1−ΨT )− expp
(
−
∞∑
s=1

Tr(As)T s/s
)∥∥∥

r
= 0.

Since r > 0, the desired inequality now follows immediately from the definition of ‖ · ‖r.
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Chapter 4

The Zeta-Function is p-adic
Meromorphic

We begin by stating and proving the following proposition which will be useful later on. Recall

that R0 was defined in Definition 3.11 and Θ was defined just prior to Lemma 3.6.

Proposition 4.1. Let Xw = Xw1
1 · · ·Xwn

n , and let a ∈ D(1), the closed disc of radius 1 about the

origin. Then Θ(aXw) ∈ R0.

Proof. The result is trivially true if ‖w‖ = 0; so suppose ‖w‖ > 0. Recall Θ(T ) =
∞∑
j=0

ajT
j , where

ord(aj) ≥ j/(p− 1). Thus,

Θ(aXw1
1 · · ·X

wn
n ) =

∞∑
j=0

aja
jXjw =

∑
v∈U

gvX
v,

where gv = aja
j when v = jw for some j ∈ N, and gv = 0 otherwise. Note that a ∈ D(1) means

|a|p ≤ 1, i.e., ord a ≥ 0. Hence, for v = jw,

ord(gv) = j · ord(a) + ord(aj) ≥ ord(aj) ≥ j/(p− 1). (4.1)

Note also that ‖v‖ = j‖w‖, so that j = ‖v||/‖w‖. Combining this with (4.1) yields

ord(gv) ≥ ‖v‖/
(
‖w‖(p− 1)

)
.

Let M = 1/
(
‖w‖(p − 1)

)
. Then ord(gv) ≥ M‖v‖ for v = jw, and of course the same inequality

holds for v not of this form, since then gv = 0. Hence Θ(aXw) ∈ R0.
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Definition 4.2. A power series in Ω[[T ]] with infinite radius of convergence is said to be p-adic

entire. The quotient of two p-adic entire functions is said to be p-adic meromorphic.

Observe that the product of p-adic entire functions is entire, and thus the product of meromor-

phic functions is meromorphic.

The following Theorem is the main result of this section.

Theorem 4.3. Let f ∈ Fq[X1, . . . , Xn]. Then Z(Hf/Fq;T ) ∈ Z[[T ]] ⊂ Ω[[T ]] is a ratio of entire

functions in 1 + TΩ[[T ]], and thus is p-adic meromorphic.

Proof. For the hypersurface Hf defined by f(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn], we proceed by induc-

tion on n, the number of variables. If n = 0, then Hf is empty, Ns = 0 for all s, the zeta-function

is identically 1, and our assertion is trivially true. Now suppose it holds for 1, . . . , n− 1 variables.

We now set the following definitions.

N ′s = #{(x1, . . . , xn) ∈
(
F×qs
)n | f(x1, . . . , xn) = 0},

Z ′(Hf/Fq;T ) = exp
(∑
s≥1

N ′sT
s/s
)
.

This leads us to the following claim.

Claim 4.4. It suffices to show that Z ′(Hf/Fq;T ) = exp(
∑∞

s=1N
′
sT

s/s) is p-adic meromorphic.

Proof. Note first that Z(Hf/Fq;T ) = Z ′(Hf/Fq;T ) · exp(
∑∞

s=1(Ns − N ′s)T s/s). Next, note that

the exp factor on the right-hand side is the zeta-function for the (possibly not disjoint) union

of the hypersurfaces Hi, where Hi is the common zero set of f and Xi. It is clear that the

zeta-function for Hi is the same as that for H̃i, the zero set of f̃i(X1, . . . , Xi−1, Xi+1, . . . Xn) =

f(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) ∈ Fq[X1, . . . , Xi−1, Xi+1, . . . , Xn]. There are then three cases for

the zeta-function of these Hi.

Case 1. Hi = ∅. Then the zeta-function for Hi is 1.

Case 2. Hi is a copy of An−1
Fq contained in An

Fq . In this case, we have shown explicitly in

Example 1.11 that the zeta-function is p-adic meromorphic.
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Case 3. Hi is a lower dimensional hypersurface and hence meromorphic by our inductive

hypothesis. More generally, given any i1, . . . , ir, let H(i1, . . . , ir) be the common zero set of f and

Xi1 , . . . , Xir . Then the associated zeta-function is the same as that of H̃(i1, . . . , ir) ⊆ An−r
Fq , the

zero set of f̃i1,...,ir ∈ Fq[. . . , X̂i1 , . . . , X̂ir , . . .], where f̃i1,...,ir(x1, . . . , xn) is defined to be f(x1, . . . , xn)

with xi1 , . . . , xir replaced by 0’s. Thus the zeta-function Z(H(i1, . . . , ir)/Fq;T ) is meromorphic by

hypothesis.

By the Inclusion/Exclusion Principle, we have

Ns −N ′s =
∣∣⋃
i

Hi

∣∣ =
∑
i1

∣∣Hi1

∣∣− ∑
i1<i2

∣∣Hi1 ∩Hi2

∣∣+
∑

i1<i2<i3

∣∣Hi1 ∩Hi2 ∩Hi3

∣∣− . . .± ∣∣⋂Hij

∣∣.
But Hi1 ∩ . . . ∩Hir = H(i1, . . . , ir), so that the associated zeta-function Z

(
H̃(i1, . . . , ir)

)
is p-adic

meromorphic as shown above. Thus, exp
( ∞∑
s=1

(Ns −N ′s)T s/s
)

is a product of p-adic meromorphic

functions, and hence meromorphic.

To prove our theorem for Z ′(Hf/Fq;T ), we begin by fixing notation. Let q = pr, and fix an

integer s ≥ 1. For a ∈ Fqs , let t ∈ Ω denote its Teichmüller representative. Given a pth root of

unity ε, we know from Lemma 3.6 that we can write:

εTr a = Θ(t)Θ(tp)Θ(tp
2
) · · ·Θ(tp

rs−1
).

Next we will need to make use of the following claim.

Claim 4.5. ∑
x∈F×qs

εTr(xu) =

{
−1, if u ∈ F×qs
qs − 1, if u = 0.

Proof. We will show the equivalent identity∑
x∈Fqs

εTr(xu) =

{
0, if u ∈ F×qs
qs, if u = 0,

from which the claim follows immediately. Let S =
∑
x∈Fqs

εTr(xu). Now set y = x− a, so that

S =
∑
y∈Fqs

εTr(au+yu) =
∑
y∈Fqs

εTr(au)εTr(yu) = εTr(au)
∑
y∈Fqs

εTr(yu) = εTr(au) · S. (4.2)
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If u = 0, then S =
∑
x∈Fqs

ε0 = qs. If u 6= 0, we know from Remark A.9 and Claim A.11 that there

is an element b ∈ Fqs with nonzero trace in Fp. Thus, εTr(b) 6= 1. By equation (4.2), S = εTr(b) · S.

Since εTr(b) 6= 1, we have S = 0.

We now consider the sum∑
x0,...,xn∈F×qs

εTr(x0f(x1,...,xn)) =
∑

x0∈F×qs

∑
x1,...,xn∈F×qs

εTr(x0f(x1,...,xn)) = qsN ′s − (qs − 1)n, (4.3)

where the final equality is by Claim 4.5 with x = x0 and u = f(x1, . . . , xn), and by analyzing the

following two cases.

Case 1. f(x1, . . . , xn) = 0. Summing across all x0 ∈ F×qs , this will add qs − 1 to the sum in

(4.3). Since this occurs N ′s times, a total of (qs − 1)N ′s = qsN ′s −N ′s is contributed to the sum.

Case 2. f(x1, . . . , xn) 6= 0. Summing across all x0 ∈ F×qs , this will add −1 to the sum in (4.3).

This will occur for all but the N ′s points from the first case, thus adding
(
(qs − 1)n − N ′s

)
(−1) =

N ′s − (qs − 1)n.

We are thus left with qsN ′s −N ′s +N ′s − (qs − 1)n = qsN ′s − (qs − 1)n, as claimed in (4.3).

Next, replace the coefficients in X0f(X1, . . . , Xn) ∈ Fq[X0, X1, . . . , Xn] with their Teichmüller

representatives. This gives us a new function

F (X0, X1, . . . , Xn) =
N∑
i=1

aiX
wi ∈ Ω[X0, X1, . . . , Xn],

where each ai ∈ Ω satisfies aq
s

i = ai, and where wi = (wi0, wi1 . . . , win) ∈ U.

By (4.3) and Lemma 3.6, we have

qsN ′s = (qs − 1)n +
∑

x0,...,xn∈F×qs

εTr(x0f(x1,...,xn))

= (qs − 1)n +
∑

x0,...,xn∈F×qs

N∏
i=1

Θ(aixwi)Θ(api x
pwi) · · ·Θ(ap

rs−1

i xp
rs−1wi).

We then define

G(X0, . . . , Xn) =
N∏
i=1

Θ(aiXwi)Θ(apiX
pwi) · · ·Θ(ap

r−1

i Xpr−1wi),
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whence

qsN ′s = (qs − 1)n +
∑

x0,...,xn∈F
×
qs

G(x) ·G(xq) ·G(xq
2
) · · ·G(xq

s−1
). (4.4)

But we know from Proposition 4.1 that Θ(ap
j

i X
pjwi) ∈ R0. Since R0 is closed under multiplication,

we have

G(X0, . . . , Xn) ∈ R0 ⊂ Ω[[X0, . . . , Xn]].

By Lemma 3.17, equation (4.4) gives

qsN ′s = (qs − 1)n + (qs − 1)n+1 Tr(Ψs),

where Ψ = Ψq,G = Tq ◦G. By the binomial theorem,

qsN ′s =
n∑
i=0

(−1)i
(
n

i

)
qs(n−i) +

n+1∑
i=0

(−1)i
(
n+ 1
i

)
qs(n−i+1) Tr(Ψs),

and hence

N ′s =
n∑
i=0

(−1)i
(
n

i

)
qs(n−i−1) +

n+1∑
i=0

(−1)i
(
n+ 1
i

)
qs(n−i) Tr(Ψs).

We then define ∆ by

∆(T ) = det(1−AT ) = expp
(
−
∞∑
s=1

Tr(Ψs)T s/s
)
,

so that

Z ′(Hf/Fq;T ) = expp
( ∞∑
s=1

N ′sT
s/s
)

=
n∏
i=0

[
expp

( ∞∑
s=1

qs(n−i−1)T s/s
)](−1)i(n+1

i )
×
n+1∏
i=0

[
expp

( ∞∑
s=1

qs(n−i) Tr(Ψs)T s/s
)](−1)i(n+1

i )

=
n∏
i=1

(
1− qn−i−1T

)(−1)i+1(n+1
i ) n+1∏

i=0

∆
(
qn−iT

)(−1)i+1(n+1
i )
,

where we note our use of Theorem 2.38. Hence by Theorem 3.31, each term in this product is a

p-adic entire function of the desired form, raised to an integer power. Thus Z ′(Hf/Fq;T ) is p-adic

meromorphic.
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Chapter 5

A Rational Function Criterion

Before proving our main theorem, we must first establish the following criterion for when a power

series can be written as a rational function.

Theorem 5.1. Let K be any field. Let F (T ) =
∞∑
i=0

aiT
i ∈ K[[T ]]. For m, s ≥ 0, let As,m be the

following (m+ 1)× (m+ 1) matrix:
as as+1 · · · as+m
as+1 as+2 · · · as+m+1

...
...

...
as+m as+m+1 · · · as+2m


Let Ds,m = det(As,m). Then F (T ) is a rational function if and only if there exist non-negative

integers m and S such that Ds,m = 0 for all s ≥ S.

Proof. For the forward implication, suppose F (T ) = P (T )/Q(T ), where

P (T ) =
n∑
i=0

biT
i, Q(T ) =

m∑
i=0

ciT
i ∈ K[T ],

and Q(T ) 6= 0. Thus F (T ) · Q(T ) = P (T ), so that equating coefficients of T i for i > max(n,m)

gives:
m∑
j=0

ai−m+j · cm−j = 0. (5.1)
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Let S = max(0, n−m+ 1). For s ≥ S, applying (5.1) with i = s+m, s+m+ 1, . . . , s+ 2m gives

ascm + as+1cm−1 + · · ·+ as+mc0 = 0

as+1cm + as+2cm−1 + · · ·+ as+m+1c0 = 0
...

as+mcm + as+m+1cm−1 + · · ·+ as+2mc0 = 0,

so that (c0, c1, . . . , cm) · As,m = 0 under matrix multiplication. Thus, since Q 6= 0, we have

Ds,m = det(As,m) = 0 for s ≥ S.

For the reverse implication, note that m = 0 implies F is a polynomial and we are done. So

without loss of generality, let m ≥ 1 be the smallest positive integer such that for some non-negative

integer S we have Ds,m = 0 for all s ≥ S.

Claim 5.2. Ds,m−1 6= 0 for all s ≥ S.

Proof. Suppose that Ds,m−1 = 0 for some s ≥ S. Then some nontrivial linear combination of the

first m rows r0, r1, . . . rm−1 of As,m is 0 in all but perhaps the last column. Let rk be the first row

with nonzero coefficient in this linear combination, that is, there are α1, . . . , αm−k−1 ∈ K such that

the row vector rk differs from α1rk+1+α2rk+2+· · ·+αm−k−1rm−1 in at most the last column. In our

matrix As,m, we now subtract the above linear combination from row rk, leaving the determinant

Ds,m = 0 unchanged. This leaves us with two cases:

(1) k > 0. Then our new matrix looks like

as as+1 · · · as+m
as+1 as+2 · · · as+m+1

...
...

...
0 0 · · · β
...

... · · ·
...

as+m as+m+1 · · · as+2m


Consider the square matrix consisting of all but the first row and last column above. Since there

is a row consisting entirely of 0’s, we see that this matrix has determinant 0. On the other hand,
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our new matrix was formed from As+1,m−1 by row operations that did not involve the deleted first

row. Thus Ds+1,m−1 = 0.

(2) k = 0. This gives us 
0 0 · · · β

as+1 as+2 · · · as+m+1
...

...
...

as+m as+m+1 · · · as+2m


If β = 0, then the m×m matrix formed by deleting the last row and first column has determinant

0. However, this matrix came from row operations on As+1,m−1, none of which involved the deleted

last row. Thus, Ds+1,m−1 = 0. On the other hand, if β 6= 0, then the m × m matrix formed by

deleting the first row and last column has determinant zero; but this matrix is exactly As+1,m−1,

so that Ds+1,m−1 = 0 since Ds,m = 0.

By induction, then, we have Dt,m−1 = 0 for all t ≥ S, contradicting the minimality of m.

Thus Ds,m = 0 and Ds,m−1 6= 0 for any s ≥ S. Hence we can find a linear combination of the

rows in As,m which vanishes, and in which the coefficient of the last row is nonzero. In particular,

for any s ≥ S, the last row rm+1 of As,m is a linear combination of the preceding rows r0, r1, . . . , rm.

So any solution to

aScm + aS+1cm−1 + · · ·+ aS+mc0 = 0
...

aS+m−1cm + aS+mcm−1 + · · ·+ aS+2m−1c0 = 0

is also a solution to

aS+mcm + as+m+1cm−1 + · · ·+ as+2mc0 = 0,

and, by induction, to the equation

ascm + as+1cm−1 + · · ·+ as+mc0 = 0

for every s ≥ S. That is, for all s ≥ S the coefficent of T s+m in
( m∑
i=0

ciT
i
)
·
( ∞∑
i=1

aiT
i
)

is 0. Thus

F (T ) =
∞∑
i=1

aiT
i is a quotient of two polynomials.
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Chapter 6

Dwork’s Theorem

6.1 Proof of the Theorem

Proposition 6.1. The coefficient of T i in Z(Hf/Fq;T ) is bounded above by qni.

Proof. We begin by observing that Ns ≤ #An
Fqs = qns. Thus the coefficients of Z(Hf/Fq;T ) =

exp(
∞∑
s=1

NsT
s/s) are clearly less than or equal to those of exp(

∞∑
s=1

(qns)T s/s). But

exp(
∞∑
s=1

(qns)T s/s) = exp(
∞∑
s=1

(qnT )s/s) = exp(− log(1− qnT )) = 1/(1− qnT ) =
∞∑
i=0

qniT i.

Lemma 6.2. Z(Hf/Fq;T ) ∈ 1 + TZ[[T ]].

Proof. For any P = (x1, . . . , xn) ∈ Hf (Fq), define µ(P ) to be the minimal positive integer such that

xi ∈ Fqµ(P ) for all i = 1, . . . , n. Fix r ≥ 1, and consider a point P ∈ Hf (Fq) such that µ(P ) = r.

Claim 6.3. For all σ ∈ Gal(Fqr/Fq)− {e}, we have σ(P ) 6= P.

Proof. Suppose σ ∈ Gal(Fqr/Fq) satisfies σ(P ) = P. Let L be the fixed field L = (Fqr)〈σ〉 = {x ∈

Fqr | σ(x) = x}. Since σ fixes P, we know that P ∈ Hf (L). Thus, by the minimality of r, we have

L = Fqr , so that 〈σ〉 = {e}.

Thus, P has # Gal(Fqr/Fq) = r distinct Galois conjugates in Fqr . Given P ∈ Hf (Fqr), we

can view P as also sitting inside Hf (Fq2r), Hf (Fq3r), . . . . Note that F(qr)i are the only algebraic
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extensions of Fqr . Letting r and P vary, we define

P(r) = {P ∈ Hf (Fqr) : µ(P ) = r}.

We can now write our zeta function Z(Hf/Fq;T ) as

exp
( ∞∑
s=1

NsT
s/s
)

= exp
( ∞∑
s=1

∑
P∈Hf (Fqs )

T s/s
)

= exp
( ∞∑
r=1

∑
P∈P(r)

∞∑
t=1

T rt

rt

)
. (6.1)

Note that
∞∑
t=1

T rt

rt
=

1
r

∞∑
t=1

(T r)t

t
= −1

r
log(1− T r). Applying this fact to (6.1) gives

Z(Hf/Fq;T ) = exp
( ∞∑
r=1

∑
P∈P(r)

−1
r

log(1− T r)
)

= exp
( ∞∑
r=1

−1
r

log(1− T r) ·#{P(r)}
)
.

However, the previous paragraph implies that r|#{P(r)}. We can thus write #{P(r)} = r ·nr,

for some nr ∈ N. This gives us

exp
( ∞∑
r=1

−nr · log(1− T r)
)

=
∞∏
r=1

( 1
1− T r

)nr
=
∞∏
r=1

( ∞∑
j=0

T jr
)nr
∈ 1 + Z[[T ]].

Before we prove Dwork’s Theorem, we state the following classical result of p-adic analysis.

Theorem 6.4 (p-adic Weierstrass Preparation Theorem). If B(T ) ∈ Ω[[T ]] is a p-adic entire

function, then for any R there exists a polynomial P (T ) and a p-adic power series H(T ) ∈ 1 +

TΩ[[T ]] which converges and is non-zero on the closed disc D(R) of radius R, such that B(T ) =

P (T ) ·H(T ).

Proof. Omitted. See [2, pp. 105 – 106].

We are now ready to prove our main result.

Theorem 6.5 (Dwork). The zeta function of any affine hypersurface is a ratio of two polynomials

with coefficients in Q.
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Proof. For brevity, we use the notation Z(T ) = Z(Hf/Fq;T ). We showed in Theorem 4.3 that

Z(T ) ∈ 1+TZ[[T ]] is p-adic meromorphic, so we can write Z(T ) = A(T )/B(T ), where A(T ), B(T ) ∈

1+TΩ[[T ]] are p-adic entire functions. Applying the Weierstrass Preparation Theorem to B(T ) with

R = q2n, there exist a polynomial P (T ) ∈ 1 + TΩ[T ] and a p-adic power series H(T ) ∈ 1 + TΩ[[T ]]

that converges and is non-zero on D(q2n), such that B(T ) = P (T ) · H(T ). In particular, H(T )

has a reciprocal G(T ) ∈ 1 + TΩ[[T ]] that is also convergent on D(q2n), and thus we can write

B(T ) = P (T )/G(T ). Let F (T ) = A(T ) ·G(T ), which converges on D(q2n) since G(T ) converges on

D(q2n) and A(T ) is p-adic entire. To summarize, we have:

F (T ) = P (T ) · Z(T ),

where F (T ) ∈ 1 + TΩ[[T ]] converges on D(q2n) and P (T ) = 1 + TΩ[T ].

For the remainder of the proof, write F (T ) =
∞∑
i=0

biT
i ∈ 1 + TΩ[[T ]], P (T ) =

e∑
i=0

ciT
i ∈ 1 + TΩ[T ],

and Z(T ) =
∞∑
i=0

aiT
i ∈ 1 + TZ[[T ]].

Fix m = 2e+ 1, so that m > 2e. (Note e = deg P.) Let As,m be the (m+ 1)× (m+ 1) matrix
as as+1 · · · as+m
as+1 as+2 · · · as+m+1

...
...

...
as+m as+m+1 · · · as+2m


and let Ds,m = det(As,m). We will show that Ds,m = 0 for s sufficiently large, and then Lemma 6.1

will imply that Z(T ) is a rational function.

Equating coefficients in F (T ) = P (T ) · Z(T ) gives

bj+e = aj+e + c1aj+e−1 + c2aj+e−2 + . . .+ ceaj . (6.2)

With the ck’s as coefficients, we can use linear combinations of the columns in As,m to form Bs,m,

the (m+ 1)× (m+ 1) matrix
as as+1 · · · as+e−1 bs+e · · · bs+m
as+1 as+2 · · · as+e bs+e+1 · · · bs+m+1

...
...

...
...

...
as+m as+m+1 · · · as+m+e−1 bs+m+e · · · bs+2m
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Note that going from As,m to Bs,m leaves the determinant unchanged, since the coefficient of aj+e

in (6.2) is 1. We thus use Bs,m to help estimate Ds,m.

By Proposition 6.1, we know that |ai|∞ ≤ qin. In our matrix As,m, then,

|as+i|∞ ≤ qn(s+i) ≤ qn(s+2m), for each i = 0, . . . , 2m.

Thus we have the crude estimate

|Ds,m|∞ ≤ (m+ 1)! · qn(s+2m)(m+1) = (m+ 1)! · q2nm(m+1)qns(m+1).

Next, we use our matrix Bs,m to estimate |Ds,m|p. Pick α ∈ Ω such that |α|p = q2n. Then

F (α) =
∞∑
i=0

bi · αi converges, since α ∈ D(q2n). So for sufficiently large i, we have |bi|p · q2ni =

|bi · αi|p < 1, or equivalently, |bi|p < q−2ni.

Note that Ds,m = det(Bs,m) is a sum of terms, each of which is a product of e of the ai’s and

(m+ 1− e) of the bi’s. But since each ai ∈ Z ⊂ Zp, we have |ai|p ≤ 1. Thus each of the terms in the

sum has p-adic absolute value bounded above by (max |bi|p)m+1−e. Hence, |Ds,m|p is also bounded

above by (max |bi|p)m+1−e < q−2ns(m+1−e) for s sufficiently large. Recall that m = 2e+ 1 > 2e, so

that

|Ds,m|p < q−2ns(m+1−e) = q−ns(2m+2−2e) < q−ns(m+2).

We now multiply together our two bounds, to get

|Ds,m|p · |Ds,m|∞ < q−ns(m+2) · (m+ 1)! · q2nm(m+1)qns(m+1) =
(m+ 1)! · q2nm(m+1)

qns
< 1,

for s sufficiently large.

Note that Ds,m ∈ Z, since each ai ∈ Z. Suppose Ds,m is non-zero, and let ` = ordp(Ds,m). Then

we can write Ds,m = p` · r, where p does not divide r. Then

|r|∞ = |1 · r|∞ = |p−` · p` · r|∞ = p−` · |p` · r|∞ = |Ds,m|p · |Ds,m|∞ < 1.

But r ∈ Z, so r = 0, and hence Ds,m = p`r = 0, a contradiction. Thus Ds,m = 0 and Dwork’s

Theorem is proved.
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6.2 Corollaries of Dwork’s Theorem

Before going any further, we pause to reflect on Dwork’s Theorem and its significance for solving

systems of polynomial equations over finite fields. More specifically, the following proposition tells

us that we can write any Ns as
t∑
i=1

αsi −
u∑
i=1

βsi for some finite set of complex numbers α1, . . . , αt

and β1, . . . , βu. Since a finite number of Ns is sufficient to determine all of the αi and βi, we will

thus have a simple formula with which we can explicitly compute all the remaining Ns.

Proposition 6.6. Z(T ) = exp
( ∞∑
s=1

Ns

s
T s
)

is a rational function P (T )/Q(T ) with coefficients in

Q having no poles or zeros at T = 0, if and only if there exist α1, . . . , αt ∈ C and β1, . . . , βu ∈ C

such that

Ns =
t∑
i=1

αsi −
u∑
i=1

βsi , for all s = 1, 2, 3, . . . ,

where
t∏
i=1

(1− αiT ),
u∏
i=1

(1− βiT ) have all coefficients in Q.

Proof. Suppose Ns is of the above form. That is,

Ns = αs1 + . . .+ ast − (βs1 + . . .+ βsu).

Then our zeta-function Z(T ) is

Z(T ) =

∏t
i=1 exp

(∑
s≥1(αsiT

s)/s
)

∏u
i=1 exp

(∑
s≥1(βsi T s)/s

) =
∏t
i=1

(
− log(1− αiT )

)∏u
i=1

(
− log(1− βiT )

) =
∏u
i=1(1− βiT )∏t
i=1(1− αiT )

. (6.3)

Thus Z(T ) = P (T )/Q(T ) is a rational function with coefficients in Q, and Z(0) = P (0) = Q(0) = 1.

For the reverse implication, suppose Z(T ) ∈ Q(T ), and write

Z(T ) =
P (T )
Q(T )

, where P (T ), Q(T ) ∈ 1 + TQ[T ].

Motivated by equation (6.3), let α1, . . . , αt be the reciprocals of the roots of Q(T ), listed with

multiplicity. Similarly, let β1, . . . , βu be the reciprocals of the roots of P (T ), also listed with

multiplicity. We thus obtain the desired result.
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Definition 6.7. Let K be a field and let f1, . . . , fm ∈ K[X1, . . . , Xn]. If M is a field containing K,

then

Hf1,...,fm(M) = {(x1, . . . , xn) ∈ An
M | fi(x1, . . . , xn) = 0 for all i = 1, . . . ,m}

is the affine variety defined by f1, . . . , fm.

Corollary 6.8 (Dwork’s Theorem for Affine Varieties). Let f1, . . . , fm ∈ Fq[X1, . . . , Xn] and let

Ñs = #
(
Hf1,...,fm(Fqs)

)
. Define Z̃(T ) = exp

(∑
s≥1

ÑsT
s/s
)
. Then Z̃(T ) ∈ Q(T ).

Proof. The case m = 1 is Dwork’s Theorem. For m = 2, observe that

Ñs = #
(
Hf1,f2(Fqs)

)
= #

(
Hf1(Fqs)

)
+ #

(
Hf2(Fqs)

)
−#

(
Hf1·f2(Fqs)

)
,

so that Z̃(T ) is a product of rational functions by Dwork’s Theorem. For the general case, note

that

Hfi1 ···fir (Fqs) =
r⋂
j=1

Hfij
(Fqs).

Thus by the Inclusion/Exclusion Principle from Chapter 1, we have

Ñs =
∑
i1≤m

#(Hfi1
(Fqs))−

∑
i1<i2≤m

#(Hfi1fi2
(Fqs)) + · · ·+

∑
i1<···<ir≤m

#(Hfi1 ···fir (Fqs)) + · · ·+ (−1)m+1#(Hf1···fm(Fqs)).

Hence Dwork’s Theorem implies Z̃(T ) is a product of rational functions.

Definition 6.9. Let K be any field, and let f ∈ K[X0, . . . , Xn] be a homogeneous polynomial. If

M is a field containing K, then

Ĥf (M) = {(x0, . . . , xn) ∈ PnM | f(x0, . . . , xn) = 0}

is the projective hypersurface defined by f.

Corollary 6.10 (Dwork’s Theorem for Projective Hypersurfaces). Let f ∈ Fq[X0, . . . , Xn] be

a homogeneous polynomial, and let N̂s = #(Ĥf (Fqs)). Define Ẑ(T ) = exp
(∑
s≥1

N̂sT
s/s
)
. Then

Ẑ(T ) ∈ Q(T ).
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Proof. Recall that PnFqs can be written as the disjoint union An
Fqs ∪ An−1

Fqs ∪ · · · ∪ A1
Fqs ∪ {point}.

But there is clearly a bijection between the sets Ĥf ∩ Ai
Fqs and Hfi(Fqs), where fi(x0, . . . , xi−1) =

f(x0, . . . , xi−1, 1, 0, . . . , 0) ∈ Fq[x0, . . . , xi−1]. Thus, applying Dwork’s Theorem to the Hfi(Fqs)’s

gives the desired result.

Definition 6.11. Let K be any field, and let f1, . . . , fm ∈ K[X0, . . . , Xn] be homogeneous poly-

nomials. If M is a field containing K, then

H̄f1,...,fm(K) = {(x0, . . . , xn) ∈ PnK | fi(x0, . . . , xn) = 0 for all i = 1, . . . ,m}

is the projective variety defined by f1, . . . , fm.

Corollary 6.12 (Dwork’s Theorem for Projective Varieties). Let f1, . . . , fm ∈ Fq[X0, . . . , Xn] be

homogeneous polynomials, and let N̄s = #(H̄f1,...,fm(Fqs)). Define Z̄(T ) = exp
(∑
s≥1

N̄sT
s/s
)
. Then

Z̄(T ) ∈ Q(T ).

Proof. As in the proof of Corollary 6.8, we use the Inclusion/Exclusion Principle to show

N̄s =
∑
i1≤m

#(H̄fi1
(Fqs))−

∑
i1<i2≤m

#(H̄fi1fi2
(Fqs)) + · · ·+

∑
i1<···<ir≤m

#(H̄fi1 ···fir (Fqs)) + · · ·+ (−1)m+1#(H̄f1···fm(Fqs)).

Thus by Corollary 6.10, Z̄(T ) is a product of rational functions.
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Appendix A

Galois Theory

We include below a brief review of some results from Galois Theory. For more on the subject, as

well as complete proofs of the following facts, see [4].

Definition A.1. If L is a field, then an automorphism of L is a field isomorphism σ : L→ L.

Definition A.2. Given a ring homomorphism of fields ϕ : F → L, we say that L is a field extension

of F via ϕ.

Definition A.3. Let L and F be fields, with F ⊂ L a finite extension. Then the Galois group

Gal(L/F ) is the set

{σ : L→ L | σ is an automorphism of L, and σ(a) = a for all a ∈ F}.

Proposition A.4. Gal(L/F ) is a group under composition.

Proof. Suppose σ, τ ∈ Gal(L/F ). Then σ ◦ τ is an automorphism because σ, τ are. Also, if a ∈ F,

then σ ◦ τ(a) = σ(τ(a)) = σ(a) = a, since σ, τ are the identity on F. Thus we have a well-defined

operation on Gal(L/F ). Note also that composition of functions is associative. The identity map

1L : L→ L is an automorphism and restricts to the identity on F, so that 1L ∈ Gal(L/F ). Clearly

σ ◦ 1L = 1L ◦ σ = σ for all σ ∈ Gal(L/F ). Thus 1L is the identity element of Gal(L/F ). Given

σ ∈ Gal(L/F ), then because σ is an automorphism, its inverse σ−1 : L → L is an automorphism

as well. If a ∈ F, then a = σ(a), so that σ−1(a) = σ−1(σ(a)) = a. Hence σ−1 ∈ Gal(L/F ). Thus

Gal(L/F ) satisfies the group criterion.
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Definition A.5. Let F ⊂ L be a finite extension of fields with Galois group Gal(L/F ). Given a

subgroup H ⊂ Gal(L/F ), the fixed field of H is

LH = {a ∈ L | σ(a) = a for all σ ∈ H}.

Note also that LH is in fact a field, and F ⊂ LH ⊂ L.

Definition A.6. Let F ⊂ L be a field extension, and note that L forms a vector space over F.

(a) L is a finite extension of F if L is a finite-dimensional vector space over F.

(b) The degree of L over F, denoted [L : F ], is defined to be dimFL if L is a finite extension of F,

and ∞ otherwise.

Definition A.7. An extension F ⊂ L is called a Galois extension if it is a finite extension where

F is the fixed field of Gal(L/F ) acting on L.

We now consider a particularly nice automorphism, named after the German mathematician

Ferdinand Georg Frobenius.

Fact A.8. Let p be prime and let s ≥ 1 be an integer. Let q = pr, and denote by Fq the field of

q elements. Then the map Frobq : Fqs → Fq defined by Frobq(a) = aq is an automorphism of Fqs

that is the identity on Fq; i.e., Frobq ∈ Gal(Fqs/Fq).

Remark A.9. Since Galois groups are closed under composition, we see that (Frobq)i : Fqs → Fq

defined by (Frobq)i(a) = aq
i

is an element of Gal(Fqs/Fq). In particular, a 7→ aq
i

is an automorphism

of Fqs that is the identity on Fq.

Fact A.10. Let p be prime. If q = pr, then Gal(Fqs/Fq) ∼= Z/sZ. In particular, Gal(Fqs/Fq) =

{(Frobq)i : i = 0, 1, . . . , s− 1} is a cyclic group of order s.

We conclude our discussion of Galois Theory with the following claim concerning linear combi-

nations of automorphisms.

Claim A.11. Let σ1, . . . , σn be distinct automorphisms of a field K. Then there is no nontrivial

linear combination
∑
aiσi with a1, . . . , an ∈ K such that

∑
aiσi(x) = 0 for every x ∈ K.
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Proof. Suppose our claim is false and consider such a linear combination,

a1σ1(x) + . . .+ anσn(x) = 0. (A.1)

Without loss of generality, we assume that n ≥ 1 is minimal, and that each ai is non-zero. In fact,

if n = 1, then 1 = σ1(1) = 0, a contradiction; so n > 1. Since σ1 6= σn, there must be some y ∈ K

such that σ1(y) 6= σn(y). Note that y 6= 0. We now substitute xy for x in (1.1) to get

a1σ1(xy) + . . .+ anσn(xy) = 0,

for all x ∈ K. Thus

a1σ1(x)σ1(y) + . . .+ anσn(x)σn(y) = 0. (A.2)

Multiplying (1.1) by σ1(y) and subtracting the result from (1.2) gives

a2

(
σ1(y)− σ2(y)

)
σ2(x) + . . .+ an

(
σ1(y)− σn(y)

)
σn(x) = 0.

But the coefficient of σn(x) is an
(
σ1(y)− σn(y)

)
6= 0, contradicting the minimality of n.
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Appendix B

The Weil Conjectures

We say a projective hypersurface H̃f̃ is smooth if the partial derivatives of f̃ with respect to all

n variables never vanish simultaneously. Let β be the Betti number of H̃f̃ , where the kth Betti

number of a space X is related to the kth homology group of a certain manifold corresponding to

X. Then for the case of a smooth projective hypersurface, the Weil Conjectures say:

(i) Z(H̃f̃/Fq;T ) = P (T )±1/
(
(1− T )(1− qT ) · · · (1− qn−1T )

)
, where P (T ) ∈ 1 + TZ[T ] has degree

β, and where we take P (T ) when n is even and P (T )−1 when n is odd.

(ii) If α is a reciprocal root of P (T ), then so is qn−1α.

(iii) The complex absolute value of each of the reciprocal roots of P (T ) is q(n−1)/2.
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