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Dimensional analysis is a simple, physically transparent and intuitive method for obtaining
approximate solutions to physics problems, especially in mechanics. It may—indeed sometimes
should—precede or even supplant mathematical analysis. And yet dimensional analysis usually is
given short shrift in physics textbooks, presented mostly as a diagnostic tool for finding errors in
solutions rather than in finding solutions in the first place. Dimensional analysis is especially well
suited to estimating the magnitude of errors associated with the inevitable simplifying assumptions
in physics problems. For example, dimensional arguments quickly yield estimates for the errors in
the simple expressiog2h/g for the descent time of a body dropped from a helgbh a spherical,
rotating planet with an atmosphere as a consequence of ignoring the variation of the acceleration due
to gravity g with height, rotation, relativity, and atmospheric drag. 2@d4 American Association of
Physics Teachers.
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[. INTRODUCTION gravitational field of a rotating planet with an atmosphere.
Dimensional arguments are particularly well suited to this

Dimensional analysis usually gets short shrift in physicskind of error analysis.

textbooks. What one finds is mostly admonitions about

checking the dimensional homogeneity of equations as a wal.- DESCENT TIME OF A FALLING BODY
of ferreting out errors;# which falls in the category of tell-

ing people to brush their teeth after meals. Good advice but N
bit lacking in profundity. Although Serw&ydoes note, in a
brief section on dimensional analysis, that equations can be 2h

derived by dimensional arguments, he then does not follow 7o~ E @

this prescription. And Giancdlishows(in an appendixhow whereg is the acceleration due to gravity near the surface.

the period of a simple pendulum can be obtained by dlmen'Several physical factors are ignored in standard derivations

sional analysis. But by and large textbooks approach pmbéf this equation, some explicitly, others implicitly, often with

lems, especially in mechanics, by solving differential equay,, jstification. Letr be this time taking into account only
tions. The remarkable power of dimensional analysis tqne of the factors assumed negligible in the derivatiofLpf

obtain approximate results quickly and easily is not oftentne error resulting from ignoring this single factor is the

The time 7, for an object dropped from rest at a height
reach the surface of a planet is

fully exploited. _ _ _ _dimensionless quantity

My attempts to teach dimensional analysis have been dis-
appointing. By the time | get students they seem to have ,_7" "o @)
been thoroughly inculcated in the belief that physics prob- To

lems must entail the pain and suffering of solving differential gocause: is dimensionless it must depend on some dimen-

equations, and any attempt to side step this is a cheat. Ngonless parametgr(or parameters, but here we assume only
pain, no gain. And it does seem a bit of cheat that so muclyng:

can be obtained with so little effort. But solving problems by  ¢=f(¢), 3
dimensional analysis is quite respectable physics. For ex- B . .
ample, Lord Rayleigh’s inverse fourth power of wavelengthWheref(o)_o' Expandf (£) in a Taylor series:
law for scattering by objects small compared with the =100 df 4
wavelength was first obtained by dimensional arguments no (£)=1(0)+ dé §f. )
different from those in the following sections. . 0 .

) s . . . The leading term in the error is therefore

The aim of physics is physical understanding, not solving
differential equations. They are sometimes a means to an 77— 17,

end, but not the end itself, and if that end can be reached by 7 ~C¢, ®

simpler means, especially more physically transparent ang,o e is a dimensionless constant the value of which can-
intuitive ones, all to the good. Even to mathematicians, solVi ot pe obtained from dimensional analysis. Although a di-
ing differential equations is not very interesting mathematicsinensionless quantity raised to any nonintegral power is also
“real” mathematician§ don't solve differential equations, dimensionless, we can rule out an error with this functional
they prove theorems. dependence if we assume tHais expandable in a power
In the sections that follow the power of dimensional analy-series about=0.
sis is demonstrated by using it to estimate the errors associ- The implication of(5) is that we can estimate the errors
ated with simplifying the problem of a falling body in the associated with each neglected physical factor, without solv-
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ing any equations of motion, by physical reasoning about théV. ROTATION
dimensionless combination of relevant physical parameters.
In the following sections we do so successively for the error Now we turn to the more difficult problem of estimating
associated with ignoring the variation with height of the ac-the consequences of ignoring the rotation of the planet. The
celeration due to gravity, the rotation of the planet, relativity,error in the descent time must depend on the planetary an-
and finally, drag. gular speedv. This introduces a parameter containing time,
so we need another parameter containing time to balance it,
which brings to mindg. But now length enters into our
[ll. VARIATION OF g WITH HEIGHT analysis, so we need a parameter with the dimensions of
length as a counterbalance. The radiusf the planet is a
The acceleration due to gravity for a finilspherical  candidate. If these three parameters are combined into a di-
planet of radiusk varies with height above its surface. Equa- mensionless group we obtain for the erfay within an un-
tion (1) does not take this variation into account. What is thedetermined constant
associated error in the descent time? Because gravity de- 5
creases with height, the descent timenust be greater than _ “’_R
; e . e= (12
T,. The greater the heigitt the greater this time difference. g

So we need another relevant physical parameter with th?he inverse of a dimensionless group is also dimensionless,

?Ame?sm?s of Iedngg'_l?hnd t:'he Odr?'y one thlat comes to tmlnfd 3f course, but in this instance the inverse of the groufi
€ pianétary radius. thus the dimensioniess parameterior,o ;4 not make physical sense. Equatidr?) satisfies the
this problem is¢=h/R and the error is minimal condition that the error vanishes as the rotation van-
h ishes. And wherg approaches infinity, the error approaches
£=C§, (6)  zero, which also makes sense: wheeis infinite, rotation is
irrelevant. The only remaining question might be why we
where C is an undetermined dimensionless constant. DoeshoseR instead ofh. Both have dimensions of length, and
(6) make physical sense? It certainly satisfies at least twhence both are equally likely candidates at first glance. To
necessary conditions: the error must vanishiHer0 and as choose between them requires a bit of physical reasoning.
R approaches infinity. The correction resulting from rotation is a consequence of
To check this result we turn to the equation of motion  centripetal acceleration, which depends on the distance from
the origin of the coordinate system. If we limit ourselves to

2 _
d*z = —gz (7) heightsh<R, we can useR in the dimensionless group.
dt* (1+z/R) To verify our result obtained from dimensional arguments,

wherez is the height above the surface aib the accelera- W€ turn to the equations of motiameglecting the Coriolis
tion due to gravity at the surface. The only hope we have of'™m

solving this equatiorfapproximately is to linearize the de- P 92= — g+ w?r cof I 13

nominator on the right side, that is, assumB<1 and ex- gre ' (13

pand, which yields the approximate equation of motion 2i d+r1d=— w?r sin® cosd, (14)
d_zz__ (1-22/R) ®) wherer is the distance from the origin of the coordinate
az = 9 ' system(center of the plangtand 9 is the latitude. These

. . - L nonlinear equations are insoluble, but we are not daunted
The solution to(8) subject to the initial conditions=h and  given that the theme of this article is how to extract physics

dz/dt=0 att=0is from differential equations without suffering the pain of
2z—R solving them. If the object is dropped from rest=0 and
—p —Coshty2g/R, (9 t=0 att=0, and hence fronfl4) it follows that
2h—R
from which it follows that the descent time is the solution to ~ §,= — w? sin9, cosd,, (15

R where the subscripd denotest=0. Our aim is to compare
R—2h coshry2g/R. 10 the magnitude of the second term on the left sid€l8f with

o ) _ that of the second term on the right side. To that end, inte-
Because of the restrictidm<R, cosh here is close to 1, so it grate(15) to obtain

can be expanded as a power series in its argument and trun-

cated after the second term. This yields for the error O~ w?t sind, cosd, (16
h for t>0. This yields the approximation
e=3, (11
R r 92
which is (6) to within the undeterminedby dimensional m*wztzsmz Y. 17

analysig constantC (here equal to )L Estimating the error

by dimensional arguments was certainly much simpler tharfo approximate the maximum value tofve may use Eq(1).
solving the equation of motion and yet yielded essentially thé=or Earthw is around 104 s ! and forh of order 16 m, t
same result. For EartR is of order 10 m, so for objects is around 10 s, so the produet is of order 102 and its
dropped from heights of order 4@n or less, the error asso- square is of order 1. We are therefore justified in neglect-
ciated with neglecting the variation with height of gravity is ing the second term on the left side (#3) to obtain the
less than 0.01%. approximate equation of motion
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F=—g+w’ cof J,. (18)  c?. For this problem we had three possible paths to follow:
. . . . . dimensional analysis, solving a not especially difficult differ-
tThZ'S dzgggg?grﬁzn be readily solved to obtain for the error Mential equation, or an argument based on the ratio of speeds

squaredwhich is also a dimensional argumgnt
w?Rcog 9,

e g ' 19 i brAG
Except for the factor cds,, this is what we obtained by  Last but not least are the consequences of ignoring drag,
simple dimensional analysis. But the cosine is dimensionlesghe existence of which often is at least acknowledged in text-
so it lies beyond dimensional analysis. Nevertheless, w@ooks even if it is whisked under the carpet, out of sight and
know on physical grounds th&l2) must be missing a di- therefore out of mind. But one cannot simply ignore drag
mensionless factor that vanishes at the poles. For Earth thsecause to account for it would be uncomfortable. One has to
error is around 1%, considerably larger than the error assaat least estimate the error in the descent titheas a conse-
ciated with neglecting the variation gfwith height. guence of ignoring drag.
For this problem it is best to begin with the equation of

motion for a body of mass falling in a uniform gravita-

V. RELATIVITY tional field and subject to atmospheric dfayen though it is

. . . . not necessary to solve it:
Up to this point analysis has been based on classical me- y

chanics. What are the consequences of special relativity? The dv 1 2

dimensionless group determining the error in the descent Mgp =~ MYT 5PaACDVY, (29)
time surely must depend an the free-space speed of light. ) ) .

This introduces the dimension of time, so we need anothefherep, is the density of the atmosphere through which the
parameter with time in its dimensions, which immediatelyPody falls, A is the cross-sectional area of the body, and all
suggestsy. But no combination ofc and g can be made the complicated fluid mechanics of drag are wrapped up in
dimensionless, so we need either a parameter with the dihe drag coefficienCp . Equation(25) can be re-written as
mensions of time or of length. The heigdhts the only plau- v

sible candidate given that we again assume a flat planet. The — = —g+by?, (26)
only time that comes to mind is thelassical descent time dt

(1). But this depends oh andg, and so is not an indepen- where b=p,ACp/2m. The error in the descent time must
dent parameter. Our dimensionless group for this problem i§anish withb, which has the dimensions of inverse length.

therefore We therefore need another parameter with the dimensions of
hg length as a counterbalance, and the only one that comes to
&= el (200  mind ish, the height at which the body is dropped from rest.

So we are led to postulate an error in the descent (again
which gives the errofto within a constant To check this to within a constant
result consider the relativistic equation of motion for the e=hb

. . 2
(vertical) velocity v, @7
This is general, but to check its correctness we have to make
d v some specific assumptions. One is that we can ignore the

@D variation of densityp, with height® The drag coefficient

a7 .
o poses more of a problem because it depends on Reynolds
For a body dropped from rest &0, the first integral of the  humper Re=p, vd/u (at speeds less than about a third that of
motion Is sound, whered is a characteristic linear dimension of the
dz —gt object andu the (dynamig viscosity of the fluid through

Y= (220  which it moves. Measurements of the drag coefficient for

dt  1+g%?c? bodies of simple shape and of the sizes of balls and similar
everyday objects show that over a large range of Reynolds
numbers, the drag coefficient is approximately constant.
With the assumption of constaht the solution to(27) is

This equation is readily integrated to obtairat any timet
>0, from which the descent timgime at whichz=0) fol-

lows:
dz
=1,\1+hg/2c?, (23 V=g = \[%tanm@)_ (28)
With the assumption thdtg/2c2< 1, the error in the descent o o
time is to good approximation Note that as+/gb approaches infinityy approaches a limit
h v..=+/g/b called the terminal velocity. For timdssuch that
LY (249 tVgb<1, v~—gt, which is the usual expression for the

4c®’ endless increase in velocity of a falling object with time in
which is what we obtainedwithin a factor of 4 by dimen-  the absence of drag. o _

sional arguments. As expected, the relativistic correction is a Eguation(29) can be solved for z

tiny fraction of a percent. Of course, we could have obtained In cosht\/gh)

this same result by noting that tiielassical speed squared z=h- — b

atz=0 is 2hg, and we would expect the relativistic correc-

tion to be of order a characteristic speed squared divided bgnd hence the descent time is the solution to

(29
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cosh 7\/gb) = exp(hb). (30)  be difficult but not impossible to detect, although for the

_ _ _ _ observation to be valid the two balls would have to be
To solve this equation we expand both functions in poweryropped at the same time to within 0.01 s or less.

series and truncate after the third te(ihwe truncate after
the second term we get onky,). The result for the error,
after tedious but straightforward algebra, is

hb Have we exhausted all the possible errors lurking behind

e=—, (31 the simple expressiofil) for the descent time of a falling
6 body? Probably not, but | don't want to spoil the pleasure

which is essentially what we obtained by dimensional argureaders might have looking for other sources of error and
ments. estimating their magnitude by dimensional arguments.

Before proceeding it is instructive to give a physical inter- Is dimensional analysis an infallible method for solving
pretation ofb or, rather, its inverse, a length. For large valuesphysical problems? Of course not, but the same can be said
of the argument of the cosh i29) the distance the object of anymethod. There is no royal road to physics. The advan-

VII. CONCLUDING REMARKS

falls from rest in timet is tage of dimensional analysis is that physical analysis pre-
cedes or even supplants mathematical analysis. Solving dif-
In2 : ; ; .
h—z~p. t— — (32) ferential equations teaches students to solve differential
* b’ equations. But it is the interpretation of solutions that is the

essence of good physics. Unfortunately, because of the sheer

The first term on the right side df32) is the distance the drud £ Solvi ’ hvsical int tai fren i
object would have fallen if it had it&constank terminal ve- rudgery ot solving equations physicalinterpretation orten 1s
an afterthought instead of occupying pride of place, as it

locity from the outsett(=0). We may therefore interprettd/ L . .
as the distance the object falls from rest before it reaches ag]oes in dimensional analysis.
appreciable fraction of its terminal velocity. Thus the quan-
tity hb is the ratio of the height from which the body is ACKNOWLEDGMENT
dropped to the distance it falls before reachiaimos} its . .
terminal velocity. When the body is near its terminal veloc- irslta:jTaf%rg;[etLL;IS tgrtli?gld Jackson for his comments on the
ity, drag certainly cannot be neglected, so the ratio of Iengthg '

hb as the key quantity determining whether drag is or is NOta, e ctronic mail bohren@ems.psu.edu

negligible mqkes good phyS|caI sense. F. W. Sears, M. W, Zemansky, and H. D. Yourigniversity Physics
We can writeb as (Addison—Wesley, Reading, MA, 198%th ed.
1 A %R. A. Serway,Physics for Scientists and Engineers with Modern Physics
b= = & —Cc (33 (Saunders, Philadelphia, 1993rd ed.
2pV Do 3D. Halliday and R. Resnickrundamentals of Physid&Viley, New York,
) . ) . 1988, 3rd ed.

whereV is the volume of the object angd its density. The  “D. C. Giancoli,Physics(Prentice—Hall, Englewood Cliffs, NJ, 1995/th
quantity A/V is K/d, whereK is a constant and is a char- ed.

iatin i ; ; ; ®J. R. Strutt(Lord Rayleigh, “On the light from the sky, its polarization
acteristic linear dimension of the ObJeCt' For a Sthre and colour,” Philos. Mag41, 107-120(1871. This paper and other semi-

=3/2ifdis its diamet_er- For Earth,_s atmospheévethin the nal papers on atmospheric light scattering are reprint&tattering in the
troposphergp,/p lies in the approximate range 18-10* Atmosphere edited by C. F. Bohrer{SPIE Optical Engineering Press,
(a tennis ball corresponds to the lower end of this range, aBellingham, WA, 1989

shot put to the upper eindThe drag coefficient for a sphé’re ®For a delightful exposition of the outlook of a “real” mathematician see G.
is about 0.4 at large Reynolds numbésay, 16—1(55). Thus H. Hardy, A Mathematician’s Apology(Cambridge U.P., Cambridge,

) . : 1969, pp. 121-124.
for more or less spherical objects the error in the descentis common to find in textbooks a linear drag law of the fokm where

time is approximately k is independent of speed. This yields an equation of motion that is readily
pa h solved at the expense of the solution being largely irrelevant. Such a law is
e~5%X10" 2Fa (34) valid only for Reynolds numbers less than 1, which except for exceedingly

short time intervals is not satisfied by objects with the dimensions of tennis
) o balls (or even lead shotThe ratiou/p (called the kinematic viscosityfor
Balls of many kinds have characteristic lengthsf order 10 air at 15 °C is about 0.15 cifs. A ball or other object of comparable size

cm. At what drop height is the error 10%, say? For a tennis dropped from rest reaches 1 cm/s in about®6. Ford=10 cm andv
ball, about 200 m, for a shot put about 2000 m. The height of =1 cm/s, the Reynolds number is of order’ 180 the linear drag law is
the Leaning Tower of Pisa is about 50 m. Suppose that Ga-invalid for such objects during all but a tiny fraction of their trajectories.
lileo really did drop from this tower objects of the same size This law is valid, however, for cloud droplets, which have diameters of

. - . . order 10um. A rule of thumb is that if you can readily see a falling body,
but of different density(about which there is doul} to the linear drag law is not applicable o it

show that they reach the ground at the same time. REOM &g the consequences of a variable density with height to the motion of a
the approximate drop time is 3 s. Fro{®84) the fractional body dropped at rest in Earth’s atmosphere see P. Mohazzabi and J. H.
error in the drop time as a consequence of neglecting drag isShea, “High altitude free fall,” Am. J. Phys$4, 1242-12461996.

about 0.02 for a tennis ball, 0.002 for a shot put. The differ- "H. Schiichting,Boundary-Layer TheorgMcGraw-Hill, New York, 1968,
ence in times to reach the ground Is therefore about 0.05 §O?'t:eesdo.iur:t)i.o]r-jr.lere fov andzis essentially the same as that given by G
Al ]mpag:t both balls WPUId have speeds of around 30 ms, Feinberg, “Fall of bodies near the Earth,” Am. J. Phy&3, 501-502
which yields a separation of about 15 cm between them at ;gg5

the Instant one of them f|r_5t reaches the ground. This is apic. G. Adler and B. L. Coulton, “Galileo and the Tower of Pisa experi-
proximately equal to the diameter of a ball, and hence would ment,” Am. J. Phys46, 199-201(1978.
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