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Dimensional analysis is a simple, physically transparent and intuitive method for obtaining
approximate solutions to physics problems, especially in mechanics. It may—indeed sometimes
should—precede or even supplant mathematical analysis. And yet dimensional analysis usually is
given short shrift in physics textbooks, presented mostly as a diagnostic tool for finding errors in
solutions rather than in finding solutions in the first place. Dimensional analysis is especially well
suited to estimating the magnitude of errors associated with the inevitable simplifying assumptions
in physics problems. For example, dimensional arguments quickly yield estimates for the errors in
the simple expressionA2h/g for the descent time of a body dropped from a heighth on a spherical,
rotating planet with an atmosphere as a consequence of ignoring the variation of the acceleration due
to gravity g with height, rotation, relativity, and atmospheric drag. ©2004 American Association of

Physics Teachers.
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I. INTRODUCTION

Dimensional analysis usually gets short shrift in phys
textbooks. What one finds is mostly admonitions ab
checking the dimensional homogeneity of equations as a
of ferreting out errors,1–4 which falls in the category of tell-
ing people to brush their teeth after meals. Good advice b
bit lacking in profundity. Although Serway2 does note, in a
brief section on dimensional analysis, that equations can
derived by dimensional arguments, he then does not fol
this prescription. And Giancoli4 shows~in an appendix! how
the period of a simple pendulum can be obtained by dim
sional analysis. But by and large textbooks approach pr
lems, especially in mechanics, by solving differential eq
tions. The remarkable power of dimensional analysis
obtain approximate results quickly and easily is not of
fully exploited.

My attempts to teach dimensional analysis have been
appointing. By the time I get students they seem to h
been thoroughly inculcated in the belief that physics pr
lems must entail the pain and suffering of solving different
equations, and any attempt to side step this is a cheat
pain, no gain. And it does seem a bit of cheat that so m
can be obtained with so little effort. But solving problems
dimensional analysis is quite respectable physics. For
ample, Lord Rayleigh’s inverse fourth power of waveleng
law for scattering by objects small compared with t
wavelength5 was first obtained by dimensional arguments
different from those in the following sections.

The aim of physics is physical understanding, not solv
differential equations. They are sometimes a means to
end, but not the end itself, and if that end can be reached
simpler means, especially more physically transparent
intuitive ones, all to the good. Even to mathematicians, so
ing differential equations is not very interesting mathemat
‘‘real’’ mathematicians6 don’t solve differential equations
they prove theorems.

In the sections that follow the power of dimensional ana
sis is demonstrated by using it to estimate the errors ass
ated with simplifying the problem of a falling body in th
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gravitational field of a rotating planet with an atmosphe
Dimensional arguments are particularly well suited to t
kind of error analysis.

II. DESCENT TIME OF A FALLING BODY

The timeto for an object dropped from rest at a heighth
to reach the surface of a planet is

to5A2h

g
, ~1!

whereg is the acceleration due to gravity near the surfa
Several physical factors are ignored in standard derivati
of this equation, some explicitly, others implicitly, often wit
no justification. Lett be this time taking into account onl
one of the factors assumed negligible in the derivation of~1!.
The error resulting from ignoring this single factor is th
dimensionless quantity

«5
t2to

to
. ~2!

Because« is dimensionless it must depend on some dim
sionless parameterj ~or parameters, but here we assume o
one!:

«5 f ~j!, ~3!

where f (0)50. Expandf (j) in a Taylor series:

f ~j!5 f ~0!1S d f

dj D
o

j1¯ . ~4!

The leading term in the error is therefore

t2to

to
'Cj, ~5!

whereC is a dimensionless constant the value of which c
not be obtained from dimensional analysis. Although a
mensionless quantity raised to any nonintegral power is a
dimensionless, we can rule out an error with this functio
dependence if we assume thatf is expandable in a powe
series aboutj50.

The implication of~5! is that we can estimate the erro
associated with each neglected physical factor, without s
534© 2004 American Association of Physics Teachers
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ing any equations of motion, by physical reasoning about
dimensionless combination of relevant physical paramet
In the following sections we do so successively for the er
associated with ignoring the variation with height of the a
celeration due to gravity, the rotation of the planet, relativ
and finally, drag.

III. VARIATION OF g WITH HEIGHT

The acceleration due to gravity for a finite~spherical!
planet of radiusR varies with height above its surface. Equ
tion ~1! does not take this variation into account. What is t
associated error in the descent time? Because gravity
creases with height, the descent timet must be greater than
to . The greater the heighth, the greater this time difference
So we need another relevant physical parameter with
dimensions of length, and the only one that comes to min
the planetary radiusR. Thus the dimensionless parameter f
this problem isj5h/R and the error is

«5C
h

R
, ~6!

where C is an undetermined dimensionless constant. D
~6! make physical sense? It certainly satisfies at least
necessary conditions: the error must vanish forh50 and as
R approaches infinity.

To check this result we turn to the equation of motion

d2z

dt2
5

2g

~11z/R!2 , ~7!

wherez is the height above the surface andg is the accelera-
tion due to gravity at the surface. The only hope we have
solving this equation~approximately! is to linearize the de-
nominator on the right side, that is, assumez/R!1 and ex-
pand, which yields the approximate equation of motion

d2z

dt2
52g~122z/R!. ~8!

The solution to~8! subject to the initial conditionsz5h and
dz/dt50 at t50 is

2z2R

2h2R
5coshtA2g/R, ~9!

from which it follows that the descent time is the solution

R

R22h
5coshtA2g/R. ~10!

Because of the restrictionh!R, cosh here is close to 1, so
can be expanded as a power series in its argument and
cated after the second term. This yields for the error

«5
h

R
, ~11!

which is ~6! to within the undetermined~by dimensional
analysis! constantC ~here equal to 1!. Estimating the error
by dimensional arguments was certainly much simpler t
solving the equation of motion and yet yielded essentially
same result. For EarthR is of order 107 m, so for objects
dropped from heights of order 103 m or less, the error asso
ciated with neglecting the variation with height of gravity
less than 0.01%.
535 Am. J. Phys., Vol. 72, No. 4, April 2004
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IV. ROTATION

Now we turn to the more difficult problem of estimatin
the consequences of ignoring the rotation of the planet.
error in the descent time must depend on the planetary
gular speedv. This introduces a parameter containing tim
so we need another parameter containing time to balanc
which brings to mindg. But now length enters into ou
analysis, so we need a parameter with the dimension
length as a counterbalance. The radiusR of the planet is a
candidate. If these three parameters are combined into a
mensionless group we obtain for the error~to within an un-
determined constant!

«5
v2R

g
. ~12!

The inverse of a dimensionless group is also dimensionl
of course, but in this instance the inverse of the group in~12!
would not make physical sense. Equation~12! satisfies the
minimal condition that the error vanishes as the rotation v
ishes. And wheng approaches infinity, the error approach
zero, which also makes sense: wheng is infinite, rotation is
irrelevant. The only remaining question might be why w
choseR instead ofh. Both have dimensions of length, an
hence both are equally likely candidates at first glance.
choose between them requires a bit of physical reason
The correction resulting from rotation is a consequence
centripetal acceleration, which depends on the distance f
the origin of the coordinate system. If we limit ourselves
heightsh!R, we can useR in the dimensionless group.

To verify our result obtained from dimensional argumen
we turn to the equations of motion~neglecting the Coriolis
term!

r̈ 1r q̇252g1v2r cos2 q, ~13!

2ṙ q̇1r q̈52v2r sinq cosq, ~14!

where r is the distance from the origin of the coordina
system~center of the planet! and q is the latitude. These
nonlinear equations are insoluble, but we are not daun
given that the theme of this article is how to extract phys
from differential equations without suffering the pain
solving them. If the object is dropped from rest,q̇50 and
ṙ 50 at t50, and hence from~14! it follows that

q̈o52v2 sinqo cosqo , ~15!

where the subscripto denotest50. Our aim is to compare
the magnitude of the second term on the left side of~13! with
that of the second term on the right side. To that end, in
grate~15! to obtain

q̇'v2t sinqo cosqo ~16!

for t.0. This yields the approximation

r q̇2

v2r cos2 q
'v2t2 sin2 qo . ~17!

To approximate the maximum value oft we may use Eq.~1!.
For Earthv is around 1024 s21 and forh of order 103 m, t
is around 10 s, so the productvt is of order 1023 and its
square is of order 1026. We are therefore justified in neglec
ing the second term on the left side of~13! to obtain the
approximate equation of motion
535Craig F. Bohren
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r̈ 52g1v2r cos2 qo . ~18!

This equation can be readily solved to obtain for the erro
the descent time

«5
v2R cos2 qo

g
. ~19!

Except for the factor cos2 qo , this is what we obtained by
simple dimensional analysis. But the cosine is dimension
so it lies beyond dimensional analysis. Nevertheless,
know on physical grounds that~12! must be missing a di-
mensionless factor that vanishes at the poles. For Earth
error is around 1%, considerably larger than the error as
ciated with neglecting the variation ofg with height.

V. RELATIVITY

Up to this point analysis has been based on classical
chanics. What are the consequences of special relativity?
dimensionless group determining the error in the desc
time surely must depend onc, the free-space speed of ligh
This introduces the dimension of time, so we need ano
parameter with time in its dimensions, which immediate
suggestsg. But no combination ofc and g can be made
dimensionless, so we need either a parameter with the
mensions of time or of length. The heighth is the only plau-
sible candidate given that we again assume a flat planet.
only time that comes to mind is the~classical! descent time
~1!. But this depends onh andg, and so is not an indepen
dent parameter. Our dimensionless group for this problem
therefore

j5
hg

c2 , ~20!

which gives the error~to within a constant!. To check this
result consider the relativistic equation of motion for t
~vertical! velocity v,

d

dt

v

A12v2/c2
52g. ~21!

For a body dropped from rest att50, the first integral of the
motion is

y5
dz

dt
5

2gt

A11g2t2/c2
. ~22!

This equation is readily integrated to obtainz at any timet
.0, from which the descent time~time at whichz50) fol-
lows:

t5toA11hg/2c2. ~23!

With the assumption thathg/2c2!1, the error in the descen
time is to good approximation

«5
hg

4c2 , ~24!

which is what we obtained~within a factor of 4! by dimen-
sional arguments. As expected, the relativistic correction
tiny fraction of a percent. Of course, we could have obtain
this same result by noting that the~classical! speed squared
at z50 is 2hg, and we would expect the relativistic corre
tion to be of order a characteristic speed squared divided
536 Am. J. Phys., Vol. 72, No. 4, April 2004
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c2. For this problem we had three possible paths to follo
dimensional analysis, solving a not especially difficult diffe
ential equation, or an argument based on the ratio of spe
squared~which is also a dimensional argument!.

VI. DRAG

Last but not least are the consequences of ignoring d
the existence of which often is at least acknowledged in te
books even if it is whisked under the carpet, out of sight a
therefore out of mind. But one cannot simply ignore dr
because to account for it would be uncomfortable. One ha
at least estimate the error in the descent time~1! as a conse-
quence of ignoring drag.

For this problem it is best to begin with the equation
motion for a body of massm falling in a uniform gravita-
tional field and subject to atmospheric drag7 even though it is
not necessary to solve it:

m
dv
dt

52mg1
1

2
raACDv2, ~25!

wherera is the density of the atmosphere through which t
body falls,A is the cross-sectional area of the body, and
the complicated fluid mechanics of drag are wrapped up
the drag coefficientCD . Equation~25! can be re-written as

dv
dt

52g1bv2, ~26!

where b5raACD/2m. The error in the descent time mu
vanish withb, which has the dimensions of inverse leng
We therefore need another parameter with the dimension
length as a counterbalance, and the only one that come
mind ish, the height at which the body is dropped from re
So we are led to postulate an error in the descent time~again
to within a constant!

«5hb. ~27!

This is general, but to check its correctness we have to m
some specific assumptions. One is that we can ignore
variation of densityra with height.8 The drag coefficient
poses more of a problem because it depends on Reyn
number Re5ra vd/m ~at speeds less than about a third that
sound!, whered is a characteristic linear dimension of th
object andm the ~dynamic! viscosity of the fluid through
which it moves. Measurements of the drag coefficient
bodies of simple shape and of the sizes of balls and sim
everyday objects show that over a large range of Reyno
numbers, the drag coefficient is approximately consta9

With the assumption of constantb, the solution to~27! is

v5
dz

dt
52Ag

b
tanh~ tAgb!. ~28!

Note that astAgb approaches infinity,v approaches a limit
v`5Ag/b called the terminal velocity. For timest such that
tAgb!1, v'2gt, which is the usual expression for th
endless increase in velocity of a falling object with time
the absence of drag.

Equation~29! can be solved10 for z:

z5h2
ln cosh~ tAgb!

b
, ~29!

and hence the descent time is the solution to
536Craig F. Bohren
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cosh~tAgb!5exp~hb!. ~30!

To solve this equation we expand both functions in pow
series and truncate after the third term~if we truncate after
the second term we get onlyto). The result for the error
after tedious but straightforward algebra, is

«5
hb

6
, ~31!

which is essentially what we obtained by dimensional ar
ments.

Before proceeding it is instructive to give a physical inte
pretation ofb or, rather, its inverse, a length. For large valu
of the argument of the cosh in~29! the distance the objec
falls from rest in timet is

h2z'v`t2
ln 2

b
. ~32!

The first term on the right side of~32! is the distance the
object would have fallen if it had its~constant! terminal ve-
locity from the outset (t50). We may therefore interpret 1/b
as the distance the object falls from rest before it reache
appreciable fraction of its terminal velocity. Thus the qua
tity hb is the ratio of the height from which the body
dropped to the distance it falls before reaching~almost! its
terminal velocity. When the body is near its terminal velo
ity, drag certainly cannot be neglected, so the ratio of leng
hb as the key quantity determining whether drag is or is
negligible makes good physical sense.

We can writeb as

b5
1

2

ra

r

A

V
CD , ~33!

whereV is the volume of the object andr its density. The
quantityA/V is K/d, whereK is a constant andd is a char-
acteristic linear dimension of the object. For a sphereK
53/2 if d is its diameter. For Earth’s atmosphere~within the
troposphere! ra /r lies in the approximate range 1023– 1024

~a tennis ball corresponds to the lower end of this rang
shot put to the upper end!. The drag coefficient for a sphere9

is about 0.4 at large Reynolds numbers~say, 103– 105). Thus
for more or less spherical objects the error in the desc
time is approximately

«'531022
ra

r

h

d
. ~34!

Balls of many kinds have characteristic lengthsd of order 10
cm. At what drop height is the error 10%, say? For a ten
ball, about 200 m, for a shot put about 2000 m. The heigh
the Leaning Tower of Pisa is about 50 m. Suppose that
lileo really did drop from this tower objects of the same s
but of different density~about which there is doubt11! to
show that they reach the ground at the same time. From~1!
the approximate drop time is 3 s. From~34! the fractional
error in the drop time as a consequence of neglecting dra
about 0.02 for a tennis ball, 0.002 for a shot put. The diff
ence in times to reach the ground is therefore about 0.0
At impact both balls would have speeds of around 30 m
which yields a separation of about 15 cm between them
the instant one of them first reaches the ground. This is
proximately equal to the diameter of a ball, and hence wo
537 Am. J. Phys., Vol. 72, No. 4, April 2004
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be difficult but not impossible to detect, although for th
observation to be valid the two balls would have to
dropped at the same time to within 0.01 s or less.

VII. CONCLUDING REMARKS

Have we exhausted all the possible errors lurking beh
the simple expression~1! for the descent time of a falling
body? Probably not, but I don’t want to spoil the pleasu
readers might have looking for other sources of error a
estimating their magnitude by dimensional arguments.

Is dimensional analysis an infallible method for solvin
physical problems? Of course not, but the same can be
of anymethod. There is no royal road to physics. The adv
tage of dimensional analysis is that physical analysis p
cedes or even supplants mathematical analysis. Solving
ferential equations teaches students to solve differen
equations. But it is the interpretation of solutions that is t
essence of good physics. Unfortunately, because of the s
drudgery of solving equations physical interpretation often
an afterthought instead of occupying pride of place, as
does in dimensional analysis.
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