AMHERST COLLEGE

Department of Geology GEOLOGY 41 - Environmental and Solid Earth Geophysics Lab 2: Geochronology

EQUIPMENT: notebook & pen only

As part of a project to investigate the tectonic history of the New England Appalachians, you have tried to get ages from a single gneissic rock sample from the Pelham Hills. The gneiss is a hornblende and muscovite-bearing banded quartzo-feldspathic rock that may represent either a metamorphosed igneous rock (a granite?) or a metamorphosed sedimentary rock (an arkosic sand/siltstone?, a greywacke?).

You have been able to determine 3 ages from the sample: a U/Pb "concordia" age from zircon and ⁴⁰Ar/³⁹Ar ages from hornblende and muscovite. Analytical data for each of the 3 ages is given below. This data is available as an Excel spreadsheet on the GEOL 41 web page.

U/Pb data

Zircon was separated from the gneiss. Four small (2-5 grain) aliquots of clear (low U/low radiation damage?) prismatic (igneous??) grains were selected and analyzed by mass spectrometry for U and Pb. The U and Pb concentrations (ppm) and the ratios of Pb isotopes (²⁰⁸Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁶Pb/²⁰⁴Pb) are listed below.

aliquot #	U (ppm)	Pb (ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb
z1	228.4	23.21	1341.89	93.260	417.990
z2	436.2	57.03	544.604	46.980	269.640
z3	349.1	40.81	468.614	42.634	118.620
z4	542.7	58.82	573.22	47.697	275.262

- 1) The concentrations of U and Pb are given in mass units (ppm) and need to be converted to the number of atoms of U and Pb in each aliquot. To so this, divide the concentration of U and Pb of each aliquot by the atomic weights of U and Pb. (This method gives you the number of atoms in an arbitrary mass of zircon, but it works because the age equations deal with atom ratios).
- 2) For each aliquot determine the number of atoms of each of the U (²³⁵U, ²³⁸U) and P (²⁰⁸Pb, ²⁰⁷Pb, ²⁰⁶Pb, ²⁰⁴Pb) isotopes. For U, this is relatively easy as the ratio of U isotopes in all U is constant. For Pb, this is a bit more complicated because 3 of the Pb isotopes are radiogenic and the abundance of each isotope must be calculated from the analytical data each aliquot. (Do you know how to do this?-If not see Peter)

- 3) Some of the Pb in your zircon was present when it crystallized. You know that this is the case because there is some non-radiogenic ²⁰⁴Pb in your samples. Use the common Pb isotopic ratios given below to determine the amount of radiogenic ²⁰⁷Pb & ²⁰⁶Pb in each aliquot (i.e., determine the amount of ²⁰⁷Pb* & ²⁰⁶Pb* in each aliquot).
 STOP. Be sure to check your results with Peter BEFORE proceeding
- 4) For each aliquot determine the ²⁰⁷Pb*/²³⁵U & ²⁰⁶Pb*/²³⁸U ratios and using the decay equations for ²³⁵U & ²³⁸U determine a ²⁰⁷Pb*/²³⁵U and ²⁰⁶Pb*/²³⁸U age. Are these ages concordant? Are the ages for each aliquot the same?
- 5) Plot the ²⁰⁷Pb*/²³⁵U & ²⁰⁶Pb*/²³⁸U ratios for each aliquot on a concordia diagram. Can you now make sense out of your zircon ages?
- 6) What observations can you make about the tectonic evolution of the Pelham Hills based on your U/Pb zircon and ⁴⁰Ar/³⁹Ar ages?

⁴⁰Ar/³⁹Ar data

Aliquots of hornblende and muscovite were separated from the gneiss and irradiated along with a biotite standard. Following irradiation, each aliquot was incrementally heated to release Ar and the ratios of ³⁹Ar/⁴⁰Ar and ³⁶Ar/⁴⁰Ar for each heating step of each aliquot was measured. The ratios of ³⁹Ar/⁴⁰Ar and ³⁶Ar/⁴⁰Ar are measured during each heating step are listed below. These ratios have been corrected for the production of ³⁶Ar, ³⁹Ar and ³⁹Ar in the reactor by competing nuclear reactions involving isotopes of Ca and Cl.

	T(°C) of heating step	% ³⁹ Ar released this step	³⁹ Ar/ ⁴⁰ Ar	³⁶ Ar/ ⁴⁰ Ar
56.7 Ma biotite standard	fusion	100	0.4122	0.00001
hornblende				
	600	12	0.0408	0.00041
	700	17	0.0514	0.00046
	800	28	0.0557	0.00027
	900	18	0.0586	0.00007
	1000	15	0.0573	0.00009
	fusion	10	0.0531	0.00033
muscovite				
	500	9	0.064	0.00002
	600	23	0.0651	0.00001
	700	14	0.0643	0.00003
	800	28	0.0644	0.00003
	fusion	26	0.0629	0.00017

These data can be downloaded as an Excel spreadsheet from the course web page

- 1) In order to determine the ⁴⁰Ar/³⁹Ar ages of your samples, you must know the ratio ⁴⁰Ar*/³⁹Ar, the ratio of **radiogenic** ⁴⁰Ar to ³⁹Ar. To do this, you must correct your measured ratios of ⁴⁰Ar/³⁹Ar for any Ar the was introduced during sample preparation. You know that some Ar **must** have been introduced into each aliquot that was analyzed because there is some ³⁶Ar in each aliquot. Assume that the source of ³⁶Ar is modern atmosphere (⁴⁰Ar/³⁶Ar = 295.5) and **correct** each of the measured values of ⁴⁰Ar/³⁹Ar for ⁴⁰Ar that was introduced during sample preparation and determine ⁴⁰Ar*/³⁹Ar for each aliquot.
- 2) Determine the neutron flux parameter J for your analyses using the Ar isotopic ratios collected from the 56.7 Ma biotite standard.
- 3) Determine an ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age for each of the heating steps for the two samples (muscovite and hornblende). Also determine a total gas ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age for both samples.
- 4) Using the ages determined above, plot an Ar age spectrum (apparent age vs. cumulative percent of Ar) for each of the 2 samples.
- 5) Assuming a ± 3 Ma error in the age of each release step, do your ages represent a plateau?

The following constants and equations may prove useful

$({}^{40}\text{Ar}/{}^{36}\text{Ar})_{atm} =$	=	295.5					
²³⁵ U/ ²³⁸ U	=	0.0072	25670				
common Pb							
²⁰⁶ Pb/ ²⁰⁴ Pb	=	17.915	5				
	=						
$\lambda(^{40}K_{\beta})$	=	4.962		(decay to			
$\lambda ({}^{40}K_{e})$	=	0.581	$10^{-10} / yr$	(decay to ⁴	[°] Ar)		
$\lambda(^{40}K)$	=	λ (⁴⁰ K _{β}	$+\lambda(^{40}K_{e})$				
$\lambda(^{235}U)$	=	9.8485	5 × 10 ⁻¹⁰ / yi				
· · ·	=		25×10^{-10} /	/			
⁴⁰ Ar*/ ³⁹ Ar	=	$({}^{40}\text{Ar}/{}^{3}$	⁹ Ar) _{measured}	-(⁴⁰ Ar/ ³⁶ Ar)	_{atm} (³⁶ A	$r/^{39}Ar)_{n}$	neasured
⁴⁰ Ar*/ ³⁹ Ar	=	[exp()	√t) -1] / J				
40 Ar*	=	40 K λ_{e}	$\lambda [exp($	λt)-1]			
²⁰⁶ Pb*	=		$\exp(\lambda_{238} t)$				
²⁰⁷ Pb*	=	-	$exp(\lambda_{235} t)$	-			
T _{closure} (zircon))	>	600 °C				
T _{closure} (hornbl	ende)	=	550 °C				
T _{closure} (musco	vite)	=	400 °C				
T _{closure} (biotite))	=	350 °C				
atomic weight	ts						
Ar	39.948	3				Pb	206.18
K	39.098	33				U	238.02891
Ca	40.078	3					