Limb Formation

Limb Formation

What is a Field?

- Group of cells
 whose position and
 fate are determined
- Limb Field defined
 - remove → no limb
 - transplant → ectopiclimb

What Characterizes the Vertebrate Limb Axes?

- Proximal (humerus-femur)-Mid (radius/ulna-tibia/fibula)-Distal (carpals-fingers/tarsals-toes)
- Anterior (front-thumb)-Posterior (backpinky)
- Dorsal (knuckles)-Ventral (palm)
- Positional information

Chick Wing

How Does Limb Bud Form?

- Chick 2-somite stage
- Mesenchyme from lateral plate mesoderm
 - condenses under influence of spinal chord
- Forms limb bud skeleton
- Muscle precursors from myotome

Limb Bud Formation

Apical Ectodermal Ridge and Mesoderm

- Mesenchyme induces thickening of ectoderm
 = AER
- Interaction AER with underlying mesoderm generates A-P polarity
- Both are important

Tissue Grafts using Mutants

- *Polydactyly* (extra digits)
 - meso (pd) + ecto (wt) \longrightarrow polydactyly
 - meso (wt) + ecto (pd) \longrightarrow normal phenotype
- Eudiplopodia (extra digits; secondary AER forms)
 - meso (eu) + ecto (wt) \longrightarrow normal phenotype
 - meso (wt) + ecto $(eu) \longrightarrow 2$ AERs, extra digits
- *Limbless* (no limb; no AER)
 - same as eu so acts in ecto

Eudiplopodia

FIGURE 31

Cross sections of hindlimb buds from eudiplopodia chick embryos. (A) Two AERs (arrows) on hindlimb bud; extra outgrowth on the dorsal side will form an extra set of toes. (B) Both outgrowth regions are covered by an AER. (From Goetinck, 1964; photographs courtesy of P. Goetinck.)

Surgical Experiments

Summary of Surgical Experiments

Ectoderm

- Sequential removal of AER
 - more distal structures do not develop
- Extra AER gives duplications
- FGF beads can replace AER

Mesoderm

- Leg mesoderm will signal leg structures
- Non-limb mesoderm get no limb formation

What Does FGF Do?

- FGF-10 made by lateral plate mesoderm
- Restricted to limb forming region by Wnt proteins
- Bead will induce extra limbs
- FGF-10 localizes FGF-8 production in AER

Where is Ectodermal FGF-8 mRNA Localized?

Limb Bud Ectoderm

Apical Ectodermal Ridge

AER of Hindlimb and Forelimb

Model

Feedback Loops

- AER makes FGF-8
- Induces SHH in mesenchyme
- SHH maintains FGF-8
- FGF-8 and FGF-10 maintain SHH

Induces TBX Transcription Factors: Forelimb and Hindlimb

Hox genes specify Tbx transcription factors that control FGF production

Proximal-Distal Polarity

What is the Progress Zone?

- Region of mesoderm under the AER
 - undergoes cell division
 - permits elongation of limb
- Ca. 0.2-0.35 mm thick
- Kept dividing under FGF-8 stimulation by AER
- Continues to make FGF-10
- Source of positional information

Positional Information from the PZ

- First cells leaving form proximal (humerus)
- Last cells form digits
- Experiment
 - A. control H R/U D
 - B. graft young zone to older limb get duplication
 - H R/U H R/U D
 - C. graft old zone on younger limb get deletion
 - H D

Progress Zone Model

- Time cells spend in progress zone specifies position
- Constantly removed -> cartilage
- Longer in zone = more distal

Early Allocation Model

- All precursors already present
- When AER is removed nearest cells die
 - so only early precursors continue to form more proximal structures

Reaction-Diffusion Model

- Near AER, FGFs from AER prevent synthesis of fibronectin matrix and condensation —> no cartilage
- Further away, TGF-β (positive feedback) responsive cells make Fn and a self-inhibitor
- Lead to periodic patterns TGF-β and Fn

Hox Genes

What is the Role of the Hox Genes?

• Hox 9-13 genes in mesenchyme specify limb in mouse

- KO Hoxa-11, b-11, c-11, d-11
 - no ulna and radius in forelimb
- KO Hoxa-13, b-13, c-13, d-13
 - no toes

Hox Genes

• The most 5'
genes control
(among other
things) regions
of the forelimb

Shifting Hox Expression during Limb Formation Specifies Position

Nested

Combinatorial?

Anterior-Posterior Axes

- Zone polarizing activity = ZPA
- Transplant
 - Mirror imagedigit duplication
 - Maintains polarity
- Source of positional signals

What Signals Come From ZPA?

• Shh is made in ZPA

- Cells that make Shh can substitute
 - Beads soaked in Shh can substitute
- Turns on gradient of BMPs
- Controls Hoxd expression

What Localizes Shh?

- FGF-8 from AER
- Cell in posterior of bud have different transcription factors (hoxb-8 and dHAND) that allow them to respond and make Shh
- Shh then feeds back to AER

What Controls Dorsal-Ventral?

- Ectodermally controlled
 - rotate ectoderm, reverse DV
- Wnt7a expressed dorsally
 - deletion of wnt7a
 - mouse has pads on both sides

Digits

How Are the Digits Sculpted?

- Carved out by programmed cell-death
- Also interradius/ulna
- BMPs drive, noggin opposes

