
Solutions to the Calculus and Linear Algebra problems on the Comprehensive
Examination of February 3, 2006

Solutions to Problems 1-4 and 8 are omitted since they involve topics no longer covered on
the Comprehensive Examination.

5. Find the volume of the region in 3-dimensional space inside the cylinder x2 + y2 = 1,
above the xy plane, and below the plane x+ z = 1.

Solution: We’ll be working with cylindrical coordinates here. The inside-the-cylinder
constraint is pretty obvious: it just means that r ≤ 1. The other two constraints bound
z: 0 ≤ z ≤ 1 − x = 1 − r cos θ (note that 0 ≤ 1 − x inside the cylinder so this is a
legitimate inequality for this problem).

V =

∫∫∫
V

dV

=

∫ 1

0

∫ 2π

0

∫ 1−r cos θ

0

r dz dθ dr

=

∫ 1

0

∫ 2π

0

r(1− r cos θ) dθ dr =

∫ 1

0

∫ 2π

0

r − r2 cos θ dθ dr

=

∫ 1

0

(rθ − r2 sin θ)
∣∣∣2π
θ=0

dr

=

∫ 1

0

(r(2π)− r2 sin(2π))− (r(0)− r2 sin(0)) dr

=

∫ 1

0

2πr dr = πr2
∣∣∣1
0

= π

6. Consider the function

f(x, y) =


xy

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Compute ∂f
∂x

(0, 0) and ∂f
∂y

(0, 0).

Solution: Use the definition of partial derivative. Note that since f is symmetric
with respect to switching x and y, we only need one calculation:

∂f

∂y
(0, 0) =

∂f

∂x
(0, 0) = lim

h→0

h(0)
h2+02

h
= lim

h→0

0

h3
= 0

(b) Prove that f(x, y) is not differentiable at (0, 0).

Solution: Will not need to prove differentiability in the new comps.
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7. Let f(x, y) = xy +

∫ y

0

sin(t2) dt

(a) Compute ∇f(a, b)

Solution: In finding ∂f
∂y

(a, b) remember the Fundamental Theorem of Calculus

( d
dy

∫ y
0
g(t) dt = g(y)); the rest is straightforward:

∇f(a, b) =
∂f

∂y
(a, b)i +

∂f

∂y
(a, b)j = bi + (a+ sin(b2))j

(b) Show that (0, 0) is a saddle point of f(x, y)

Solution: Use the second derivative test:

det

(
∂2f
∂x2

(0, 0) ∂2f
∂x∂y

(0, 0)
∂2f
∂y∂x

(0, 0) ∂2f
∂y2

(0, 0)

)
= det

(
0 1

1 2y cos(y2)
∣∣∣
(0,0)

)
= −1 < 0

Thus (0, 0) is a saddle point of f(x, y) as desired.X

9. Let T : V → V be a linear transformation such that T ◦ T is the zero linear trans-
formation. Also let v ∈ V satisfy T (v) 6= 0. Prove that the set {v, T (v)} is linearly
independent.

Solution: Given sccalars α and β such that αv + βT (v) = 0, take T of both sides
to get T (αv + βT (v)) = T (0). Since T is linear, T (0) = 0 and T (αv + βT (v)) =
αT (v) + βT (T (v)). But since T ◦ T is the zero transformation, T (T (v)) = 0, so
αT (v) + 0 = T (0) = 0. Since T (v) 6= 0, this means that α = 0. Substituting that
into the original equation αv + βT (v) = 0 gives us βT (v) = 0. Again, since T (v) 6= 0,
β = 0. Thus α = β = 0, so {v, T (v)} is linearly independent as desired. QED

10. Compute the inverse of the matrix

A =

2 0 1
1 0 0
4 1 2

 .

Check your answer by matrix multiplication.

Solution: Nothing fancy about this:2 1 1
∣∣ 1 0 0

1 0 0
∣∣ 0 1 0

4 1 2
∣∣ 0 0 1

 −→
1 0 0

∣∣ 0 1 0
2 1 1

∣∣ 1 0 0
4 1 2

∣∣ 0 0 1

 −→
1 0 0

∣∣ 0 1 0
0 1 1

∣∣ 1 −2 0
0 1 2

∣∣ 0 −4 1

 −→
1 0 0

∣∣ 0 1 0
0 1 1

∣∣ 1 −2 0
0 0 1

∣∣ −1 −2 1

 −→
1 0 0

∣∣ 0 1 0
0 1 0

∣∣ 2 0 −1
0 0 1

∣∣ −1 −2 1

⇒ A−1 =

 0 1 0
2 0 −1
−1 −2 1


To check, just note that AA−1 = I or A−1A = I.
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11. Let Mn(R) be the vector space of all n × n matrices with real entries. We say that
A,B ∈Mn(R) commute if AB = BA.

(a) Fix A ∈ Mn(R). Prove that the set of all matrices in Mn(R) that commute with
A is a subspace of Mn(R).

Solution: Let S = {X ∈ Mn(R)
∣∣AX = XA} (the set of all matrices in Mn(R)

that commute with A). Since AA = AA, A ∈ S so S 6= ∅.X
Now, given B,C ∈ S, A(B + C) = AB + AC = BA + CA = (B + C)A (using
distributive property and the fact that B,C both commute with A), so B+C ∈ S.
Thus, S is closed under addition.X
Given α ∈ R and B ∈ S, A(αB) = α(AB) = α(BA) = (αB)A so αB ∈ S. Thus,
S is closed under scalar multiplication.X
Thus, S is a subspace of Mn(R) as desired. QED

Comment: This solution used the version of the subspace criterion that states
that the subspace must be nonempty. Another version of the criterion states that
the subspace must contain the zero vector. If O denotes the zero matrix in Mn(R),
then AO = O = OA, so that O ∈ S.X

(b) Let A =

(
1 1
1 1

)
∈M2(R) and let W ⊆M2(R) be the subspace of all matrices of

M2(R) that commute with A. Find a basis of W .

Solution: A matrix B =

(
a b
c d

)
lies in W if and only if AB = BA, so we simply

do matrix multiplication for AB and BA and set them equal:

AB =

(
a+ c b+ d
a+ c b+ d

)
=

(
a+ b a+ b
c+ d c+ d

)
= BA

Setting the entries equal gives us the linear system a + c = a + b, b + d = a + b,
a+ c = c+ d, and b+ d = c+ d. This system is equivalent to the equations c = b,
d = a. Thus

W =

{(
a b
b a

) ∣∣∣ a, b ∈ R
}

=

{
a

(
1 0
0 1

)
+ b

(
0 1
1 0

) ∣∣∣ a, b ∈ R
}

= span

((
1 0
0 1

)
,

(
0 1
1 0

))
Since these two matrices are clearly linearly independent (neither is a multiple of

the other), we have a basis for W :

{(
1 0
0 1

)
,

(
0 1
1 0

)}
.

12. Let T : V → V and U : V → V be linear transformations that commute, i.e. T ◦ U =
U ◦ T . Let v ∈ V be an eigenvector of T such that U(v) 6= 0. Prove that U(v) is also
an eigenvector of T .
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Solution: Let λ be the corresponding eigenvalue for v, so T (v) = λv. We want to
prove something about T (U(v)) (namely, that it is equal to αU(v) for some scalar α),
so let’s go for it:

T (U(v)) = (T ◦ U)(v) = (U ◦ T )(v) = U(T (v)) = U(λv) = λU(v)

as desired. Note that the T ◦ U = U ◦ T equation is given, and the U(λv) = λU(v)
equation is a property of linear trandformations. QED
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