## Math 111, Introduction to the Calculus, Fall 2011 Midterm III Practice Exam 1

You will have 50 minutes for the exam and are not allowed to use books, notes or calculators. Each question is worth 10 points.

1. Sketch a graph of the function

$$
f(x)=\frac{x^{2}-1}{x^{2}+1}
$$

to show the horizontal asymptote, as well as the intervals on which $f$ is increasing or decreasing. You should explain how you worked out each part of your answer.

To find the horizontal asymptote we have to look at the limit of $f(x)$ as $x \rightarrow \pm \infty$. We have

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2}}}{1+\frac{1}{x^{2}}}=\frac{\lim _{x \rightarrow \infty} 1-\frac{1}{x^{2}}}{\lim _{x \rightarrow \infty} 1+\frac{1}{x^{2}}}=\frac{1}{1}=1 .
$$

Similarly

$$
\lim _{x \rightarrow-\infty}=1
$$

Therefore, there is a horizontal asymptote at $y=1$.
To decide where $f$ is increasing or decreasing, we have to look at $f^{\prime}$. We have

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right) 2 x}{\left(x^{2}+1\right)^{2}}=\frac{4 x}{\left(x^{2}+1\right)^{2}} .
$$

Since the denominator is always positive, we see that $f^{\prime}(x)$ is negative when $x<0$, zero when $x=0$ and positive when $x>0$. Therefore, $f(x)$ is decreasing for $x<0$ and increasing for $x>0$ with a local minimum at $x=0$. At $x=0$ the value of $f$ is -1 and (although the question did not ask for it) the graph crosses the $x$-axis at $x= \pm 1$. Therefore the graph looks as follows:

2. Find the critical points of the function

$$
f(x)=x^{2} \sqrt{x+1}
$$

and classify each critical point is a local maximum, local minimum, or neither. The derivative is

$$
f^{\prime}(x)=2 x \sqrt{x+1}+\frac{x^{2}}{2 \sqrt{x+1}}=\frac{4 x(x+1)+x^{2}}{2 \sqrt{x+1}}=\frac{x(5 x+4)}{2 \sqrt{x+1}} .
$$

The critical points are when this is zero, that is

$$
x(5 x+4)=0
$$

so $x=0$ or $x=-\frac{4}{5}$.
Rather than using the Second Derivative Test, we can just see where $f^{\prime}(x)$ is positive or negative. For $x<-4 / 5$, we have $x<0$ and $5 x+4<0$, so $f^{\prime}(x)>0$. Therefore, $f$ is increasing on this region. For $-4 / 5<x<0$, we have $x<0$ but $5 x+4>0$, so $f^{\prime}(x)<0$. Therefore $f$ is decreasing on this region. For $x>0$, we have $x>0$ and $5 x+4>0$, so $f^{\prime}(x)>0$ and $f$ is increasing again on this region. This means that $x=-4 / 5$ is a local maximum and $x=0$ is a local minimum.
3. Find the point on the curve $y=\sqrt{2 x+9}$ that is closest to the origin.

We are trying to minimize the quantity

$$
d=\sqrt{x^{2}+y^{2}}
$$

where $x, y$ are related by the equation

$$
y=\sqrt{2 x+9} .
$$

Therefore

$$
d(x)=\sqrt{x^{2}+2 x+9}
$$

The range of possible $x$ values is $x \geq-9 / 2$ (because we cannot take the square-root of a negative number). To find the minimum we therefore have to compare the value of $d(x)$ at any critical points and at the endpoint $x=-9 / 2$.

We have

$$
d^{\prime}(x)=\frac{2 x+2}{2 \sqrt{x^{2}+2 x+9}}=\frac{x+1}{\sqrt{x^{2}+2 x+9}} .
$$

The critical points are when $x+1=0$, that is $x=-1$. Notice that as long as $2 x+9>0$ then $x^{2}+2 x+9>0$ so the function $d(x)$ is differentiable at all points we are considering.
Our two candidates for the closest point are therefore $x=-9 / 2$ where $d=9 / 2$ and $x=-1$ where $d=\sqrt{8}<3$. Therefore, the closest point is when $x=-1$, that is, at the point $(-1, \sqrt{7})$.
4. Calculate the integral

$$
\int_{-1}^{2}(1-x) d x
$$

in two ways:
(a) by drawing a graph and finding the appropriate area or areas;
(b) using the Fundamental Theorem of Calculus.
(a) The graph looks at follows


Areas of regions below the $x$-axis count negative so the integral is equal to

$$
\frac{1}{2}(2)(2)-\frac{1}{2}(1)(1)=\frac{3}{2}
$$

(b) The integral is equal to

$$
\left[x-x^{2} / 2\right]_{x=-1}^{x=2}=\left(2-2^{2} / 2\right)-\left((-1)-(-1)^{2} / 2\right)=0+1+1 / 2=\frac{3}{2}
$$

5. (a) Find the derivative of the function

$$
f(t)=\int_{1}^{t^{2}} \frac{1}{x} d x
$$

(b) Find an antiderivative $G(x)$ for the function

$$
g(x)=3 \sin (x+\pi)
$$

that has the property that $G(0)=5$.
(a) We can write

$$
f(t)=F\left(t^{2}\right)
$$

where

$$
F(u)=\int_{1}^{u} \frac{1}{x} d x
$$

By the Chain Rule we have

$$
f^{\prime}(t)=F^{\prime}\left(t^{2}\right)(2 t)
$$

and by the Fundamental Theorem of Calculus (Part I) $F^{\prime}(u)=\frac{1}{u}$, so

$$
f^{\prime}(t)=\frac{1}{t^{2}}(2 t)=\frac{2}{t}
$$

(b) We might guess that an antiderivative involves $\cos (x+\pi)$. The derivative of $\cos (x+\pi)$ is $-\sin (x+\pi)$, so the derivative of $-3 \cos (x+\pi)$ is $3 \sin (x+\pi)$. This means that our antiderivative of $g(x)$ must be of the form

$$
G(x)=-3 \cos (x+\pi)+c
$$

for some constant $c$. We want $G(0)=5$ which means that

$$
-3 \cos (0+\pi)+c=5
$$

which tells us that

$$
3+c=5
$$

or $c=2$. Therefore, the antiderivative that we require is

$$
G(x)=-3 \cos (x+\pi)+2
$$

