Amherst College
Economics 58
Fall 2010

Solutions to PS \# 5

1. a. $E\left(v^{2}\right)=\sum_{i=1}^{2} p\left(x_{i}\right) f\left(x_{i}\right)=0.5(-1)^{2}+0.5(1)^{2}=1$
b. $E\left(h^{2}\right)=0.5(-k)^{2}+0.5(k)^{2}=k^{2}$
c. If $U(W)=\ln (W), r(W)=-\frac{U^{\prime}(W)}{U^{\prime}(W)}=\frac{\frac{1}{W^{2}}}{\frac{1}{W}}=\frac{1}{W}, W>0$
d. $p=0.5 E\left(h^{2}\right) r(W)=0.5 k^{2} \frac{1}{W}=\frac{k^{2}}{2 W}$

When $W=10$,
$k=0.5 \Rightarrow p=0.0125$
$k=1 \Rightarrow p=0.05$
$k=2 \Rightarrow p=0.2$
When $W=100$,
$k=0.5 \Rightarrow p=0.00125$
$k=1 \Rightarrow p=0.005$
$k=2 \Rightarrow p=0.02$
Risk premium is higher when the level of initial wealth is lower.
Greater the size of risk faced (larger the k), higher will be the risk premium.
Because k enters as a quadratic, increasing k and W in the same proportion will increase p.
2. a. $U^{\prime}(W)=a-2 b W$ so $a>2 b W$.
b. $\quad U^{\prime \prime}(W)=-2 b \quad r(W)=\frac{-U^{\prime \prime}}{U^{\prime}}=\frac{2 b}{a-2 b W} \quad$ This increases as W increases.
c. \quad Next period's wealth is $k W(1+r)+(1-k) W=W(1+k r)$.
d. $\quad U(W)=a W(1+k r)-b W^{2}(1+r k)^{2}$ This is random because r is random.
$E[U(W)]=a W(1+k \bar{r})-b W^{2}\left[(1+k \bar{r})^{2}+k^{2} \sigma_{r}^{2}\right]$. The first order condition for a maximum is:
$a W \bar{r}-b W^{2}\left(2 \bar{r}+2 k\left(\bar{r}^{2}+\sigma_{r}^{2}\right)\right)=0$. Dividing by W and solving for k : $k=\frac{(a-2 b W) \bar{r}}{2 b W\left(\bar{r}^{2}+\sigma_{r}^{2}\right)}=\frac{a \bar{r}}{2 b W\left(\bar{r}^{2}+\sigma_{r}^{2}\right)}-\frac{\bar{r}}{\bar{r}^{2}+\sigma_{r}^{2}}$.
e. Clearly, $\frac{\partial k^{*}}{\partial W}<0, \frac{\partial k^{*}}{\partial \sigma_{r}^{2}}<0$. The first of these is inconsistent with data from the real world. Why is $\partial k^{*} / \partial \bar{r}$ of indeterminate sign?
3. a. Find the maximum value of U through differentiation:

$$
\begin{aligned}
& \frac{\partial U}{\partial c}=\frac{(s+p) p_{c}-p p_{c}}{(s+p)^{2}} w-\frac{s p_{c}}{(s+p)^{2}} z+\frac{s p_{c}}{(s+p)^{2}} c-\frac{s}{s+p}=0 \\
& \text { Multiply by } \frac{(s+p)^{2}}{s} \text { yields } \\
& (w-z+c) p_{c}=s+p
\end{aligned}
$$

b. Differentiation of first order condition with respect to, say, w yields:

$$
\begin{aligned}
& \frac{\partial\left(w p_{c}-z p_{c}+c p_{c}-s-p\right)}{\partial w} \\
& =p_{c}+w p_{c c} \frac{\partial c}{\partial w}-z p_{c c} \frac{\partial c}{\partial w}+c p_{c c} \frac{\partial c}{\partial w}+p_{c} \frac{\partial c}{\partial w}-p_{c} \frac{\partial c}{\partial w}=0
\end{aligned}
$$

or

$$
\frac{\partial c}{\partial w}=\frac{-p_{c}}{p_{c c}(w-z+c)}
$$

Since both numerator and denominator are negative, the fraction is positive. Other derivatives are calculated in a similar way.
c. The equilibrium here is a Nash equilibrium where individual's choice of c is optimal given firm's choice of a and vice versa.
d. Unemployment benefits might increase the value of leisure (z) thereby reducing c and increasing unemployment. Subsidized job search would effectively increase c thereby possibly reducing unemployment.

