
Math 211, Multivariable Calculus, Fall 2011
Midterm III Practice Exam 1

You will have 50 minutes for the exam and are not allowed to use books, notes or calculators.
Each question is worth 10 points.

1. Find the critical points of the function

f(x, y) = (x− 1)exy

and classify each as a local maximum, a local minimum, or a saddle point.

The gradient vector of f is

∇f(x, y) = 〈(1 + y(x− 1))exy, x(x− 1)exy〉 .

The critical points therefore satisfy

(1 + y(x− 1))exy = 0 and x(x− 1)exy = 0.

Since exy cannot be zero, this means

1 + y(x− 1) = 0 and x(x− 1) = 0.

The second equation implies that x = 0 or x = 1, but substituting x = 1 into the first
equation gives 1 = 0 so x = 1 is not possible. Therefore we must have x = 0. The first
equation then gives y = 1. There is therefore only one critical point which is (0, 1).

We use the second derivative test to classify the critical point. The second-order partial
derivatives of f are

fxx = (y+y(1+y(x−1)))exy, fxy = fyx = (x−1+x(1+y(x−1)))exy, fyy = x2(x−1)exy.

Evaluating at the critical point we get

fxx(0, 1) = 1, fxy(0, 1) = fyx(0, 1) = −1, fyy(0, 1) = 0.

[Notice that it is much better to evaluate these at (0, 1) first, rather than combining to
form D in terms of xs and y.]

Therefore
D(0, 1) = (1)(0)− (−1)2 = −1.

Since D(0, 1) < 0 it follows that (0, 1) is a saddle point.

2. Find the absolute minimum of the function

f(x, y) = 3x+ y

on the region
x2 + y2 = 10.
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(Make sure you explain how you know that your answer is the absolute minimum.)

The constrained region is a circle of radius
√

10. This is closed and bounded so the
Extreme Value Theorem tells us there is an absolute minimum of f on this domain.

We use the Lagrange multiplier method with g(x, y) = x2 + y2. We then have

∇f = 〈3, 1〉 , ∇g = 〈2x, 2y〉 .

So the constrained critical points occur when

3 = 2xλ, 1 = 2yλ.

These equations tells us that x and y are not zero, so we get

3

2x
=

1

2y

and so
3y = x.

Substituting this into the constraint equation x2 + y2 = 10 we get

10y2 = 10

so y = ±1. Since x = 3y there are two constrained critical points: (3, 1) and (−3,−1).
We should also check when ∇g = 0 which tells us x = y = 0. But (0, 0) does not satisfy
the constraint.

Therefore, the absolute minimum must occur at either (3, 1) or (−3,−1). The values of
f at these points are

f(3, 1) = 10, f(−3,−1) = −10

and so the absolute minimum occurs at (−3,−1).

3. Let R be the part of the disc x2 + y2 ≤ 4 that lies in the region where x, y ≥ 0. Calculate
the integral ∫∫

R

x(x2 + y2) dA.

In polar coordinates this region is given by

0 ≤ r ≤ 2, 0 ≤ π

2
.

Since x = r cos θ and x2 + y2 = r2, the integral becomes∫ r=2

r=0

∫ θ=π/2

θ=0

(r cos θ)(r2)r dθ dr
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which equals ∫ r=2

r=0

r4
∫ θ=π/2

θ=0

cos θ dθ dr =

∫ r=2

r=0

r4 [sin θ]
θ=π/2
θ=0 dr

=

∫ r=2

r=0

r4 dr

=
[
r5/5

]r=2

r=0

=
32

5

4. Use a triple integral to calculate the volume of the sphere of radius a.

If we put the center at the origin, the sphere is given in spherical coordinates by

0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

The volume is found by integrating the constant function 1 over the sphere. This integral
becomes ∫ ρ=a

ρ=0

∫ 2π

θ=0

∫ φ=π

φ=0

(1)ρ2 sinφ dφ dθ dρ

which equals∫ ρ=a

ρ=0

ρ2
∫ θ=2π

θ=0

∫ φ=2π

φ=0

sinφ dφ dθ dρ =

∫ ρ=a

ρ=0

ρ2
∫ θ=2π

θ=0

[− cosφ]φ=πφ=0 dθ dρ

=

∫ ρ=a

ρ=0

ρ2
∫ θ=2π

θ=0

2 dθ dρ

=

∫ ρ=a

ρ=0

4πρ2 dρ

= 4π
[
ρ3/3

]ρ=a
ρ=0

=
4πa3

3

5. Use the change of variables
x = u+ 2v, y = u

to calculate ∫∫
R

xy dA

over the triangular region R with vertices (0, 0), (1, 1), (2, 0).

First we figure out what the region R corresponds to in the uv-plane. The line connecting
(0, 0) and (1, 1) is the line y = x, which becomes the line

u = u+ 2v

and so v = 0. The line connecting (1, 1) and (2, 0) is the line y = 2− x which becomes

u = 2− u− 2v.
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This simplifies to
v = 1− u.

Finally, the line connecting (2, 0) and (0, 0) is x = 0 which gives u = 0. The region in the
uv-plane is therefore the the triangle consisting of the points (0, 0), (0, 1) and (1, 0). In
terms of the variables u and v we can describe this as

0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u.

We also have
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
= (1)(0)− (2)(1) = −2.

The integral therefore becomes∫ u=1

u=0

∫ v=1−u

v=0

(u+ 2v)u |−2| dv du

which is

2

∫ u=1

u=0

[
u2v + v2u

]v=1−u
v=0

du = 2

∫ u=1

u=0

u2(1− u) + (1− u)2u du

= 2

∫ u=1

u=0

u(1− u) du

= 2

∫ u=1

u=0

u− u2 du

= 1− 2

3

=
1

3

The original question 5 which required integration by parts is below:

Use the change of variables
x = u+ 2v, y = u

to calculate ∫∫
R

(x− y)e2y

over the triangular region R with vertices (0, 0), (1, 1), (2, 0).

First we figure out what the region R corresponds to in the uv-plane. The line connecting
(0, 0) and (1, 1) is the line y = x, which becomes the line

u = u+ 2v

and so v = 0. The line connecting (1, 1) and (2, 0) is the line y = 2− x which becomes

u = 2− u− 2v.
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This simplifies to
v = 1− u.

Finally, the line connecting (2, 0) and (0, 0) is x = 0 which gives u = 0. The region in the
uv-plane is therefore the the triangle consisting of the points (0, 0), (0, 1) and (1, 0). In
terms of the variables u and v we can describe this as

0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u.

We also have
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
= (1)(0)− (2)(1) = −2.

The integral therefore becomes∫ u=1

u=0

∫ v=1−u

v=0

(2v)e2u| − 2| dv du

which is ∫ u=1

u=0

2e2u
[
v2
]v=1−u
v=0

du =

∫ u=1

u=0

2e2u(1− u)2 du

Unfortunately, this requires integration by parts (twice!) which I didn’t intend and do
not require you to know for the exam. One integration by parts gives

[
e2u(1− u)2

]u=1

u=0
−
∫ u=1

u=0

2e2u(u− 1) du = (−1)−
∫ u=1

u=0

2e2u(u− 1) du.

We now use integration by parts again on this integral which gives overall

(−1)−
[
e2u(u− 1)

]u=1

u=0
+

∫ u=1

u=0

e2u du

which equals

(−2) +
[
e2u/2

]u=1

u=0

which is
e2 − 5

2
.
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