Math 13 Spring 2010: Exam 1
 February 23, 2010

Name:

Instructions: Each problem is scored out of 8 points for a total of 32 points. You may not use any outside materials(eg. notes or calculators). You have 50 minutes to complete this exam. Remember to fully justify your answers.

Score:

Problem 1.

(a) Find an equation for the tangent line to $\vec{r}(t)=\langle\cos t, 2 \sin t, t\rangle$ at $(1,0,0)$.
(b) Find the distance from $(1,4,2)$ to the plane $2 x-6 y+z=3$.
(c) Find the angle of intersection of the two planes $2 x+y-3 z=-1$ and $x+2 y-z=4$.

Problem 2.

(a) Find the vector function that represents the curve of intersection of the paraboloid $z=4 x^{2}+y^{2}$ and the parabolic cylinder $y=x^{2}$. Find the point(s) where this curve intersects the plane $x+2 y=3$?
(b) Suppose you start at the point $(0,0,3)$ and move 5π units along the curve $\vec{r}(t)=\langle 3 \sin t, 4 t, 3 \cos t\rangle$. Where are you now?

Problem 3. Given the curve $\vec{r}(t)=\left\langle t^{2}-1,2 t+3, t^{2}-4 t\right\rangle$
(a) Find the curvature at $(3,7,-4)$.
(b) Find an equation for the normal plane at $(3,7,-4)$.

Problem 4. Given $\vec{r}(t)=2 t^{2} \hat{i}+t \hat{j}+\hat{k}$.
(a) Find the tangential and normal components of acceleration as functions of t.
(b) What is the minimum speed and for what t does the minimum speed occur?

