Math 13: Project 2 Due Friday 11/20

Introduction

Recall that a sphere of radius r in \mathbb{R}^3 is defined by the equation

$$x^2 + y^2 + z^2 = r^2$$
.

If we relabel the coordinates as $x = x_1$, $y = x_2$, and $z = x_3$, then the sphere is defined by the equation

$$x_1^2 + x_2^2 + x_3^3 = r^2$$
.

With this in mind we can generalize the notion of a sphere to any positive dimension $n \ge 1$ by labeling the coordinates as x_1, x_2, \ldots, x_n and defining an *n*-sphere as the set of points in \mathbb{R}^n which satisfy

$$x_1^2 + x_2^2 + \dots + x_n^2 = r^2$$
.

We will denote $S^n(r)$ as the sphere in n dimensions of radius r, called the n-sphere of radius r. For example, in dimensions 1, 2, and 3 we have

Dimension	Notation	Equation	Object
1	$S^1(r)$	$x_1^2 = r^2$	the interval $[-r, r]$
2	$S^2(r)$	$x_1^2 + x_2^2 = r^2$	the circle of radius r
3	$S^3(r)$	$x_1^2 + x_2^2 + x_3^2 = r^2$	the sphere of radius r

We also need a general notion of volume. We will define volume as the n-fold integral over the region enclosed by $S^n(r)$. So for n = 1 we have

Volume
$$(S^{1}(r)) = V(S^{1}(r)) = \int_{-r}^{r} dx_{1} = 2r$$

a single integral determining the length of the interval. For n=2 we have

$$V(S^{2}(r)) = \int_{-r}^{r} \int_{-\sqrt{r^{2}-x_{1}^{2}}}^{\sqrt{r^{2}-x_{1}^{2}}} dx_{2} dx_{1} = \pi r^{2}$$

a double integral determining the area of the circle. For n=3 we have the triple integral determining the volume of the sphere. Your task in this project is to find a formula for the volume of an n-sphere of radius r, for any $n \ge 1$.

To help you with this task you can use as fact that

$$V(S^n(r)) = r^n V(S^n(1)).$$

So we only need to be concerned with how to compute the volume of the unit n-sphere.

Assignment

- 1. Write, but do not evaluate an n-tuple integral to compute the volume of $S^n(r)$.
- 2. Show that

$$V(S^{n}(r)) = r^{n}V(S^{n-1}(1)) \int_{-1}^{1} (\sqrt{1 - x_{n}^{2}})^{n-1} dx_{n}.$$

Hint: Recall that the volume is computed by summing (integrating) the cross-sectional areas. So for $S^2(r)$ the cross-sections are line segments (which are 1-spheres) as depicted below.

Their radii are the distance from the y-axis to the circle. So we have

$$\begin{split} V(S^2(r)) &= r^2 V(S^2(1)) \\ &= r^2 \int_{-1}^1 V(S^1(\text{distance from y-axis to the circle})) dy \\ &= r^2 \int_{-1}^1 V(S^1(1)) [\text{distance from y-axis to the circle}] dy \\ &= r^2 V(S^1(1)) \int_{-1}^1 [\text{distance from y-axis to the circle}] dy. \end{split}$$

So you need to find the distance from the y-axis to the circle in terms of y.

In dimension 3 you would have a sphere with a circular cross-section (2-spheres). In dimension 4, you would have a hypersphere with spherical cross-sections (3-spheres), etc.

3. For $n \geq 2$, make a trigonometric substitution to show that

$$\int_{-1}^{1} \left(\sqrt{1 - x_n^2} \right)^{n-1} dx_n = \int_{-\pi/2}^{\pi/2} \cos^n \theta d\theta.$$

and use integration by parts to show that

$$\int_{-\pi/2}^{\pi/2} \cos^n \theta d\theta = \frac{n-1}{n} \int_{-\pi/2}^{\pi/2} \cos^{n-2} \theta d\theta.$$

4. Let

$$I_n = \int_{-\pi/2}^{\pi/2} \cos^n \theta d\theta$$

compute I_0 and I_1 and show that for all $n \geq 1$ we have

$$I_n I_{n-1} = \frac{1}{n} I_0 I_1 = \frac{2\pi}{n}.$$

5. Determine $V(S^n(r))$ in terms of r^n, I_n , and $V(S^{n-1}(1))$ and use that to determine formulas for $V(S^n(r))$ for even and odd n.

Having now computed the volume of the n-sphere, you will examine some of its properties.

6. What can you say about the sequence $\{V(S^1(1)), V(S^2(1)), V(S^3(1)), \ldots\}$? In other words, when it increasing/decreasing, what are the maximum/minimum, does it converge, if so to what value?

Hint: Use the ratio $\frac{V(S^n(1))}{V(S^{n-1}(1))} = I_n$ to determine when the sequence is increasing/decreasing.

- 7. Compare the volume of $S^n(1)$ to the volume of the *n*-cube with vertices (x_1, \ldots, x_n) with $x_i = \pm 1$ for $1 \le i \le n$. What does this say about the amount of space the unit *n*-sphere takes up inside of the *n*-cube in the limit as *n* goes to infinity?
- 8. How many points do the n-cube and the n-sphere have in common? What is the limit of the number of points as n goes to infinity.

Checklist for Your Writing Projects

Based on checklists by Annalisa Crannell at Franklin & Marshall and Tommy Ratliff at Wheaton College. Does this paper:

- 1. clearly (re)state the problem to be solved?
- 2. provide an explanation as to how the problem will be approached?
- 3. state the answer in a few complete sentences which stand on their own?
- 4. give a precise and well-organized explanation of how the answer was found?
- 5. clearly label diagrams, tables, graphs, or other visual representations of the math?
- 6. define all variables, terminology, and notation used?
- 7. clearly state the assumptions which underlie the formulas and theorems, and explain how each formula or theorem is derived, or where it can be found?
- 8. give acknowledgment where it is due?
- 9. use correct spelling, grammar, and punctuation?
- 10. contain correct mathematics?
- 11. solve the questions that were originally asked?