Amherst College Economics 58

A simple Lagrange Multiplier example

The problem:

Choose x and y to maximize z = xy subject to the constraint: c - ax - by = 0.

Setup Lagrangian

$$L = xy + \lambda(c - ax - by)$$

First order conditions

$$\frac{\partial L}{\partial x} = y - \lambda a = 0$$
$$\frac{\partial L}{\partial y} = x - \lambda b = 0$$
$$\frac{\partial L}{\partial \lambda} = c - ax - by = 0$$

Solving the problem

$$\frac{y}{a} = \frac{x}{b} \Longrightarrow ax = by \Longrightarrow x^* = \frac{c}{2a} \quad y^* = \frac{c}{2b} \quad z^* = x^*y^* = \frac{c^2}{4ab} \quad \lambda = \frac{y}{a} = \frac{c}{2ab}$$

Examples

С	a	b	x	у	z
1	1	1	.5	.5	.25
1	2	1	.25	.5	.125
1	3	2	1/6	1/4	1/24
1	.5	.5	1	1	1
1.1	1	1	.55	.55	.3025
0.9	1	1	.45	.45	.2025
1	1.1	1	.4545	.5	.2273

How does changing constraint change objective?

$$\frac{\partial z^*}{\partial c} = \frac{c}{2ab}$$
 Example shows this (approximately) $\partial z^* = \frac{c}{2ab} \partial c = \frac{1}{2} (\pm .1) = \pm .05$.

Also:
$$\frac{\partial z^*}{\partial a} = \frac{-c^2}{4a^2b}$$
 Example shows (approximately)
 $\partial z^* = \frac{-1}{4}\partial a = -0.25(+0.1) = -0.025$.

Can we get these results without actually solving the problem for an explicit solution? Yes, use the envelope theorem:

$$\frac{\partial z^*}{\partial c} = \frac{\partial L}{\partial c} = \lambda = \frac{c}{2ab} \quad \frac{\partial z^*}{\partial a} = \frac{\partial L}{\partial a} = -\lambda x = -\frac{c}{2ab} \cdot \frac{c}{2a} = \frac{-c^2}{4a^2b}$$

Recovering optimal *x* from the original Lagrangian expression using envelope results:

$$x^* = \frac{\frac{-\partial L}{\partial a}}{\frac{\partial L}{\partial c}} = \frac{\frac{c^2}{4a^2b}}{\frac{c}{2ab}} = \frac{c}{2a}$$

Second Order Conditions:

Intuitive: The function z = xy is obviously not concave – doubling x and y would multiply z by four. But the function is quasi-concave as can be shown by looking at a level curve of the form c = xy.

Formal: The Hessian here is
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Hence $H_1 = 0, H_2 = -1$. Hence H is not

negative definite.

The bordered Hessian is
$$\begin{bmatrix} 0 & y & x \\ y & 0 & 1 \\ x & 1 & 0 \end{bmatrix}$$
, so $H_2 = -y^2$, $H_3 = 2xy$. Hence the

leading principal minors of H follow the required pattern for quasi-concavity.