Amherst College
Economics 58

A simple Lagrange Multiplier example

The problem:
Choose x and y to maximize $z=x y$ subject to the constraint:

$$
c-a x-b y=0 .
$$

Setup Lagrangian

$$
L=x y+\lambda(c-a x-b y)
$$

First order conditions

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=y-\lambda a=0 \\
& \frac{\partial L}{\partial y}=x-\lambda b=0 \\
& \frac{\partial L}{\partial \lambda}=c-a x-b y=0
\end{aligned}
$$

Solving the problem

$\frac{y}{a}=\frac{x}{b} \Rightarrow a x=b y \Rightarrow x^{*}=\frac{c}{2 a} \quad y^{*}=\frac{c}{2 b} \quad z^{*}=x^{*} y^{*}=\frac{c^{2}}{4 a b} \quad \lambda=\frac{y}{a}=\frac{c}{2 a b}$

Examples

c	a	b	x	y	z
1	1	1	.5	.5	.25
1	2	1	.25	.5	.125
1	3	2	$1 / 6$	$1 / 4$	$1 / 24$
1	.5	.5	1	1	1
1.1	1	1	.55	.55	.3025
0.9	1	1	.45	.45	.2025
1	1.1	1	.4545	.5	.2273

How does changing constraint change objective?

$$
\frac{\partial \mathrm{z}^{*}}{\partial c}=\frac{c}{2 a b} \text { Example shows this (approximately) } \partial \mathrm{z}^{*}=\frac{c}{2 a b} \partial c=\frac{1}{2}(\pm .1)= \pm .05 .
$$

Also: $\frac{\partial z^{*}}{\partial a}=\frac{-c^{2}}{4 a^{2} b}$ Example shows (approximately)
$\partial z^{*}=\frac{-1}{4} \partial a=-0.25(+0.1)=-0.025$.
Can we get these results without actually solving the problem for an explicit solution? Yes, use the envelope theorem:

$$
\frac{\partial z^{*}}{\partial c}=\frac{\partial L}{\partial c}=\lambda=\frac{c}{2 a b} \quad \frac{\partial z^{*}}{\partial a}=\frac{\partial L}{\partial a}=-\lambda x=-\frac{c}{2 a b} \cdot \frac{c}{2 a}=\frac{-c^{2}}{4 a^{2} b}
$$

Recovering optimal \boldsymbol{x} from the original Lagrangian expression using envelope results:

$$
x^{*}=\frac{\frac{-\partial L}{\partial a}}{\frac{\partial L}{\partial c}}=\frac{\frac{c^{2}}{4 a^{2} b}}{\frac{c}{2 a b}}=\frac{c}{2 a}
$$

Second Order Conditions:

Intuitive: The function $z=x y$ is obviously not concave - doubling x and y would multiply z by four. But the function is quasi-concave as can be shown by looking at a level curve of the form $c=x y$.

Formal: The Hessian here is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Hence $\mathrm{H}_{1}=0, \mathrm{H}_{2}=-1$. Hence H is not negative definite.

The bordered Hessian is $\left[\begin{array}{lll}0 & y & x \\ y & 0 & 1 \\ x & 1 & 0\end{array}\right]$, so $\mathrm{H}_{2}=-y^{2}, \mathrm{H}_{3}=2 x y$. Hence the
leading principal minors of H follow the required pattern for quasi-concavity.

