
Amherst College 
Economics 58 
 

A simple Lagrange Multiplier example 
 

The problem: 
 

Choose x and y to maximize xyz =  subject to the constraint: 
0=−− byaxc . 

 
Setup Lagrangian 
 
   )( byaxcxyL −−+= λ  
 
First order conditions 
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Solving the problem 
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Examples 
 
   

c a b x y z 
1 1 1 .5 .5 .25 
1 2 1 .25 .5 .125 
1 3 2 1/6 1/4 1/24 
1 .5 .5 1 1 1 

1.1 1 1 .55 .55 .3025 
0.9 1 1 .45 .45 .2025 
1 1.1 1 .4545 .5 .2273 

 
How does changing constraint change objective? 
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Also:  
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Can we get these results without actually solving the problem for an explicit solution?  
Yes, use the envelope theorem: 
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Recovering optimal x from the original Lagrangian expression using envelope 
results: 
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Second Order Conditions: 
 
 Intuitive:  The function xyz =  is obviously not concave – doubling x and y  
would multiply  z by four.  But the function is quasi-concave as can be shown by looking 
at a level curve of the form xyc = . 
 

 Formal:  The Hessian here is ⎥
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.  Hence H1 = 0, H2 = -1.  Hence H is not 

negative definite. 
 

  The bordered Hessian is 
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, so H2 = -y2, H3 = 2xy.  Hence the 

leading principal minors of H follow the required pattern for quasi-concavity. 


