Interference

When two waves meet at some point in space, the waves at each instant of time simply add (principle of superposition).


Completely Destructive Interference (Waves "out of phase")


$=$
(b)

Figure 34.8a
(a)

Thin-film interference


$$
\begin{aligned}
& \Delta x=2 t \\
& \frac{\Delta \phi}{2 \pi}=\frac{\Delta x}{\lambda_{2}}=\frac{2 t}{\lambda_{2}}=0,1,2,3 \ldots \\
& \frac{2 t n_{1}}{n_{1} \lambda_{1}}=0,1,2, \ldots
\end{aligned}
$$

## Blue Morpho Iridescent Butterfly



OPTICS LETTERS / Vol. 28, No. 23 / December 1, 2003
Color generation in butterfly wings and fabrication of such structures

Teh-Hwa Wong and Mool C. Gupta
Applied Research Center, Old Dominion University, Newport News, Virginia 23606
Bruce Robins and Thomas L. Levendusky
Alcoa Corporation, Packaging Technology Center, Richmond, Virginia 23237, and Alcoa Technical Center, Alcoa Center, Pennsylvania 15069-0001


Fig. 1. TEM image of the ridges and layer structures for a morpho butterfly wing.

## Iridescent Beetles



## Birds




## Diffraction - the bending of waves at an edge or opening



Slit width > $\lambda$

(b)

Slit width $<\lambda$


## Double-slit Interference






constructive

$$
\begin{aligned}
d \sin \theta & =m \lambda \\
m & =0,1,2, m
\end{aligned}
$$

$$
\frac{\text { destructive }}{d \sin \theta=\left(m+\frac{1}{2}\right) \lambda}
$$

The distance between the slits in a double-slit experiment is increased by a factor of 4 . If the distance between the fringes is small compared with the distance from the slits to the screen, the distance between adjacent fringes near the center of the interference pattern

1) increases by a factor of 2.
2) increases by a factor of 4.

$$
\begin{gathered}
d \sin \theta=m \lambda \\
\text { lst } b_{r} \text { ight } \\
d \sin \theta=\lambda
\end{gathered}
$$

3) depends on the width of the slits. $d \theta \simeq \lambda$
4) decreases by a factor of 2 .
5) decreases by a factor of 4 .

## 4 slits



## 4 slits



## 4 slits




