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¢ Intro to Metabolism

—ATP, the energy currency of the cell
—sugar structure

eGlycolysis Phase |
—gly 1-5

eGlycolysis Phase |l
—gly 6-10

eControl in Glycolysis



Free Energy

Control of Glycolysis

e Energy Coupling (review phosphoryllation potential slide 5)
— Gly 3? driven by ATP hydrolysis
e uphill part is phosphorylation of sugar Major control point
— Gly 7? driven by BPG hydrolysis
e uphill part is ATP synthesis

Not likely control since it is the

— Gly 10? driven by PEP hydrolysis last step in glycolysis

—= uphill part is ATP synthesis

Phosphoglceratekinase

gly 7 Pyruvate kinase
gly1 0]

a0 4| Phosphofructokinase gly 3
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Free Energy of Hydrolysis

Ann. Rev, Physiol. 1985, 47:707-25
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Table 13-2. Standard Free Energies of
Phosphate Hydrolysis of Some

RESPIRATORY CONTROL AND Compounds of Biological Interest

THE INTEGRATION OF HEART

HIGH-ENERGY PHOSPHATE Compound AG® (k] - mol™")

METABOLISM BY -

MITOCHONDRIAL CREATINE Phosphoenolpyruvate —619

KINASE 1,3-Bisphosphoglycerate —40 4

William E. Jacobus Acetyl phosphate —43.1

20 mM in heart..Phosophocreatine | Phosphocreatine —43.1
PP, —33.5
ATP (= ADP + P;) —30.5
Glucose-1-phosphate —20.9
Fructose-6-phosphate —138
Glucose-6-phosphate —138
Glycerol-3-phosphate —92
MITOCHONDRIA SARCOPLASM Source: Jencks, W.E, in Fasman, G.D. (Ed.), Hand-

bock of Blochemistry and Molecular Biology (3rd ed ),

ADP CREATINE ADP
OXIDATIVE / 7 PHOSPHATE Vo ™ Physical and Chemical Data, Vol I, pp. 296-304, CRC
PHOSPHORYLATION @3% @.@ ﬂm&cmn Press (1976).

\ATP CREATINE - ATP
CKm CKay

Figure6 Model for the integration of heart high-energy phosphate metabolism. CK,, and CK; are
abbreviations for the mitochondrial and sarcoplasmic isozymes of creatine kinase. The flux of
high-energy phosphate is indicated by the dark arrows.



PFK--Committed Step: Allosteric Control

Dimer of PFK shown
Substrate binding sites in center
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Figure 14-21. The X-ray structure of PFK from E. coli. [Courtesy of Philip Evans, Cambridge University.]

Only T state conformation binds ATP at inhibitor
site, high ATP, shift to T, low affinity for f6P



Substrate Cycling

(a) Different enzymes catalyze the (b)
forward and backward reactions
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Reciprocal Regulation: Fructose 2,6 bisphosphate stimulates kinase
and inhibits phosphatase




Biochem. J. (1987) 245, 313-324 (Printed in Great Britain)
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Role of fructose 2,6-bisphosphate in the control of glycolysis in
mammalian tissues
Louis HUE and Mark H. RIDER
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eme 1.  Glycolytic pathway and structure of f-D-fructose 2,6-bisphosphate

‘he numbers in the Scheme refer to enzymes: 1, hexokinase; 2, phosphoglucose isomerase; 3, 6-phosphofructo-1-kinase; 4,
Idolase; 5, triosephosphate isomerase; 6, glyceraldehyde-3-phosphate dehydrogenase; 7, phosphoglycerate mutase; 8, enolase;
, pyruvate kinase; 10, lactate dehydrogenase; 11, 6-phosphofructo-2-kinase; 12, fructose-2,6-bisphosphatase. The inset shows
he structure of #-pD-fructose 2,6-bisphosphate which is the natural anomer.

F2,6BP production

F2,6 BP is made from F6P by PFK-2,
a different enzyme that ALSO has a
phosphatase activity associated
with it.

In the liver, the PFK-2 system (11 and
12 in image at left) is under the control
of glucagon, a major hormone that
signals when glucose is low and
glycogen needs to be made
(glycolysis inhibited). Glycogen
causes (eventually) the
phosporyllation of the PFK-2
system and shuts down the
production of F2,6BP which shuts
down glycolysis.




Control of Glycolysis (1)

Velocity = V., [S] =k [Etl’l'tl/

K., + [S;] K., + [St]_

Typical enzyme concentrations, pM-uM

How can Enzyme levels be controlled?
— Sequestered storage, triggered release
— Zymogens (inactive precursors)
* quick inefficient
— Transcriptional activation (small molecule metabolites or
hormones bind to the genes)
* slow, efficient
— mRNA processing activation; (small molecules bind to

untranslated nascent mRNA and affect translation)
riboswitches

e quick efficient



Control of Glycolysis (2)

Velocity = V., [S] =k [E] [S]
K +[S] K_+[S,] —

Typical substrate concentrations, 10puM-10 mM

How can substrate levels be controlled?

— Sequestered storage (glycogen stores in
muscle/liver), hormone triggered release (glucagon)

— Conversion of related molecule (lactate to pyruvate)
— Hunger signal to organism (hormone)



Control of Glycolysis (3)

Velocity = V.., [S,] =k [E] [S]
Km + [St] Km + [St]

Typical k_,,, 10%-10°s?
How can k_,, be increased/decreased?

— Allosteric effectors (example PFK-gly3)

— Reversible covalent modification

* Phosphoryllation, adenylation, methylation,
acetyllation, others (example pyruvate dehydrogenase)



Control of Glycolysis (3b)

Velocity = V., [S] =k, [E] [S]
Km t [St] Km + [St]
Typical K_, 10-1000 uM

How can K , be increased/decreased?
— Self Inhibition



Fates of Glucose: Fermentation
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LDH Mechanism: NADH redox
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sredox potential of NADH varies in different enzymes:

« transfer of the proHy or proH, hydride to substrate depends on enzyme
class

* binding site selects conformation of the nicotinamide ring and only one
stereoselected H is transferred (for reduction) or added (for oxidation).

*His 195 donates a proton to ketone, accepts a proton from alcohol

*Both His 195 and Arg 171 interact electrostatically to orient carboxyllic
acid of pyruvate in enzyme active site



Fermentation: Alcohol
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Voet, Voet, and Pratt Fundamentals of Biochemistry

* An example of decarboxylation followed by reduction to
ethanol.
* On Tuesday, we will see how this system has been co-

opted in pyruvate dehydrogenase to perform OXIDATIVE
decarboxylation



Pyruvate Decarboxvlase Mechanism
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