Pathways are Units

Homologous Pathways

- Genes can be homologous
- Whole signaling pathways can also be homologous
 - provide a toolkit
 - but what they do depends on what they are hooked up to
 - evolution "uses" these conserved pathways but selection of this larger unit can also be for different function

Example 1

- Dorsal cactus
 - flies use to specifyDV polarity andantimicrobial
- NF-κB IκB
 - activation of inflammatory response
- External signal to transcription factor

Example II

- RTK pathway
 - Boss binds tosevenless in flyphotoreceptors
 - Lin-3 binds toLet-23 innematode vulva
 - EGF binds toEGF-R inmammalian skin

Example III

• Wnt

- flies segment polarity
- worm axis formation
- frog axis formation
- Pathways are similar (colors indicate homologs)
 but not identical

Example IV. Graded Extracellular Protein Interactions in Neural Ectoderm

- Chordin/BMP4 (frogs)
- Short Gastrulation/Decapentaplegic (flies)
- Chordin (Sog) prevents BMP (Dpp) from entering its territory, allowing neural ectoderm to form
- Xolloid (Tolloid) degrades Chordin (Sog)

Neural Ectoderm Specification

Xolloid forms gradient of chordin that opposes BMP

A-P Axis Homologies

Ectopic *Shh* mirror duplicates digits; Ectopic *Hh* mirror duplicates wing structures

Limb

- Other axes also use conserved molecules
- Upstream or downstream controlled with different molecules in insects and vertebrates

Modularity and Change

Why is Modularity Important?

- Development is complex and delicate with many contingencies
- How can organisms evolve without destroying themselves?
- Modularity
 - independent and hierarchical units which can be altered without changing the rest
- Examples
 - parasegments, imaginal discs, organ rudiments, fields, signaling pathways, lineages
- Control regions (enhancers) also modular
 - Coordination of sets of genes

What Processes Lead to Changes?

- A. Dissociation
 - independence of parts
 - heterochrony: shift in relative timing
 - allometry: differential growth of parts
- B. Duplication and Divergence
 - duplication makes for redundancy
 - frees one to evolve with little constraint
- C. Co-option
 - a given protein or structure can be used in a different and new way

A. Dissociation

- Modules can change in time or in space
 - Heterochrony (shift in relative timing of two processes)
 - sea urchins that skip larval stage by suppressing larval genes (premature *wnt5* expression does not lead to larva)
 - salamanders that change in production or response to larval hormones may partially arrest in a stage
 - can skip larval stage or stay in it fully or partially
 - heterometry is change in amount of protein or structure

Dissociation: Heterochrony in Salamander Limb

- Juvenile pattern in adult foot of species A allows tree climbing
- Species B less webbed adult foot but its juvenile like A adult

Dissociation: Allometry

- Allometry (space)
- Differential growth of modules can change body plan
 - e.g. from altering amounts or sensitivity to growth factors
 - Result: differential growth of whale head bones (modules) from embryo to adult produces big upper jaw with nose on tip

Allometry in Mammals

