

4-13: A race car travels around the track shown at constant speed. Over which portion of the track is the magnitude of the acceleration the largest?
A) From 1 to 2
B) From 3 to 4
C) Neither of these
D) Both of these
the smallest?

You drive a race car around a circular track of radius 100 m at a constant speed of $100 \mathrm{~km} / \mathrm{h}$. If you then drive the same car around a different circular track of radius 200 m at a constant speed of $200 \mathrm{~km} / \mathrm{h}$, your acceleration will be
A. 8 times greater.
B. 4 times greater.
C. twice as great.
D. the same.
E. half as great.

4-11: Consider the following two situations:

Situation I: A car on Earth rides over the top of a round hill, with radius of curvature $=100 \mathrm{~m}$, at constant speed $v=35 \mathrm{mph}$.

Situation II: A monorail car in intergalactic space (no gravity) moves along a round monorail, with radius of curvature $=100 \mathrm{~m}$, at constant speed $\mathrm{v}=35 \mathrm{mph}$.

II

Which car experiences the larger acceleration?
A: Earth car
B: Space car
C: Both cars have the same acceleration.

