Exam II - Solutions

Ben Hutz

November 7, 2005

Problem 1 Consider the series $4-1+\frac{1}{4}-\frac{1}{16}+\cdots$.
(a) Find a formula for the n-th term of the series.
(b) Find the sum of the series.

Solution:

(a): $\quad 4-1+\frac{1}{4}-\frac{1}{16}+\cdots=4 \sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n}$
(b): The sum of a geometric series is $\frac{a}{1-r}$. So we have $4 \sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n}=$ $\frac{4}{1-\left(-\frac{1}{4}\right)}=\frac{16}{5}$

Problem 2 Consider the series $\sum_{n=1}^{\infty} \frac{1}{(4 n-3)(4 n+1)}$.
(a) Find a formula for the partial sums of the series.
(b) Find the sum of the series.

Solution:

(a): Splitting the terms into two fractions gives $\sum_{n=1}^{\infty} \frac{1}{(4 n-3)(4 n+1)}=\frac{1}{4}\left(\sum_{n=1}^{\infty}\left(\frac{1}{4 n-3}-\right.\right.$ $\left.\frac{1}{4 n+1}\right)$). So by writing out several terms(or solving algebraically) we see that $S_{n}=\frac{1}{4}\left(1-\frac{1}{4 n+1}\right)$.
(b): The sum is the limit as $n \rightarrow \infty$ of S_{n} so we get $\sum_{n=1}^{\infty} \frac{1}{(4 n-3)(4 n+1)}=\frac{1}{4}$.

Problem 3 For which values of x is the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{3}}$ convergent? What is its radius of convergence?

Solution: Using the ratio test we get $\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)^{3}} \cdot \frac{n^{3}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|x \frac{n^{3}}{(n+1)^{3}}\right|=$ $|x|$. For convergent we need this to be less than 1 . So we get $|x|<1$.

Now we check the end points ± 1. At $x=1$ the series converges since it is a p-series with $p=3$.

For $x=-1$, this is an alternating series which is decreasing and whose limit is 0 , hence convergent. So it converges for $x \in[-1,1]$. So $R=1$.

Problem 4 Let $f(x)=\int_{0}^{x} e^{-y^{2}} d y$.
(a) Find the Maclaurin series of $f(x)$ and explain why it is convergent to $f(x)$.
(b) Use (a) to compute $f(1)$ to within 0.1.

Solution:

(a): $\quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. So $e^{-y^{2}}=\sum_{n=0}^{\infty} \frac{\left(-y^{2}\right)^{n}}{n!}$. So $\int_{0}^{x} e^{-y^{2}} d y=\sum_{n=0}^{\infty} \int_{0}^{x} \frac{\left(-y^{2}\right)^{n}}{n!}=$ $\left.\sum_{n=0}^{x}\left[\frac{(-1)^{n} y^{2 n+1}}{(2 n+1) n!}\right]\right|_{0} ^{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1) n!}$.

For convergence to $f(x)$, we need to see that the remainder goes to 0 . This is an alternating series so the remainder is bounded by the next term. $\left|R_{n-1}\right|<$ $\left|\frac{(-1)^{n} x^{2 n+1}}{(2 n+1) n!}\right|$. Taking the limit as $n \rightarrow \infty$ yields, that for any value of $x, R_{n-1} \rightarrow$ 0 since factorial groups faster than any fixed exponential function.
(b): Again this is an alternating series, so we just need to check the next term. Writing out the first few terms of the series gives $1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\cdots . \frac{1}{42}<0.1$ so we just need the first three terms. This gives a sum of $\frac{23}{30}$.

Problem 5 Find the Taylor series of the function $f(x)=\sin x$ around $x=-\frac{\pi}{2}$.

Solution:	n	$f^{(n)}(x)$	$f^{(n)}\left(-\frac{\pi}{2}\right)$	c_{n}
	sin x	-1	-1	
1	$\cos x$	0	0	
	2	$-\sin x$	1	$\frac{1}{2!}$
3	$-\cos x$	0	0	
4	$\sin x$	-1	$-\frac{1}{4!}$	
	\vdots	\vdots	\vdots	\vdots

So we have $\sin x=-1+\frac{1}{2!}\left(x+\frac{\pi}{2}\right)^{2}-\frac{1}{4!}\left(x+\frac{\pi}{2}\right)^{4}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}\left(x+\frac{\pi}{2}\right)^{2 n}}{(2 n)!}$.

