Bowl	1	2	3
Write	1	2	3
Red	4	3	2

1. Three bowls are labeled 1,2 , and 3 , respectively. Bowl i contains i white and 5 - i red balls. In an experiment, a bowl is randomly selected from the set of three bowls. Then, 3 balls are randomly selected without replacement from the contents of the selected bowl.
a. Given that bowl 1 was NOT selected, what is the probability of drawing exactly 2 red balls?

$$
\begin{aligned}
P(2 \mathrm{red} \mid \text { Not Bowl 1) } & =\frac{1}{2} \frac{\binom{3}{2}\binom{2}{1}}{\binom{5}{3}}+\frac{1}{2} \frac{\binom{2}{2}\binom{3}{1}}{\binom{5}{3}} \\
& =\frac{1}{20}(6+3)=\frac{9}{20}
\end{aligned}
$$

b. What is the probability that exactly 2 red balls are drawn?

$$
\begin{aligned}
P(\text { exactly } 2 \text { red }) & =\frac{1}{3}\left(\frac{1}{10}\right)\left(\binom{4}{2}\binom{1}{1}+\binom{3}{2}\binom{2}{1}+\binom{2}{2}\binom{3}{1}\right) \\
& =\frac{1}{30}(6+6+3)=\frac{1}{2}
\end{aligned}
$$

c. Given that exactly 2 red balls were drawn, what is the probability that bowl 3 was selected?

$$
\begin{aligned}
& P(\text { Bowl } 3 \mid \text { exactly } 2 \text { ned })=\frac{P(\text { Bow } 3 \text { and } 2 \text { red })}{P(2 \text { nd })} \\
& =\frac{P\left(2 \text { nd } \mid 3^{\text {rd }} \text { bow } 1\right) P(\text { Bow } / 3)}{P(2 \text { ned })}=\frac{\binom{2}{2}\binom{3}{1}(1 / 3)(1 / 10)}{1 / 2} \\
& =
\end{aligned}
$$

