Estrogen Receptor Project S. Luft '08

- Manmade materials such as pesticides and plasticizers have been implicated in human pathologies such as cancer and autism.
- Can these compounds bind to and interfere with steroid receptors such as the estrogen receptor? Are the xenoestrogens?
- We'll use polarization anisotropy to test.

Estrogen Receptor alpha

- Ligand binding domain, DNA binding domain, 2 transcription activating domains
- Two wedges, each of 12 alpha helices, form a dimer with the LBD in between at the narrow end
- Can bind to a range of ligands because the LBD is so large
- ER + ligand moves from cytosol to nucleus and binds to the estrogen response element (ERE) section of DNA

http://www.ebi.ac.uk/msd-srv/msdtarget/strs_images/1qkt.jpeg http://www.pdb.org/pdb/images/1g50_bio_r_250.jpg?bioNum=2

Xenoestrogens mimic estrogen

- Estradiol- primary biological substrate
- xenoestrogens have the common feature of an aromatic ring with an electronegative atom on the ring (DDT and bisphenol A)

http://www.3dchem.com/imagesofmolecules/Estradiol.gif

http://courses.washington.edu/z490/ed/Other%20Risks%20 for%20People_files/image002.gif

Pyrethrins- are they xenoestrogens?

R = H Pyrethrin I

 $R = CO_2$ Pyrethrin II

Acrinathrin

- What are they?
- Naturally occurring pesticide found in chrysanthemum flowers
- •Pyr and their derivatives are found in many commercial products, including household insecticides, animal sprays, lice treatment shampoos and mosquito repellants

Fluorescence Polarization

Fluorescent Lifetime = τ_{fl}

Rotational correlation time = θ_{rot}

- If $\tau_{\rm fl} << \theta_{\rm rot}$ (bound fluormone) molecule doesn't rotate during excited state lifetime and emitted light will be polarized.
- If $\tau_{fl} >> \theta_{rot}$ (free fluormone) molecule doesn't rotate during excited state lifetime and emitted light will be depolarized.
- A fluorescent tagged molecule is displaced from the receptor by a competitor molecule (estrogen or xenoestrogen)
- When this occurs, the released tagged molecule rotates more rapidly in solution, and thus polarization decreases.

http://www.iss.com/resources/tech2/

Xenoestrogen Project

Polarization Measures Binding

Increasing amounts of estrogen receptor

When small molecules which tumble freely (low polarization) bind to much larger molecules which don't tumble as easily (high polarization), there is a concomitant increase in polarization

Fluormone binding to Estrogen Receptor

Polarization Measures Competition

 Pyrethrins tested ARE able to mimic estrogen in the displacement of fluormone from the ER