Math 111, Introduction to the Calculus, Fall 2011
 Midterm III Practice Exam 1 Solutions

1. Find the critical points of the function

$$
f(x)=x^{2}(x+1)^{2}
$$

For each critical point, decide if it is a local maximum or local minimum, or neither. The critical points are where $f^{\prime}(x)=0$. We have

$$
f^{\prime}(x)=2 x(x+1)^{2}+2(x+1) x^{2}
$$

which can be factored as

$$
f^{\prime}(x)=2 x(x+1)((x+1)+x)=2 x(x+1)(2 x+1) .
$$

So the critical points satisfy

$$
2 x(x+1)(2 x+1)=0
$$

which means that there are three critical points:

$$
x=0, \quad x=-1, \quad x=-1 / 2 .
$$

To decide if these are local maxima or local minima, we could try the Second Derivative Test. We have

$$
f^{\prime \prime}(x)=2(x+1)^{2}+4 x(x+1)+2 x^{2}+4(x+1) x .
$$

Then $f^{\prime \prime}(-1)=2$ so $x=-1$ is a local minimum, $f^{\prime \prime}(-1 / 2)=2(1 / 2)^{2}+8(-1 / 2)(1 / 2)+$ $2(-1 / 2)^{2}=-1$ so $x=-1 / 2$ is a local maximum, and $f^{\prime \prime}(0)=2$ so $x=0$ is a local minimum.
2. (a) Show that the function

$$
f(x)=x^{3}+6 x
$$

is increasing on all of \mathbb{R}.
(b) Find the intervals on which $f(x)$ is concave up or concave down, and find the inflection points.
(c) Sketch a graph of $f(x)$ based on the information from parts (a) and (b).
(a) We have $f^{\prime}(x)=3 x^{2}+6$ which is positive for any x so $f(x)$ is increasing on all of \mathbb{R}.
(b) We have $f^{\prime \prime}(x)=6 x$. Therefore $f^{\prime \prime}(x)$ is negative for $x<0$ (so f is concave down for $x<0$) and $f^{\prime \prime}(x)$ is positive for $x>0$ (so f is concave up for $x>0$). At $x=0, f^{\prime \prime}(x)=0$ and f changes from concave down to concave up, so $x=0$ is an inflection point.
(c) The graph looks as follows:

3. A right-angled triangle has hypoteneuse 2 meters, as in the diagram below:

What is the largest possible area of the triangle?
Let x and y be the other sides of the triangle. Then we want to maximize the function

$$
A=\frac{1}{2} x y .
$$

The relationship between x and y is that

$$
x^{2}+y^{2}=2^{2}=4
$$

so

$$
y=\sqrt{4-x^{2}}
$$

Therefore

$$
A(x)=\frac{1}{2} x \sqrt{4-x^{2}}
$$

We know that $0 \leq x \leq 2$ so we want to find the absolute maximum of $A(x)$ on this interval.

To do this, we find

$$
A^{\prime}(x)=\frac{1}{2} \sqrt{4-x^{2}}+\frac{1}{2} x(-2 x) \frac{1}{2 \sqrt{4-x^{2}}}
$$

which simplifies to

$$
\frac{\left(4-x^{2}\right)-x^{2}}{2 \sqrt{4-x^{2}}}=\frac{2-x^{2}}{\sqrt{4-x^{2}}}
$$

The critical points are therefore where $2-x^{2}=0$ which is $x=\sqrt{2}$ (since x must be positive).
The other possible points where the maximum could be is at the endpoints of the interval (that is, $x=0$ and $x=2$) and where $A(x)$ is not differentiable. From the formula we see that $A(x)$ is not differentiable when the denominator is zero which occurs when $x= \pm 2$. Since we are already considering $x=2$ and negative values for x are not allowed, there are no new possibilities here.
So the maximum must occur at one of the three points $x=0, x=\sqrt{2}, x=2$. To decide which, we just have to find the value of A at each of these: $A(0)=0, A(\sqrt{2})=1$, $A(2)=0$. The maximum area is therefore when $x=\sqrt{2}$. Answering the question we can say that the largest possible area of the triangle is 1 meter squared.
4. Calculate each of the following integrals:
(a) $\int_{0}^{2} x^{2} d x$;
(b) $\int_{1}^{2} x^{-2}(\sqrt{x}+1) d x$;
(c) $\int_{0}^{\frac{\pi}{2}} \sin (2 t) d t$.
(a) $\left[x^{3} / 3\right]_{x=0}^{x=2}=\frac{8}{3}$
(b) $x^{-2}(\sqrt{x}+1)=x^{-3 / 2}+x^{-2}$ so the integral becomes

$$
\left[-2 x^{-1 / 2}-x^{-1}\right]_{x=1}^{x=2}=(-2 / \sqrt{2}-1 / 2)-(-2-1)=-\sqrt{2}+\frac{5}{2} .
$$

(c) We could guess the answer has something to do with $\cos (2 t)$. The derivative of $\cos (2 t)$ is $-2 \sin (2 t)$, so the derivative of $-\cos (2 t) / 2$ is $\sin (2 t)$. Therefore the integral is

$$
[-\cos (2 t) / 2]_{t=0}^{t=\pi / 2}=(-\cos (\pi) / 2)-(-\cos (0) / 2)=1
$$

5. A bathtub holds 54 gallons of water. If the tub is filled at a rate of $3 t$ gallons per minute at the time t minutes after starting, how long does it take to fill up the whole tub? Explain your answer fully.
The amount of water in the bathtub at time t is given by the integral of the rate, that is

$$
\int_{0}^{t} 3 x d x=\left[3 x^{2} / 2\right]_{x=0}^{x=t}=3 t^{2} / 2
$$

We want to know the value of t when this equals 54 , that is, we want to solve

$$
\frac{3 t^{2}}{2}=54
$$

so

$$
t^{2}=36
$$

and hence $t=6$. Therefore, it takes 6 seconds to fill the tub completely.

