"*CHAPTER

Analysis of
Variance

Where are we going?

In Chapter 24 we compared the mean lifetimes of generic and brand-name batteries. But our
supermarket carries four different “name” brands of batteries and two cheaper generic brands.
Are all these brands equally good? How can we compare them all? We could run a t-test for
each of the 15 head-to-head comparisons, but we'll learn a better way to compare more than
two groups in this chapter.

id you wash your hands with soap before eating? You've undoubtedly
been asked that question a few times in your life. Mom knows that
washing with soap eliminates most of the germs you’'ve managed to

" collect on your hands. Or does it? A student decided to investigate just
how effective washing with soap is in eliminating bacteria. To do this she tested
four different methods—washing with water only, washing with regular soap,
washing with antibacterial soap (ABS), and spraying hands with antibacterial
spray (AS) (containing 65% ethanol as an active ingredient). Her experiment con-

WHO  Hand washings by sisted of one experimental factor, the washing Method, at four levels.
four different She suspected that the number of bacteria on her hands before washing might
methods, assigned vary considerably from day to day. To help even out the effects of those changes,

rangofnly and she generated random numbers to determine the order of the four treatments. Each

;?C)gcated S morning she washed her hands according to the treatment randomly chosen. Then

WHAT Number of bacteria she placed her right hand on a sterile media plate designed to encourage bacteria

colonies growth. She incubated each plate for 2 days at 36°C, after which she counted

HOW Sterile media plates the bacteria colonies. She replicated this procedure 8 times for each of the four
incubated at 36°C for treatments.

2 days A side-by-side boxplot of the numbers of colonies seems to show some dif-

ferences among the treatments:
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When we first looked at a quantitative variable measured for each of several
groups in Chapter 5, we displayed the data this way with side-by-side boxplots.
And when we compared the boxes, we asked whether the centers seemed to dif-
fer, using the spreads of the boxes to judge the size of the differences. Now we
want to make this more formal by testing a hypothesis. We’ll make the same kind
of comparison, comparing the variability among the means with the spreads of
the boxes. It looks like the alcohol spray has lower bacteria counts, but as always,
we're skeptical. Could it be that the four methods really have the same mean
counts and we just happened to get a difference like this because of natural sam-
pling variability?

What is the null hypothesis here? It seems natural to start with the hypothesis
that all the group means are equal. That would say it doesn’t matter what method you
use to wash your hands because the mean bacteria count will be the same. We
know that even if there were no differences at all in the means (for example, if
someone replaced all the solutions with water) there would still be sample-to-
sample differences. We want to see, statistically, whether differences as large as
those observed in the experiment could naturally occur by chance in groups that
have equal means. If we find that the differences in washing Methods are so large
that they would occur only very infrequently in groups that actually have the same
mean, then, as we've done with other hypothesis tests, we'll reject the null hypoth-
esis and conclude that the washing Methods really have different means.!

ABS Soap Water
Method

ual?

We saw in Chapter 24 how to use a t-test to see whether two groups have equal
means. We compared the difference in the means to a standard error estimated
from all the data. And when we were wi lling to assume that the underlying group
variances were equal, we pooled the data from the two groups fo find the stan-
dard error.

Now we have more groups, so we can’t just look at differences in the means.?
Butallis not lost. Even if the null hypothesis were true, and the means of the pop-
ulations underlying the groups were equal, we’d still expect the sample means to
vary a bit. We could measure that variation by finding the variance of the means.
How much should they vary? Well, if we look at how much the data themselves
vary, we can get a good idea of how much the means should vary. And if the un-
derlying means are actually different, we’d expect that variation to be larger.

B
S

! The alternative hypothesis is that “the means are not al/ equal.” Be careful not to confuse
that with “all the means are different.” With 11 groups we could have 10 means equal to
each other and 1 different. The null hypothesis would still be false.

* You might think of testing all pairs, but that method generates too many Type [ errors.
We'll see more about this later in the chapter.

Copyright 2009 Pearson Education, inc.



Are the Means of Several Groups Equal? 28-3

It turns out that we can build a hypothesis test to check whether the variation
in the means is bigger than we’d expect it to be just from random fluctuations.
We'll need a new sampling distribution model, called the F-model, but that’s just
a different table to look at (Table F, remarkably enough, found at the end of this
chapter).

To get an idea of how it works, let’s start by looking at the following two sets
of boxplots:

80 b FiGuRE 28.2
1t's hard to see the difference in the means in
these boxplots because the spreads are large

50 relative fo the differences in the means.
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In contrast with Figure 28.2, the smaller varia-
tion makes it much easier to see the differ-

375 ences among the group means.
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We're trying to decide if the means are different enough for us to reject the null
hypothesis. If they’re close, we'll attribute the differences to natural sampling vari-
ability. What do you think? It's easy to see that the means in the second set differ. It's
hard to imagine that the means could be that far apart just from natural sampling
variability alone. How about the first set? It looks like these observations could have
occurred from treatments with the same means.? This much variation among groups
does seem consistent with equal group means.

Believe it or not, the two sets of treatment means in both figures are the same.
(They are 31, 36, 38, and 31, respectively.) Then why do the figures look so different?
In the second figure, the variation within each group is so small that the differences
between the means stand out. This is what we looked for when we compared box-
plots by eye back in Chapter 5. And it’s the central idea of the F-test. We compare the
differences between the means of the groups with the variation within the groups.
When the differences between means are large compared with the variation within
the groups, we reject the null hypothesis and conclude that the means are not equal.
In the first figure, the differences among the means look as though they could have

? Of course, with a large enough sample, we can detect any differences that we like. For
experiments with the same sample size, it’s easier to detect the differences when the varia-
ton within each box is smaller.
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~ How

f Why variances? We've
. usually measured variability
- with standard deviations.

. Standard deviations have the

| advantage that they're in the
¢ same units as the data.

* Variances have the

. advantage that for

¢ independent variables, the

| variances add. Because we're

. talking about sums of
. variables, we'll stay with

. variances before we get back |

to standard deviations.

Alcohol spray 81 375
Antibacterial soap | 8 | 92.5
Soap 8 1 1060
Water 8 1-117.0

arisen just from natural sampling variability from groups with equal means, so
there’s not enough evidence to reject H,.

How can we make this comparison more precise statistically? All the tests we've
seen have compared differences of some kind with a ruler based on an estimate of
variation. And we've always done that by looking at the ratio of the statistic to that
variation estimate. Here, the differences among the means will show up in the
numerator, and the ruler we compare them with will be based on the underlying
standard deviation—that is, on the variability within the treatment groups.

ifferent Are They?

The challenge here is that we can’t take a simple difference as we did when com-
paring two groups. In the hand-washing experiment, we have differences in mean
bacteria counts across four treatments. How should we measure how different the
four group means are? With only two groups, we naturally took the difference be-
tween their means as the numerator for the ¢-test. It’s hard to imagine what else
we could have done. How can we generalize that to more than two groups? When
we've wanted to know how different many observations were, we measured how
much they vary, and that’s what we do here.

How much natural variation should we expect among the means if the null
hypothesis were true? If the null hypothesis were frue, then each of the treatment
means would estimate the same underlying mean. If the washing methods are all
the same, it’s as if we're just estimating the mean bacteria count on hands that
have been washed with plain water. And we have several (in our experiment,
four) different, independent estimates of this mean. Here comes the clever part.
We can treat these estimated means as if they were observations and simply cal-
culate their (sample) variance. This variance is the measure we’ll use to assess
how different the group means are from each other. It's the generalization of the
difference between means for only two groups.

The more the group means resemble each other, the smaller this variance will
be. The more they differ (perhaps because the treatments actually have an effect),
the larger this variance will be.

For the bacteria counts, the four means are listed in the table to the left. If you
took those four values, treated them as observations, and found their sample vari-
ance, you'd get 1245.08. That’s fine, but how can we tell whether it is a big value?
Now we need a model, and the model is based on our null hypothesis that all the
group means are equal. Here, the null hypothesis is that it doesn’t matter what
washing method you use; the mean bacteria count will be about the same:

Hopg =y = gy = pg = p

As always when testing a null hypothesis, we'll start by assuming that it is true.
And if the group means are equal, then there’s an overall mean, u—the bacteria
count you’d expect all the time after washing your hands in the morning. And
each of the observed group means is just a sample-based estimate of that under-
lying mean.

We know how sample means vary. The variance of a sample mean is o?/n.
With eight observations in a group, that would be o?/8. The estimate that we've
just calculated, 1245.08, should estimate this quantity. If we want to get back to the
variance of the observations, o, we need to multiply it by 8. So 8 X 1245.08 =
9960.64 should estimate o2

Is 9960.64 large for this variance? How can we tell? We'll need a hypothesis
test. You won't be surprised to learn that there is just such a test. The details of the
test, due to Sir Ronald Fisher in the early 20th century, are truly ingenious, and
may be the most amazing statistical result of that century.
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Jithin

We need a suitable ruler for comparison—one based on the underlying variability
in our measurements. That variability is due to the day-to-day differences in the
bacteria count even when the same soap is used. Why would those counts be dif-
ferent? Maybe the experimenter’s hands were not equally dirty, or she washed
less well some days, or the plate incubation conditions varied. We randomized
just so we could see past such things.

We need an independent estimate of o2, one that doesn’t depend on the null
hypothesis being true, one that won't change if the groups have different means.
As in many quests, the secret is to look “within.” We could look in any of the treat-
ment groups and find its variance. But which one should we use? The answer is,
all of them!

At the start of the experiment (when we randomly assigned experimental
units to treatment groups), the units were drawn randomly from the same pool,
so each treatment group had a sample variance that estimated the same o2, If the
null hypothesis is true, then not much has happened to the experimental units—
or at least, their means have not moved apart. It’s not much of a stretch to believe
that their variances haven’t moved apart much either. (If the washing methods
are equivalent, then the choice of method would not affect the mean or the vari-
ability.) So each group variance still estimates a common o2,

We're assuming that the null hypothesis is true. If the group variances are
equal, then the common variance they all estimate is just what we’ve been look-
ing for. Since all the group variances estimate the same o2, we can pool them to
get an overall estimate of o>, Recall that we pooled to estimate variances when we
tested the null hypothesis that two proportions were equal—and for the same rea-
son. It’s also exactly what we did in a pooled t-test. The variance estimate we get
by pooling we'll denote, as before, by s2.

For the bacteria counts, the standard deviations
and variances are listed to the left. If we pool the four

Level | 7] Mean | SWDev | Vardance - .

variances (here we can just average them because all
Alcohol spray 81 375 2656 70543 the sample sizes are equal), we’d get 52 = 1410.10. In
Antibacterial soap 8 92.5 ‘?‘1‘96 1760.64 the pooled variance, each variance is taken around its
Soap 81 1060 16.96 2205.24 own treatment mean, so the pooled estimate doesn’t
Water 81 1170 31.13 969.08

depend on the treatment means being equal. But the
estimate in which we took the four means as obser-
vations and took their variance does. That estimate gave 9960.64. That seems
a lot bigger than 1410.10. Might this be evidence that the four means are not
equal?

Let’s see what we’ve got. We have an estimate of o2 from the variation within
groups of 1410.10. That’s just the variance of the residuals pooled across all groups.
Because it’s a pooled variance, we could write it as s;. Traditionally this quantity
is also called the Error Mean Square, or sometimes the Within Mean Square and
denoted by MS;. These names date back to the early 20th century when the meth-
ods were developed. If you think about it, the names do make sense—variances
are means of squared differences.*

But we also have a separate estimate of o? from the variation between the
groups because we know how much means ought to vary. For the hand-washing
data, when we took the variance of the four means and multiplied it by n we got

* Well, actually, they're sums of squared differences divided by their degrees of freedom—
n — 1 for the first variance we saw back in Chapter 4, and other degrees of freedom for
each of the others we've seen. But even back in Chapter 4 we said this was a “kind of”
mean, and indeed, it still is.
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28-6 CHAPTER 28  Analysis of Variance

9960.64. We expect this to estimate o? too, as long as we assume the null hypothesis is
true. We call this quantity the Treatment Mean Square (or sometimes the Between
Mean Square®) and denote by MSy.

The F-statistic

Capital F is used only for this
distribution model and statistic.
Fortunately, Fisher’s name
didn’t start witha Z, a T, or

an R.

Now we have two different estimates of the underlying variance. The first one,
the MSy, is based on the differences between the group means. If the group means
are equal, as the null hypothesis asserts, it will estimate o2 But, if they are not, it
will give some bigger value. The other estimate, the MS;, is based only on the
variation within the groups around each of their own means, and doesn’t depend
at all on the null hypothesis being true.

So, how do we test the null hypothesis? When the null hypothesis is
true, the treatment means are equal, and both MS; and MS; estimate 2. Their
ratio, then, should be close to 1.0. But, when the null hypothesis is false, the
MS, will be larger because the treatment means are not equal. The MS;is a
pooled estimate in which the variation within each group is found around its
own group mean, so differing means won't inflate it. That makes the ratio
MSy/MS; perfect for testing the null hypothesis. When the null hypothesis is
true, the ratio should be near 1. If the treatment means really are different, the
numerator will tend to be larger than the denominator, and the ratio will tend
to be bigger than 1.

Of course, even when the null hypothesis is true, the ratio will vary around 1
just due to natural sampling variability. How can we tell when it’s big enough to
reject the null hypothesis? To be able to tell, we need a sampling distribution
model for the ratio. Sir Ronald Fisher found the sampling distribution model of
the ratio in the early 20th century. In his honor we call the distribution of MS;/MS;
the F-distribution. And we call the ratio MS;/MS;, the F-statistic. By comparing
this statistic with the appropriate F-distribution we (or the computer) can get a
P-value.

The F-test is simple. It is one-tailed because any differences in the means
make the F-statistic larger. Larger differences in the treatments’ effects lead to the
means being more variable, making the MS; bigger. That makes the F-ratio grow.
So the test is significant if the F-ratio is big enough. In practice, we find a P-value,
and big F-statistic values go with small P-values.

The entire analysis is called the Analysis of Variance, commonly abbreviated
ANOVA (and pronounced uh-NO-va). You might think that it should be called
the analysis of means, since it’s the equality of the means we’re testing. But we
use the variances within and between the groups for the test.

Like Student’s f-models, the F-models are a family. F-models depend on not
one, but two, degrees of freedom parameters. The degrees of freedom come from
the two variance estimates and are sometimes called the numerator df and the den-
ominator df. The Treatment Mean Square, MS, is the sample variance of the ob-
served treatment means. If you think of them as observations, then since there are
k groups, this variance has k — 1 degrees of freedom. The Error Mean Square, MS,
is the pooled estimate of the variance within the groups. If there are # observa-
tions in each group, then we get n — 1 degrees of freedom from each, for a total of
k(n — 1) degrees of freedom.

’ Grammarians would probably insist on calling it the Among Mean Square, since the varia-
tion is among all the group means. Traditionally, though, it's called the Between Mean Square
and we have to talk about the variation between all the groups (as bad as that sounds).
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What, first little n and now big
N? In an experiment it’s stan-
dard to use N for all the cases
and n for the number in each

treatment group.

. This table has a long tradition

 stretching back to when
: ANOVA calculations were

~ done by hand. Major research

¢ labs had rooms full of

~ mechanical calculators

. operated by women. (Yes,

. always women; women were
© thought—by the men in

~ charge, at least—to be more
- careful at such an exacting

' task.) Three women would

perform each calculation, and :

- if any two of them agreed on
' the answer, it was taken as
. the correct value.

The ANOVA Table 28-7

A simpler way of tracking the degrees of freedom is to start with all the cases.
We'll call that N. Each group has its own mean, costing us a degree of freedom—+k
in all. So we have N — k degrees of freedom for the error. When the groups all
have equal sample size, that’s the same as k(n — 1), but this way works even if
the group sizes differ.

We say that the F-statistic, MS;/MSg, has k — 1 and N — k degrees of freedom.

acterial

For the hand-washing experiment, the MS; = 9960.64. The MS; = 1410.14. If the
treatment means were equal, the Treatment Mean Square should be about the same
size as the Error Mean Square, about 1410. But it’s 9960.64, which is 7.06 times big-
ger. In other words, F = 7.06. This F-statistichas4 — 1 = 3 and 32 — 4 = 28 de-
grees of freedom.

An F-value of 7.06 is bigger than 1, but we can't tell for sure whether it’s big
enough to reject the null hypothesis until we check the F;,; model to find its
P-value. (Usually, that’s most easily done with technology, but we can use printed
tables.) It turns out the P-value is 0.0011. In other words, if the treatment means
were actually equal, we would expect the ratio MS;/MSy to be 7.06 or larger
about 11 times out of 10,000, just from natural sampling variability. That’s not
very likely, so we reject the null hypothesis and conclude that the means are dif-
ferent. We have strong evidence that the four different methods of hand washing
are not equally effective at eliminating germs.

VA Table

You’ll often see the mean squares and other information put into a table called the
ANOVA table. Here’s the table for the washing experiment:

Analysis of Variance Table

Source Sum of Squares DF Mean Square F-ratio P-value
Method 29882 3 8960.64 7.0636 0.0011
Error 38484 28 1410.14

Total 69366 31

The ANOVA table was originally designed to organize the calculations. With
technology, we have much less use for that. We’ll show how to calculate the sums
of squares later in the chapter, but the most important quantities in the table are
the F-statistic and its associated P-value. When the F-statistic is large, the Treat-
ment (here Method) Mean Square is large compared to the Error Mean Square
(MSg), and provides evidence that in fact the means of the groups are not all equal.

You’ll almost always see ANOVA results presented in a table like this. After
nearly a century of writing the table this way, statisticians (and their technology)
aren’t going to change. Even though the table was designed to facilitate hand cal-
culation, computer programs that compute ANOVAs still present the results in
this form. Usually the P-value is found next to the F-ratio. The P-value column
may be labeled with a title such as “Prob > E” “sig,” or “Prob.” Don’t let that con-
fuse you; it’s just the P-value.

You’'ll sometimes see the two mean squares referred to as the Mean Square
Between and the Mean Square Within—especially when we test data from observa-
tional studies rather than experiments. ANOVA is often used for such observational
data, and as long as certain conditions are satisfied, there’s no problem with using
it in that context.
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28-8 CHAPTER 28  Analysis of Variance

The F-table

FIGURE 28.4
Part of an F-table showing critical val-
ues for « = 0.05 and highlighting the
critical value, 2.947, for 3 and 28 de-
grees of freedom. We can see that
only 5% of the values will be greater
than 2.947 with this combination of
degrees of freedom.

Usually, you'll get the P-value for the F-statistic from technology. Any software
program performing an ANOVA will automatically “look up” the appropriate
one-sided P-value for the F-statistic. If you want to do it yourself, you'll need an
F-table. F-tables are usually printed only for a few values of «, often 0.05, 0.01, and
0.001. They give the critical value of the F-statistic with the appropriate number
of degrees of freedom determined by your data, for the « level that you select. If
your F-statistic is greater than that value, you know that its P-value is less than
that « level. So, you'll be able to tell whether the P-value is greater or less than
0.05, 0.01, or 0.001, but to be more precise, you'll need technology (or an interac-
tive table like the one on the ActivStats disk).
Here’s an excerpt from an F-table for & = 0.05:

df (numerator)

1 2 4 5 6 7
4260 3403 3009 2776 2621 2508 2423
4242 3385 2991 2759 2603 2490 2405
4225 3369 2975 2743 2587 2474 2.388
4210 3354 2960 2728 2572 2459 2373
4196 3340 9. 2714 2558 2445 2359
4183 3328 934 2701 2345 2432 2346
30| 4171 3316 2922 2690 2334 2421 23%
31 4160 3305 2911 2679 2523 2409 2323
320 4149 3295 2901 2668 2512 2399 2313

df (denominator)

Notice that the critical value for 3 and 28 degrees of freedom at a = 0.05 is
2.947. Since our F-statistic of 7.06 is larger than this critical value, we know that the
P-value is less than 0.05. We could also look up the critical value for @ = 0.01 and
find that it’s 4.568 and the critical value for @ = 0.001 is 7.193. So our F-statistic sits
between the two critical values 0.01 and 0.001, and our P-value is slightly greater
than 0.001. Technology can find the value precisely. It turns out to be 0.011.

JUST CHECKING

A student conducted an experiment to see which, if any, of four different
paper airplane designs results in the longest flights (measured in inches). The
boxplots look like this:
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The ANOVA table shows:

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
Design 3 51881.778 1733086 37.4255 <.0001
Error 32 14818.222 463.1
C. Total 35 656810.000

1. What is the null hypothesis?

2. From the boxplots, do you think that there is evidence that the mean flight dis-
tances of the four designs differ?

3. Does the F-test in the ANOVA table support your preliminary conclusion in (2)?

4. The researcher concluded that “there is substantial evidence that all four of the
designs result in different mean flight distances.” Do you agree?

VA Model

To understand the ANOVA table, let’s start by writing a model for what we ob-
serve. We start with the simplest interesting model: one that says that the only dif-
ferences of interest among the groups are the differences in their means. So we’ll
characterize each group in terms of its mean and assume that any variation
around that mean is just random error:

Yi =t &g

That is, each observation is the sum of the mean for the treatment it received
plus a random error. Our null hypothesis is that the treatments made no difference—
that is, that the means are all equal:

Hopw = pp = =

It will help our discussion if we think of the overall mean of the experiment
and consider the treatments as adding or subtracting an effect to this overall
mean. Thinking in this way, we could write u for the overall mean and 7j for the
deviation from this mean to get to the jth treatment mean—the effect of the treat-
ment (if any) in moving that group away from the overall mean:

Thinking in terms of the effects, we could also write the null hypothesis in
terms of these treatment effects instead of the means:

Hyprm=m= =7 =0

We now have three different kinds of parameters: the overall mean, the treat-
ment effects, and the errors. We’ll want to estimate them from the data. Fortunately,
we can do that in a straightforward way.

To estimate the overall mean, i, we use the mean of all the observations: ?,
(called the “grand mean.”®) To estimate each treatment effect, we find the differ-
ence between the mean of that particular treatment and the grand mean:

~ — o

TEY Y

There’s an error, ¢, for each observation. We estimate those with the residu-
als from the treatment means: € = Yy ~ U

®The father of your father is your grandfather. The mean of the group means should
probably be the grandmean, but we usually spell it as two words.
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Now we can write each observation as the sum of three quantities that corre-
spond to our model:

R AR VRS R (A
What this says is simply that we can write each observation as the sum of
- the grand mean,
the effect of the treatment it received, and
the residual
Or:
Observations = Grand mean + Treatment effect + Residual.
If we look at the equivalent equation
Yi=y+ G -9+ (g - %)
closely, it doesn’t really seem like we’ve done anything. In fact, collecting terms
on the right-hand side will give back just the observation, y;; again. But this de-
composition is actually the secret of the Analysis of Variance. We've split each
observation into “sources”—the grand mean, the treatment effect, and error.

Whera does the residual term come from?  Think of the annual report

from any Fortune 500 company. The company spends billions of dollars each year
and at the end of the year, the accountants show where each penny goes. How
do they do it? After accounting for salaries, bonuses, supplies, taxes etc., etc.,
etc., what's the last line? It's always labeled “other” or miscellaneous. Using
“other” as the difference between all the sources they know and the total they
start with, they can always make it add up perfectly. The residual is just the stat-
isticians’ “other.” It takes care of all the other sources we didn't think of or don't
want to consider, and makes the decomposition work by adding (or subtracting)
back in just what we need.

Let’s see what this looks like for our hand-washing data. Here are the data
again, displayed a little differently:

Alcohol | AR Soap | Soap. | Water
51 70 84 74
5 164 51 135
19 88 110 102
18 111 67 124
58 73 119 105
50 119 108 139
82 20 207 170
17 95 102 87
Treatment
Means 375 925 106 117

The grand mean of all observations is 88.25. Let’s put that into a similar
table:
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Ajcohiol AB Soap Soap Water
88.25 88.25 88.25 88.25
88.25 88.25 88.25 88.25
88.25 88.25 88.25 88.25
88.25 88.25 88.25 88.25
88.25 88.25 88.25 88.25
88.25 88.25 88.25 88.25
88.25 88.25 88.25 88.25
88.25 88.25 88.25 88.25

The treatment means are 37.5, 92.5, 106, and 117, respectively, so the treatment
effects are those minus the grand mean (88.25). Let’s put the treatment effects into
their table:

Alohot AB Soap Soap Water
-50.75 4.25 17.75 28.75
~50.75 4.25 17.75 28.75
-50.75 4.25 17.75 28.75
-50.75 425 17.75 2875
-50.75 425 17.75 28.75
-50.75 4.25 17.75 28.75
-50.75 425 17.75 28.75
-50.75 4.25 17.75 28.75

Finally, we compute the residuals as the differences between each observation
and its treatment mean:

Alcohol Al Soap Soap Water
13.5 =225 -22 43
-32.5 71.5 -55 18
-18.5 4.5 4 -15
~19.5 18.5 -39 7
205 -19.5 13 -12
12.5 26.5 2 22
44.5 -72.5 101 53
-20.5 2.5 ~4 -30

Now we have four tables for which

Observations = Grand Mean + Treatment Effect + Residual.

(You can verify, for example, that the first observation, 51 = 88.25 + (=50.75) +
13.5).

Why do we want to think in this way? Think back to the boxplots in Figures
28.2 and 28.3. To test the hypothesis that the treatment effects are zero, we want to
see whether the treatment effects are large compared to the errors. Our eye looks at
the variation between the treatment means and compares it to the variation within
each group.
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The ANOVA separates those two quantities into the Treatment Effects and the
Residuals. Sir Ronald Fisher’s insight was how to turn those quantities into a sta-
tistical test. We want to see if the Treatment Effects are large compared with the
Residuals. To do that, we first compute the Sums of Squares of each table. Fisher’s
insight was that dividing these sums of squares by their respective degrees of
freedom lets us test their ratio by a distribution that he found (which was later
named the F in his honor). When we divide a sum of squares by its degrees of
freedom we get the associated mean square.

When the Treatment Mean Square is large compared to the Error Mean
Square, this provides evidence that the treatment means are different. And we can
use the F-distribution to see how large, “large” is.

The sums of squares for each table are easy to calculate. Just take every value
in the table, square it, and add them all up. For the Methods, the Treatment Sum of
Squares, SSy = (50.75)% + (50.75)% + - - - + (28.75)% = 29882. There are four treat-
ments, and so there are 3 degrees of freedom. So,

MSy = 554/3 = 29882/3 = 9960.64
In general, we could write the Treatment Sum of Squares as
SSr = E E (Y - ?)2-
Be careful to note that the summation is over the whole table, rows and
columns. That’s why there are two summation signs.
And,

The table of residuals shows the variation that remains after we remove the
overall mean and the treatment effects. These are what's left over after we account
for what we're interested in—in this case the treatments. Their variance is the
variance within each group that we see in the boxplots of the four groups. To find
its value, we first compute the Error Sum of Squares, SSg, by summing up the
squares of every element in the residuals table. To get the Mean Square (the vari-
ance) we have to divide it by N — k rather than by N — 1 because we found them
by subtracting each of the k treatment means.

So,
SSp = (13.5)% + (=32.5)% + - - + (=30)% = 39484
and
MSg = S5;/(32 — 4) = 1410.14
As equations:
S5 = E E(Elz‘;’ - 17;‘)21
and
MSg = S5¢/(N — k).

Now where are we? To test the null hypothesis that the treatment means are
all equal we find the F-statistic:

Feooy n—i = MS;/MS;
and compare that value to the F-distribution with k — 1 and N — k degrees of
freedom. When the F-statistic is large enough (and its associated P-value small)
we reject the null hypothesis and conclude that at least one mean is different.

There’s another amazing result hiding in these tables. If we take each of these
tables, square every observation, and add them up, the sums add as well!

55 Obseroations — 55 Grand Mean + 55 T + 55 E
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The SSppservations is usually very large compared to SS; and SSg, so when
ANOVA was originally done by hand, or even by calculator, it was hard to check
the calculations using this fact. The first sum of squares was just too big. So, usu-
ally you'll see the ANOVA table use the “Corrected Total” sum of squares. If we
write

Observations = Grand Mean + Treatment Effect + Residual,

we can naturally write
Observations — Grand Mean = Treatment Effect + Residual.

Mathematically, this is the same statement, but numerically this is more sta-
ble. What's amazing is that the sums of the squares still add up. That is, if you
make the first table of observations with the grand mean subtracted from each,
square those, and add them up, vou'll have the SS,,,; and

SStotat = S5¢ + S5

That’s what the ANOVA table shows. If you find this surprising, you must be
following along. The tables add up, so sums of their elements must add up. But it
is not at all obvious that the sums of the squares of their elements should add up,
and this is another great insight of the Analysis of Variance.

eviations
We've been using the variances because they’re easier to work with. But when it’s
time to think about the data, we’d really rather have a standard deviation because
it’s in the units of the response variable. The natural standard deviation to think
about is the standard deviation of the residuals.

The variance of the residuals is staring us in the face. It’s the MS;. All we have
to do to get the residual standard deviation is take the square root of MSy;

2
5;,2 \‘MSEz 28

(N -k

The p subscript is to remind us that this is a pooled standard deviation, com-
bining residuals across all k groups. The denominator in the fraction shows that
finding a mean for each of the k groups cost us one degree of freedom for each.

This standard deviation should “feel” right. That is, it should reflect the kind
of variation you expect to find in any of the experimental groups. For the hand-
washing data, s, = V1410.14 = 37.6 bacteria colonies. Looking back at the box-
plots of the groups, we see that 37.6 seems to be a reasonable compromise standard
deviation for all four groups.

Plot the Data . . .
Just as you would never find a linear regression without looking at the scatterplot
of y vs. x, you should never embark on an ANOVA without first examining side-by-
side boxplots of the data comparing the responses for all of the groups. You already
know what to look for—we talked about that back in Chapter 5. Check for outliers
within any of the groups and correct them if there are errors in the data. Get an idea
of whether the groups have similar spreads (as we’ll need) and whether the centers
seem to be alike (as the null hypothesis claims) or different. If the spreads of the
groups are very different—and especially if they seem to grow consistently as
the means grow-—you should consider re-expressing the response variable to make
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the spreads more nearly equal. Doing so is likely to make the analysis more power-
ful and more correct. Likewise, if the boxplots are skewed in the same direction, you
may be able to make the distributions more symmetric with a re-expression.

Don’t ever carry out an Analysis of Variance without looking at the side-by-
side boxplots first. The chance of missing an important pattern or violation is just
too great.

Assumptions and Conditions

When we checked assumptions and conditions for regression we had to take care
to perform our checks in order. Here we have a similar concern. For regression we
found that displays of the residuals were often a good way to check the corre-
sponding conditions. That’s true for ANOVA as well.

INDEPENDENCE ASSUMPTIONS

The groups must be independent of each other. No test can verify this assump-
tion. You have to think about how the data were collected. The assumption would
be violated, for example, if we measured subjects’ performance before some treat-
ment, again in the middie of the treatment period, and then again at the end.”

The data within each treatment group must be independent as well. The data
must be drawn independently and at random from a homogeneous population,
or generated by a randomized comparative experiment.

We check the Randomization Condition: Were the data collected with suitable
randomization? For surveys, are the data drawn from each group a representative
random sample of that group? For experiments, were the treatments assigned to
the experimental units at random?

We were told that the hand-washing experiment was randomized.

EQUAL VARIANCE ASSUMPTION

The ANOVA requires that the variances of the treatment groups be equal. After
all, we need to find a pooled variance for the MS;. To check this assumption, we
can check that the groups have similar variances:

Similar Spread Condition: There are some ways to see whether the variation
in the treatment groups seems roughly equal:

Look at side-by-side boxplots of the groups to see whether they have roughly
the same spread. It can be easier to compare spreads across groups when they
have the same center, so consider making side-by-side boxplots of the residu-
als. If the groups have differing spreads, it can make the pooled variance—the
MSg—Ilarger, reducing the F-statistic value and making it less likely that we can
reject the null hypothesis. So the ANOVA will usually fail on the “safe side,”
rejecting Hy less often than it should. Because of this, we usually require the
spreads to be quite different from each other before we become concerned
about the condition failing. If you've rejected the null hypothesis, this is espe-
cially true.

Look at the original boxplots of the response values again. In general, do the
spreads seem to change systematically with the centers? One common pat-
tern is for the boxes with bigger centers to have bigger spreads. This kind of

" There is a modification of ANOVA, called repeated measires ANOVA, that deals with such
data. (If the design reminds you of a paired-f situation, you're on the right track, and the
lack of independence is the same kind of issue we discussed in Chapter 25.)
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Boxplots of residuals for the four wash-
ing methods and a plot of residuals vs.
predicted values. There’s no evidence
of a systernatic change in variance
from one group to the other or by pre-
dicted value.

Assumptions and Conditions 28-15

systematic trend in the variances is more of a problem than random differ-
ences in spread among the groups and should not be ignored. Fortunately,
such systematic violations are often helped by re-expressing the data. (If, in
addition to spreads that grow with the centers, the boxplots are skewed
with the longer tail stretching off to the high end, then the data are pleading
for a re-expression. Try taking logs of the dependent variable for a start.
You'll likely end up with a much cleaner analysis.)

Look at the residuals plotted against the predicted values. Often, larger pre-
dicted values lead to larger magnitude residuals. This is another sign that the
condition is violated. (This may remind you of the Does the Plot Thicken?
Condition of regression. And it should.) When the plot thickens (to one side
or the other), it’s usually a good idea to consider re-expressing the response
variable. Such a systematic change in the spread is a more serious violation of
the equal variance assumption than slight variations of the spreads across
groups.

Let’s check the conditions for the hand-washing data. Here’s a boxplot of
residuals by group and residuals by predicted value:

o &
T80 [ . g o7 "
5 8 .
S 40 - 8 40
B s " +
£ = £ * " &
g of 20T ot
b= 3 + F 5 *
2 B4y + % ks
o 40 + = h %
P +
AB } t t
AS Soap Soap Water 50 75 100
Method Predicted (# of colonies)

Neither plot shows a violation of the condition. The IQRs (the box heights) are
quite similar and the plot of residuals vs. predicted values does not show a pro-
nounced widening to one end. The pooled estimate of 37.6 colonies for the error
standard deviation seems reasonable for all four groups.

NORMAL POPULATION ASSUMPTION

Like Student’s f-tests, the F-test requires the underlying errors to follow a Normal
model. As before when we’ve faced this assumption, we'll check a corresponding
Nearly Normal Condition.

Technically, we need to assume that the Normal model is reasonable for the
populations underlying each treatment group. We can (and should) look at the
side-by-side boxplots for indications of skewness. Certainly, if they are all (or
mostly) skewed in the same direction, the Nearly Normal Condition fails (and re-
expression is likely to help).

In experiments, we often work with fairly small groups for each treatment,
and it’s nearly impossible to assess whether the distribution of only six or eight
numbers is Normal (though sometimes it’s so skewed or has such an extreme out-
lier that we can see that it’s not). Here we are saved by the Equal Variance As-
sumption (which we've already checked). The residuals have their group means
subtracted, so the mean residual for each group is 0. If their variances are equal,
we can group all the residuals together for the purpose of checking the Nearly
Normal Condition.
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FIGURE 28.8

The hand-washing residuals look
nearly Normal in this Normal
probability plot.

STEP-BY-STEP EXA

Analysis of Variance

Check Normality with a histogram or a Normal probability plot of all the
residuals together. The hand-washing residuals look nearly Normal in the Nor-
mal probability plot, although, as the boxplots showed, there’s a possible outlier
in the Soap group.

Because we really care about the Normal model within each group, the Nor-
mal Population Assumption is violated if there are outliers in any of the groups.
Check for outliers in the boxplots of the values for each treatment group. The
Soap group of the hand-washing data shows an outlier, so we might want to com-
pute the analysis again without that observation. (For these data, it turns out to
make little difference.)

N
(" ONE-WAY ANOVA FTEST
We test the null hypothesis Hy: 1y = o = - -+ = g, against the alternative
that the group means are not all equal. We test the hypothesis with the
MSy

F-statistic, F = where MSy is the Treatment Mean Square, found from

MS;’
the variance of the means of the treatment groups, and MS; is the Error
Mean Square, found by pooling the variances within each of the treatment

In Chapter 5 we looked at side-by-side boxplots of four different containers for holding hot beverages.
The experimenter wanted to know which type of container would keep his hot beverages hot longest.
To test it, he heated water to a temperature of 180°F, placed it in the container, and then measured the
temperature of the water again 30 minutes later. He randomized the order of the trials and tested each
container 8 times. His response variable was the difference in temperature (in °F) between the initial
water temperature and the temperature after 30 minutes.

Question: Do the four containers maintain temperature equally well?

groups. If the F-statistic is large enough, we reject the null hypothesis.

Analysis of Variance

Plot Plot the side-by-side boxplots of the 25

[r.
data. S0 b

8}

S5

@

S0~

« =

@ = !

- 1 =

CUPPS  Nissan  SIGG  Starbucks
Container
Blan State what you want to know and | want to know whether there is any difference
the null hypothesis you wish to test. For among the four containers in their ability to
ANOVA, the null hypothesis is that all maintain the temperature of a hot liquid for 30
the treatment groups have the same minutes. 'l write p, for the mean temperature
mean. The alternative is that at least one difference for container k, so the null hypothe-
mean is different. is is that these means are all the same:
Fotbs = fo = iz = g
The alternative is that the group means are
not all equal.
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Think about the assumptions and check
the conditions.

Mechanics Fit the ANOVA model.

i

Assumptions and Conditions

¥ independence Assumption: The “experi-
mental units” In this experiment are cups
of heated water. It’s easy to believe that
one cup of water is independent of another.
It also seems reasonable that the per-
formance of one tested cup should be
independent of other cups.

V' Randomizatlon Condition: The experimenter
performed the trials in random order.

¥ Similar Spread Condition: The Nissan mug
variation seems to be a bit smaller than
the others. I'l look later at the plot
of residuals ve. predicted values to see
if the plot thickens.

Anaiysis of Variance

Sum of Mean
Source OF Squares Square F-ratio Pvalua
Container 3 7141875 238.083 10.713 <0.0001
Error 28 B822.1875 22221
Total 31 1338.3750

V' Nearly Normal Condition, Outlier Condi-
tion: The Normal probability plot is not
very straight, but there are no outliers.

8 -
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The histogram shows that the distribution of
the residuals is skewed to the right:
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The table of means and SDs (on the next page)
shows that the standard deviations grow along
with the means. Fossibly a re-expression of the
data would improve matters.

Under these circumstances, | cautiously find
the P-value for the F-statistic from the
F-model with 3 and 28 degrees of freedom.
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Show the table of means. From the ANOVA table, the Error Mean Squars,

MBS, is 22.22, which means that the standard
deviation of all the errors is estimated to be
V22,22 = 471 degrees F.

This seems like a reascnable value for the error
standard deviation in the four treatments {with
the possible exception of the Nissan mug).

Level |y Mean ! Std Dev
CUPPS & 101875 520259
Nissan & 2.7500 250715
SIGG & 10.0625 5.80059
Starbucks & 10.2500 455129

The ratio of the mean squares gives an F-ratio
of 10.7134 with a P-value of <0.0001.

Interpretation Tell what the F-test An F-ratio this large would be very unlikely if the

means. containers all had the same mean temperature
difference.

State your conclusions. Conclusions: Even though some of the condi-
tions are mildly violated, | still conclude that

(You should be more worried about the the means are not all equal and that the four

changing variance if you fail to reject the cups do not maintain temperature equally well.

null hypothesis.) More specific conclusions
might require a re-expression of the data.

alancing Act

The two examples we’ve looked at so far share a special feature. Fach treatment
group has the same number of experimental units. For the hand-washing experi-
ment, each washing method was tested 8 times. For the cups, there were also 8 trials
for each cup. This feature (the equal numbers of cases in each group, not the num-
ber 8) is called balance, and experiments that have equal numbers of experimental
units in each treatment are said to be balanced or to have balanced designs.

Balanced designs are a bit easier to analyze because the calculations are simpler,
so we usually try for balance. But in the real world we often encounter unbalanced
data. Participants drop out or become unsuitable, plants die, or maybe we just can’t
find enough experimental units to fit a particular criterion.

Everything we’ve done so far works just fine for unbalanced designs except
that the calculations get a bit more complicated. Where once we could write # for
the number of experimental units in a treatment, now we have to write n, and
sum more carefully. Where once we could pool variances with a simple average,
now we have to adjust for the different n's. Technology clears these hurdles easily,
so you're safe thinking about the analysis in terms of the simpler balanced formu-

las and trusting that the technology will make the necessary adjustments.
Copyright 2009 Pearson Education, Inc.
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When we reject Hy, it’s natural to ask which means are different. No one would
be happy with an experiment to test 10 cancer treatments that concluded only
with “We can reject Hy—the treatments are different!” We’d like to know more,
but the F-statistic doesn't offer that information.

What can we do? If we can’t reject the null, we’ve got to stop. There’s no point
in further testing. If we've rejected the simple null hypothesis, however, we can
do more. In particular, we can test whether any pairs or combinations of group
means differ. For example, we might want to compare treatments against a con-
trol or a placebo, or against the current standard treatment.

In the hand-washing experiment, we could consider plain water to be a con-
trol. Nobody would be impressed with (or want to pay for) a soap that did no bet-
ter than water alone. A test of whether the antibacterial soap (for example) was
different from plain water would be a simple test of the difference between two
group means. To be able to perform an ANOVA, we first check the Similar Vari-
ance Condition. If things look OK we assume that the variances are equal. If the
variances are equal then a pooled t-test is appropriate. Even better (this is the
special part), we already have a pooled estimate of the standard deviation based
on all of the tested washing methods. That's 8, which, for the hand-washing
experiment, was equal to 37.55 bacteria colonies.

The null hypothesis is that there is no difference between water and the anti-
bacterial soap. As we did in Chapter 24, we’ll write that as a hypothesis about the
difference in the means:

Hy: st — paps = 0. The alternative is
Ho: pw — peaps # 0.

The natural test statistic is iy — Y455, and the (pooled) standard error is

1 1
SE(/.L!‘M, ):5 — + .
W ABS AV -
St Do The difference in the observed means is 117.0 — 92.5 = 24.5

Alcohol spray
Antibacterial soap
Soap

Water

92.5
106.0
117.0

26,56 colonies. The standard error comes out to 18.775. The t-statistic, then,

24,
41.96 ist= 4;
606 18775

3113 t-distribution on N — k = 32 — 4 = 28 degrees of freedom. The
P-value is about 0.1—not small enough to impress us. So we can’t
discern a significant difference between washing with the antibac-

terial soap and just using water.

Our f-test asks about a simple difference. We could also ask a more complicated
question about groups of differences. Does the average of the two soaps differ from
the average of three sprays, for example? Complex combinations like these are
called contrasts. Finding the standard errors for contrasts is straightforward but
beyond the scope of this book. We'll restrict our attention to the common question
of comparing pairs of treatments after H, has been rejected.

= 1.31. To find the P-value we consult the Student’s

ni Multiple Comparisons

Our hand-washing experimenter was pretty sure that alcohol would kill the germs
even before she started the experiment. But alcohol dries the skin and leaves an
unpleasant smell. She was hoping that one of the antibacterial soaps would work
as well as alcohol so she could use that instead. That means she really wanted to
compare each of the other treatments against the alcohol spray. We know how to
compare two of the means with a #-test. But now we want to do several tests, and
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. Carlo Bonferroni (1892-1960)

! was a mathematician who
{ taught in Florence. He wrote
: two papers in 1935 and 1936

¢ setting forth the mathematics

* behind the method that
: bears his name.

each test poses the risk of a Type I error. As we do more and more tests, the risk
that we might make a Type I error grows bigger than the « level of each individual
test. With each additional test, the risk of making an error grows. If we do enough
tests, we're almost sure to reject one of the null hypotheses by mistake—and we’ll
never know which one.

There is a defense against this problem. In fact, there are several defenses. As
a class, they are called methods for multiple comparisons. All multiple compar-
isons methods require that we first be able to reject the overall null hypothesis
with the ANOVA's F-test. Once we've rejected the overall null, then we can think
about comparing several—or even all—pairs of group means.

Let’s look again at our test of the water treatment against the antibacterial
soap treatment. This time we’ll look at a confidence interval instead of the pooled
t-test. We did a test at significance level & = 0.05. The corresponding confidence
level is 1 — & = 95%. For any pair of means, a confidence interval for their differ-
enceis (i, — ¥,) = ME, where the margin of error is

ME=t*><sp,/—3—+—’;1—.
1 2

As we did in the previous section, we get s, as the pooled standard deviation
found from all the groups in our analysis. Because s, uses the information about
the standard deviation from all the groups it’s a better estimate than we would get
by combining the standard deviation of just two of the groups. This uses the
Equal Variance Assumption and "borrows strength” in estimating the common
standard deviation of all the groups. We find the critical value #* from the Stu-
dent’s -model corresponding to the specified confidence level found with N — k
degrees of freedom, and the 7;’s are the number of experimental units in each of
the treatments.

To reject the null hypothesis that the two group means are equal, the differ-
ence between them must be larger than the ME. That way 0 won’t be in the confi-
dence interval for the difference. When we use it in this way, we call the margin
of error the least significant difference (LSD for short). If two group means dif-
fer by more than this amount, then they are significantly different at level a for
each individual test.

For our hand-washing experiment, each group has n = 8, s, = 37.55, and
df = 32 — 4 = 28. From technology or Table T, we can find that t* with 28 df (for
a 95% confidence interval) is 2.048. So

LSD = 2.048 X 37.55 X , /% % = 38.45 colonies,

and we could use this margin of error to make a 95% confidence interval for any
difference between group means. Any two washing methods whose means differ
by more than 38.45 colonies could be said to differ at « = 0.05 by this method.

Of course, we're still just examining individual pairs. If we want to examine
many pairs simultaneously, there are several methods that adjust the critical
t*-value so that the resulting confidence intervals provide appropriate tests for all
the pairs. And, in spite of making many such intervals, the overall Type I error rate
stays at (or below) a.

One such method is called the Bonferroni method. This method adjusts the
LSD to allow for making many comparisons. The result is a wider margin of error
called the minimum significant difference, or MSD. The MSD is found by re-
placing t* with a slightly larger number. That makes the confidence intervals
wider for each contrast and the corresponding Type I error rates lower for each
test. And it keeps the overall Type I error rate at or below a.
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The Bonferroni method distributes the error rate equally among the confi-
dence intervals. It divides the error rate among | confidence intervals, finding

each interval at confidence level 1 — f—;* instead of the original 1 ~ a. To signal this

adjustment, we label the critical value ** rather than #*. For example, to make the
three confidence intervals comparing the alcohol spray with the other three wash-
ing methods, and preserve our overall « risk at 5%, we’d construct each with a
confidence level of 0.0

1- “§~5- =1 - 0.01667 = 0.98333.

The only problem with this is that t-tables don’t have a column for 98.33%
confidence (or, correspondingly, for @ = 0.01667). Fortunately, technology has no
such constraints.® For the hand-washing data, if we want to examine the three
confidence intervals comparing each of the other methods with the alcohol spray,
the t**-value (on 28 degrees of freedom) turns out to be 2.238. That’s somewhat
larger than the individual t*-value of 2.048 that we would have used for a single
confidence interval. And the corresponding ME is 42.02 colonies (rather than
38.45 for a single comparison). The larger critical value along with correspond-
ingly wider intervals is the price we pay for making multiple comparisons.

Many statistics packages assume that you’d like to compare all pairs of
means. Some will display the result of these comparisons in a table like this:

ievel [ A | Mean | Croups
Alcohol spray 8 375 A
Antibacterial soap 8 92.5 B
Soap 8 106.0 B
Water 8 117.0 B

This table shows that the alcohol spray is in a class by itself and that the other
three hand-washing methods are indistinguishable from one another.

VA on Observational Data

So far we've applied ANOVA only to data from designed experiments. That’s
natural for several reasons. The primary one is that, as we saw in Chapter 13,
randomized comparative experiments are specifically designed to compare the
results for different treatments. The overall null hypothesis, and the subsequent
tests on pairs of treatments in ANOVA, address such comparisons directly. In ad-
dition, as we discussed earlier, the Equal Variance Assumption (which we need
for all of the ANOVA analyses) is often plausible in a randomized experiment
because the treatment groups start out with sample variances that all estimate the
same underlying variance of the collection of experimental units.

Sometimes, though, we just can’t perform an experiment. When ANOVA is
used to test equality of group means from observational data, there’s no a priori
reason to think the group variances might be equal at all. Even if the null hvpoth-
esis of equal means were true, the groups might easily have different variances.
But if the side-by-side boxplots of responses for each group show roughly equal
spreads and symmetric, outlier-free distributions, you can use ANOVA on obser-
vational data.

AN

¥ The electronic t-tables provided on the CD-ROM in ActivStats let you add new columns
to the {-table at any alpha level, so you can do the Bonferroni calculation easily,
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STEP-BY-STE

athletes (FNA),

Here’s an example that exhibits many of the features we’ve been discussing. It gives a fair idea of
the kinds of challenges often raised by real data,

A study at a liberal arts college attempted to find out who watches more TV at college: men or
women? Varsity athletes or non-athletes? Student researchers asked 200 randomly selected stu-
dents questions about their backgrounds and about their television-viewing habits. The
researchers found that men watch, on average, about 2.5 hours per week more TV than women,
and that varsity athletes watch about 3.5 hours per week more than those who are not varsity
athletes. But is this the whole story? To investigate further, they divided the students into four
groups: male athletes (MA), male non-athletes (MNA), female athletes (FA), and female non-~

Question: Do these four groups of students spend about the same amount of time watching TV?

Observational data tend to be messier than experimental data. They are much
more likely to be unbalanced. If you aren’t assigning subjects to treatment groups,
it’s harder to guarantee the same number of subjects in each group. And because
you are not controlling conditions as you would in an experiment, things tend to
be, well, less controlled. The only way we know to avoid the effects of possible
lurking variables is with control and randomized assignment to treatment groups,
and for observational data, we have neither.

ANOVA is often applied to observational data when an experiment would be
impossible or unethical. (We can’t randomly break some subjects’ legs, but we can
compare pain perception among those with broken legs, those with sprained an-
kles, and those with stubbed toes by collecting data on subjects who have already
suffered those injuries.) In such data, subjects are already in groups, but not by
random assignment.

Be careful; if you have not assigned subjects to treatments randomly, you
can’t draw causal conclusions even when the F-test is significant. You have no way
to control for lurking variables or confounding, so you can’t be sure whether any
differences you see among groups are due to the grouping variable or to some
other unobserved variable that may be related to the grouping variable.

Because observational studies often are intended to estimate parameters,
there is a temptation to use pooled confidence intervals for the group means for
this purpose. Although these confidence intervals are statistically correct, be sure
to think carefully about the population that the inference is about. The relatively
few subjects that you happen to have in a group may not be a simple random
sample of any interesting population, so their “true” mean may have only limited
meaning.

%ﬁé More Example

Variables Name the variables, report I'have the number of houre spent watching
the W’s, and specify the questions of TV in a week for 197 randomly selected
interest. students. We know their sex and whether

they are varsity athletes or not. | wonder
whether TV watching differs according to
sex and athletic status.
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Plot Always start an ANOVA with side-
by-side boxplots of the responses in each
of the groups. Always.

These data offer a good example why.

The responses are counts—numbers of
TV hours. You may recall from Chap-

ter 10 that a good re-expression to try first
for counts is the square root.

Think about the assumptions and check
the conditions.

Fit the ANOVA model.
Source DF
Group 3
Error 183
Total 198

ANOVA on Observational Data

Here are the side-by-side boxplots of the data:

25
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This plot suggests problems with the data.
Each box shows a distribution skewed to the
high end, and outliers pepper the display, in-
cluding some extreme cutliers. The box with the
highest center (MA) also has the largest
spread. These data just don’t pass our first
screening for suitability. This sort of pattern
calls for a re-expression.

Here are the boxplots for the square root of TV
hours.

FNA FA MNA MA

The spreads in the four groups are now more
similar and the individual distributions more
symmetric. And now there are no outliers.

4 Independence Assumption: Because this
i& a random sample, the assumption of
independence is reasonable. However, Il
want to check that the sample does not
contain, for example, too many athletes
on the same sports team.

¥ Randomization Condition: The data come
from a random sample of students.

v Similar Spread Condition: The boxplots
show similar spreads. | may want to check
the residuals later.

The ANOVA table looks like this:

Sum of Mean
Squares Square F-ratio P.value
47.24733 15.7491 12.8111 <(0.0001
237.26114 1.2283
284.50847
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Nearly Normal Condition, Outlier Condition:
A histogram of the residuals looks reasonably

Normal:

60 -+

Counts

Interestingly, the few cases that seem to stick
out on the low end are male athletes who
watched no TV, making them different from all
the other male athletes.

Under these conditions, it's appropriate to use

Analysis of Variance.

Residuals

. In case you were

- wondering ... The standard
| errors are different because

 this isn’t a balanced design.

* Differing numbers of

- experimental units in the

| groups generate differing

. standard errors.

Interpretation

Do Male Athletes

Here’s a Bonferroni comparison of all pairs of groups:

The F-statistic is large and the corresponding
P-value small. | conclude that the TV-watching
behavior is not the same among these groups.

atch More TV?

Difference 5td, B Pyalue
FA-FNA 0.049 0.270 0.9999
MNA-FNA 0.205 0.182 0.8383
MNA-FA 0.156 0.268 0.9929
MA~FNA 1.497 0.250 < 0.0001
MA-FA 1.449 0.318 < 0.0001
MA-MNA 1.292 0.248 < 0.0001

Three of the differences are very significant. It seems that among women there’s
little difference in TV watching between varsity athletes and others. Among men,
though, the corresponding difference is large. And among varsity athletes, men watch

significantly more TV than women.

But wait. How far can we extend the inference that male athletes watch more
TV than other groups? The data came from a random sample of students made
during the week of March 21. If the students carried out the survey correctly us-
ing a simple random sample, we should be able to make the inference that the

generalization is true for the entire student body during that week.
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Is it true for other colleges? Is it true throughout the year? The students con-
ducting the survey followed up the survey by collecting anecdotal information
about TV watching of male athletes. It turned out that during the week of the sur-
vey, the NCAA men’s basketball tournament was televised. This could explain the
increase in TV watching for the male athletes. It could be that the increase extends
to other students at other times, but we don’t know that. Always be cautious in
drawing conclusions too broadly. Don’t generalize from one population to another.

WHAT CAN GO WRONG?

» Watch out for outliers. One outlier in a group can change both the mean and the
spread of that group. It will also inflate the Error Mean Square, which can influence
the F-test. The good news is that ANOVA fails on the safe side by losing power when
there are outliers. That is, you are less likely to reject the overall null hypothesis if
you have (and leave) outliers in your data. But they are not likely to cause you to
make a Type I error.

¥ Watch out for changing variances. The conclusions of the ANOVA depend crucially
on the assumptions of independence and constant variance, and (somewhat less
seriously as n increases) on Normality. If the conditions on the residuals are vio-
lated, it may be necessary to re-express the response variable to approximate these
conditions more closely. ANOVA benefits so greatly from a judiciously chosen re-
expression that the choice of a re-expression might be considered a standard part
of the analysis.

» Be wary of drawing conclusions about causality from observational studies. ANOVA is often
applied to data from randomized experiments for which causal conclusions are ap-
propriate. If the data are not from a designed experiment, however, the Analysis
of Variance provides no more evidence for causality than any other method we
have studied. Don’t get into the habit of assuming that ANOVA results have causal
interpretations.

» Be wary of generalizing to situations other than the one at hand. Think hard about how
the data were generated to understand the breadth of conclusions you are entitled
to draw.

# Watch for multiple comparisons. When rejecting the null hypothesis, you can conclude
that the means are not all equal. But you can’t start comparing every pair of treat-
ments in your study with a f-test. You’ll run the risk of inflating your Type I error
rate. Use a multiple comparisons method when you want to test many pairs. o

PR - -

CONNECTIONS
We first learned about side-by-side boxplots in Chapter 5. There we made general statements about
the shape, center, and spread of each group. When we compared groups, we asked whether their
centers looked different compared with how spread out the distributions were. Now we’ve made
that kind of thinking precise. We've added confidence intervals for the difference and tests of
whether the means are the same.

We pooled data to find a standard deviation when we tested the hypothesis of equal propor-
tions. For that test, the assumption of equal variances was a consequence of the null hypothesis that
the proportions were equal, so it didn’t require an extra assumption. Means don’t have a linkage
with their corresponding variances, so to use pooled methods we must make the additional as-
sumption of equal variances. But in a randomized experiment, that’s a plausible assumption.

Chapter 13 offered a variety of designs for randomized comparative experiments. Each of those
designs can be analyzed with a variant or extension of the ANOVA methods discussed in this chap-
ter. Entire books and courses deal with these extensions, but all follow the same fundamental ideas
presented here.
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ANOVA is closely related to the regression analyses we saw in Chapter 27. (In fact, most statistics
packages offer an ANOVA table as part of their regression output.) The assumptions are similar—and
for good reason. The analyses are, in fact, related at a deep conceptual (and computational) level, but
those details are beyond the scope of this book.

The pooled two-sample t-test for means is a special case of the ANOVA F-test. If you perform
an ANOVA comparing only two groups, you'll find that the P-value of the F-statistic is exactly the
same as the P-value of the corresponding pooled t-statistic. That’s because in this special case the
F-statistic is just the square of the t-statistic. The F-test is more general. It can test the hypothesis
that several group means are equal.

Terms

Error (or Within) Mean
Square (MSg)

Treatment (or Between)
Mean Square (MS;)

F-distribution

F-statistic

F-test

WHAT HAVE WE LEARNED?

We learned, in Chapter 24, how to test whether the means of two groups are equal. Now in this
chapter, we've extended that to testing whether the means of several groups are equal. We first
learned in Chapter 5 that a good first step in looking at the relationship between a quantitative re-
sponse and a categorical grouping variable is to look at side-by-side boxplots. We've seen that it's
still a good first step before formally testing the null hypothesis.

We've learned that the F-test is a generalization of the i-test that we used for testing two groups.
And we've seen that although this makes the mechanics familiar, there are new conditions to
check. We've also learned that when the null hypothesis is rejected and we conclude that there are
differences, we need to adjust the confidence intervals for the pair-wise differences between
means. We also need to adjust the alpha levels of tests we perform once we've rejected the null
hypothesis.

» We've learned that under certain assumptions, the statistic used to test whether the means of k
groups are equal is distributed as an F-statistic with kK — 1 and N — & degrees of freedom.

» We've learned to check four conditions to verify the assumptions before we proceed with infer-
ence and we've seen that most of the checks can be made by graphing the data and the residu-
als with the methods we learned in Chapters 4, 5, and 8.

> We've learned that if the F-statistic is large enough we reject the null hypothesis that all the
means are equal.

»  We've also learned to create and interpret confidence intervals for the differences between each
pair of group means, recognizing that we need to adjust the confidence interval for the number
of comparisons we make.

28-5. The Error Mean Square (MSg) is the estimate of the error variance obtained by pooling the
variances of each treatment group. The square root of the MSg is the estimate of the error standard
deviation, s,.

28-6. The Treatment Mean Square (MSy) is the estimate of the error variance under the assumption
that the treatment means are all equal. If the (null) assumption is not true, the MSy will be larger
than the error variance.

28-6. The F-distribution is the sampling distribution of the F-statistic when the nuil hypothesis that
the treatment means are equal is true. It has two degrees of freedom parameters, one for the nu-
merator, (k — 1), and one for the denominator, (N —- k), where N is the total number of observations
and k is the number of groups.

28-6. The F-statistic is the ratio MS;/MS,. When the F-statistic is sufficiently large, we reject the
null hypothesis that the group means are equal.

28-6. The F-test tests the null hypothesis that all the group means are equal against the one-sided
alternative that they are not all equal. We reject the hypothesis of equal means if the F.statistic ex-
ceeds the critical value from the F-distribution corresponding to the specified significance level and

degrees of freedom.
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ANOVA
ANOVA table

ANOVA model

Residual standard
deviation

Assumptions for
ANOVA {and
conditions to check)

Balance

Multiple
comparisons

Least significant
difference (LSD)

*Bonferroni method

Minimum significant
difference (MSD)

What Have We Learned? 28-27

28-6. An analysis method for testing equality of means across treatment groups.

28-7. The ANOVA table is convenient for showing the degrees of freedom, the Treatment Mean
Square, the Error Mean Square, their ratio, the F-statistic, and its P-value. There are usually other
quantities of lesser interest included as well.

28-9. The model for a one-way {one response, one factor) ANOVA is
Yy =+ ey

Estimating with y; = y; + e; gives predicted values j; = ¥, and residuals e; = y, ~ 7.

28-13. The residual standard deviation,

gives an idea of the underlying variability of the response values.

» 28-14. Independence Assumption. (Think about the design of the experiment or, if an observational
study, how the data were collected.)

» 28-14. Equal Variance Assumption. (Similar Spread Condition. Look at side-by-side boxplots to
check for similar spreads, or look at residuals vs. predicted to see if the plot thickens.)

» 28-15. Normal Population Assumption. (Nearly Normal Condition. Check a histogram or Nor-
mal probability plot of the residuals.)

28-18. An experiment's design is balanced if each treatment level has the same number of experi-

mental units. Balanced designs make calculations simpler and are generally more powerful.

28-19. If we reject the null hypothesis of equal means, we often then want to investigate further and
compare pairs of treatment group means to see if they differ. If we want to test several such pairs,
we must adjust for performing several tests to keep the overall risk of a Type | error from growing too
large. Such adjustments are called methods for multiple comparisons.

28-20. The standard margin of error in the confidence interval for the difference of two means is
called the least significant difference. It has the correct Type | error rate for a single test, but not
when performing more than one comparison.

28-20. One of many methods for adjusting the length of the margin of error when testing the differ-
ences between several group means.

28-20. The Bonferroni method's margin of error for the confidence interval for the difference of two
group means Is called the minimum significant difference. This can be used to test differences of sev-
eral pairs of group means. If their difference exceeds the MSD, they are different at the overall rate.

= Recognize situations for which ANOVA is the appropriate analysis.

» Know how to examine your data for violations of conditions that would make ANOVA unwise
or invalid.

»  Recognize when a further analysis of differences between group means would be appropriate.

» Be able to perform an ANOVA using a statistics package or calculator for one response variable
and one factor with any number of levels.

» Be able to perform several subsequent tests using a multiple comparisons procedure.

» Be able to explain the contents of an ANOVA tabie, in particular the roles of the MSy, the MSe,
and the pooled standard deviation, s,,.

» Be able to interpret a test of the null hypothesis that the true means of several independent
groups are equal. (Your interpretation should include a defense of your assumption of equal
variances.)

» *Be able to interpret the results of tests that use multiple comparisons methods.
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ON THE COMPUTER

ANOVA

Most analyses of variance are found with computers. And all statistics packages present the resuits
in an ANOVA table much like the one we discussed. Technology also makes it easy to examine the
side-by-side boxplots and check the residuals for violations of the assumptions and conditions.

Statistics packages offer different choices among possible multiple comparisons methods (although
Bonferroni is quite common). This is a specialized area. Get advice or read further if you need to
choose a multiple comparisons method.

As we saw in Chapter 5, there are two ways to organize data recorded for several groups. We can
put all the response values in a single variable and use a second, “factor,” variable to hold the group
identities. This is sometimes called stacked format. The alternative is to place the data for each group
in its own column or variable. Then the variable identities become the group identifiers.

Most statistics packages expect the data to be in stacked format because this form also works for more
complicated experimental designs. Some packages can work with either form, and some use one form for
some things and the other for others. (Be careful, for example, when you make side-by-side boxplots: be
sure to give the appropriate version of the command to correspond to the structure of your data.)

Most packages offer to save residuals and predicted values and make them available for further tests
of conditions. In some packages you may have to request them specifically.

DAIA DE

»  Select the response variable as Y and the factor variable
as X.

» From the Calc menu, choose ANOVA.

» Data Desk displays the ANOVA table.

»  Select plots of residuals from the ANOVA table's
HyperView menu.

3 SR

Data Desk expects data in “stacked” format. You can change
the ANOVA by dragging the icon of another variable over
either the Y or X variable name in the table and dropping it
there. The analysis will recompute automaticaily.

oo, &P E

» In Excel 2003 and earlier, select Data Analysis from the
Tools menu.

» In Excel 2007, select Data Analysis from the Analysis
Group on the Data Tab.

»  Click the OK button.

> Enter the data range in the box provided.

» Check the Labels in First Row box, if applicable.

» Enter an alpha level for the F-test in the box provided.
> Click the OK button.

+ Select Anova Single Factor from the list of analysis tools.

The data range should include two or more columns of data
to compare. Unlike all other statistics packages, Excel expects
each column of the data to represent a different level of the
factor. However, it offers no way to label these levels. The
columns need not have the same number of data values, but
the selected cells must make up a rectangle large enough to
hold the column with the most data values.

= From the Analyze menu select Fit Y by X.

= Select variables: a quantitative Y, Response variable, and
a categorical X, Factor variable,

= JMP opens the Oneway window.

= Click on the red triangle beside the heading, select
Display Options, and choose Boxplots.

> From the same menu choose the Means/ANOVA t-test
command.

> JMP opens the oneway ANOVA output.

JMP expects data in “stacked” format with one response
and one factor variable.
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= Choose ANOVA from the Stat menu.

» Choose One-way... from the ANOVA submenu.

= In the One-way Anova dialog, assign a quantitative Y
variable to the Response box and assign a categorical
X variable to the Factor box.

» Check the Store Residuals check box.

= (Click the Graphs button.

» In the ANOVA-Graphs dialog, select Standardized
residuals, and check Normal plot of residuals and
Residuals versus fits.

> Click the OK button to return to the Regression dialog.

= Click the OK button to compute the regression.

If your data are in unstacked format, with separate columns
for each treatment level, choose One-way (unstacked) from
the ANOVA submenu.

» Choose Compare Means from the Analyze menu.

» Choose One-way ANOVA from the Compare Means
submenu.

> In the One-Way ANQVA dialog, select the Y-variable and
move it to the dependent target. Then move the X-
variable to the independent target.

> Click the OK button.

SPSS expects data in stacked format. The Contrasts and Post
Hoc buttons offer ways to test contrasts and perform multiple
comparisons. See your SPSS manual for details.

vy

Under STAT Tests, choose C:ANOVA

= Specify the input method (Data or Stats) according to
whether you have data entered as one list for each group
or summary statistics for each group, and specify the
number of groups. Press +.

» |If Data, you will then be asked to supply the name of
each list,

» |f Stats, you will be asked for the stats for each group. En-
tern, X, and s for each group separated by commas and

within curly braces ({and}).
»  Press + to perform the calculations.

In addition to the ANOVA table output, the calculator creates
three new lists—the means for each group (in the order speci-
fied) and individual 95% confidence interval upper and lower
bounds.

EXERCISES

. Astudent runs an experiment to test four dif-
ferent popcorn brands, recording the number of kernels
left unpopped. She pops measured batches of each brand
4 times, using the same popcorn popper and randomiz-
ing the order of the brands. After collecting her data and
analyzing the results, she reports that the F-ratio is 13.56.
a) What are the null and alternative hypotheses?
b) How many degrees of freedom does the treatment
sum of squares have? How about the error sum of
squares?

¢} Assuming that the conditions required for ANOVA
are satisfied, what is the P-value? What would you
conclude?

d) What else about the data would you like to see in or-
der to check the assumptions and conditions?

;. Afigure skater tried various approaches to
her Salchow jump in a designed experiment using 5
different places for her focus (arms, free leg, midsection,
takeoff leg, and free). She tried each jump 6 times in ran-
dom order, using two of her skating partners to judge the
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jumps on a scale from 0 to 6. After collecting the data and

analyzing the results, she reports that the F-ratio is 7.43.

a) What are the null and alternative hypotheses?

b) How many degrees of freedom does the treatment
sum of squares have? How about the error sum of
squares?

¢) Assuming that the conditions are satisfied, what is the
P-value? What would you conclude?

d} What else about the data would you like to see in
order to check the assumptions and conditions?

2. Astudent runs an experiment to study the
effect of three different mufflers on gas mileage. He devises
a system so that his Jeep Wagoneer uses gasoline from a
one-liter container. He tests each muffler 8 times, carefully
recording the number of miles he can go in his Jeep Wag-
oneer on one liter of gas. After analyzing his data, he
reports that the F-ratio is 2.35 with a P-value of 0.1199.

a) What are the null and alternative hypotheses?

b) How many degrees of freedom does the treatment
sum of squares have? How about the error sum of
squares?

¢) What would you conclude?

d) What else about the data would you like to see in or-
der to check the assumptions and conditions?

) If your conclusion in part ¢ is wrong, what type of er-
ror have you made?

A student interested in improving her dart-
throwing technique designs an experiment to test 4
different stances to see whether they affect her accuracy.
After warming up for several minutes, she randomizes
the order of the 4 stances, throws a dart at a target using
each stance, and measures the distance of the dart in cen-
timeters from the center of the bull’s-eye. She replicates
this procedure 10 times. After analyzing the data she re-
ports that the F-ratio is 1.41.

a) What are the null and alternative hypotheses?

b) How many degrees of freedom does the treatment
sum of squares have? How about the error sum of
squares?

¢) What would vou conclude?

d) What else about the data would you like to see in or-
der to check the assumptions and conditions?

e} If your conclusion in part ¢ is wrong, what type of er-
ror have you made?

5. . ' To shorten the time it takes
him to make his favorite pizza, a student designed an
experiment to test the effect of sugar and milk on the
activation times for baking yeast. Specifically, he tested
four different recipes and measured how many seconds
it took for the same amount of dough to rise to the top
of a bowl. He randomized the order of the recipes and
replicated each treatment 4 times.

Here are the boxplots of activation times from the four
recipes:
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The ANOVA table follows:
Analysis of Variance
Sum of Mean

Source DF Squares Square F-ratio P-value
Recipe 3 638867.68 212888 44.7392 <0.0001

Error 12 57128.25 47861
Total 15 B6896085.94

a) State the hypotheses about the recipes (both numeri-
cally and in words).

b) Assuming that the assumptions for inference are
satistied, perform the hypothesis test and state your
conclusion. Be sure to state it in terms of activation
times and recipes.

¢) Would it be appropriate to follow up this studv with
multiple comparisons to see which recipes differ in
their mean activation times? Explain.

A student performed an experiment
with three different grips to see what effect it might have
on the distance of a backhanded Frisbee throw. She tried
it with her normal grip, with one finger out, and with the
Frisbee inverted. She measured in paces how far her
throw went. The boxplots and the ANOVA table for the
three grips are shown below:
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Sum of Mean
Source DF Squares Square F-ratio P-value
Grip 2 58.58333 29.2817 2.0453 0.1543
Error 21 300.75000 14.3214
Total 23 358.33333

a) State the hypotheses about the grips.

b} Assuming that the assumptions for inference are
satisfied, perform the hypothesis test and state your
conclusion. Be sure to state it in terms of Frisbee grips
and distance thrown.

Would it be appropriate to follow up this study with
multiple comparisons to see which grips differ in their
mean distance thrown? Explain.

<)

. InChapter 5, Exercise 42, we saw
a survey of 1021 school-age children conducted by ran-
domly selecting children from several large urban ele-
mentary schools. Two of the questions concerned eye
and hair color. In the survey, the following codes were
used:

Hair color: ( Eye color:

1 = Blue
2 = Green
3 = Brown
4 = Grey
5 = Other

1 = Blond
2 = Brown
3 = Black
4 = Red

5 = Qther

The students analyzing the data were asked to study the
relationship between eye and hair color. They produced
this plot:

Eye Color
w -
T T

nN
1

f

Hair Color

They then ran an Analysis of Variance with Eye color as
the response and Hair color as the factor. The ANOVA
table they produced follows:

Analysis of Variance

Sum of Mean
Source DF Squares Square  Fratic P-value
Hair color 4 1.48946 0.3687385 0.4024 0.B8070
Error 1016 827.45317 (0.912848
Total 1020 928.922863

What suggestions do you have for the Statistics students?
What alternative analysis might you suggest?

8. 7 : .. The intern from the marketmg de-
partment at the Holes R Us online piercing salon (Chap-

Exercises 28-31

ter 4, Exercise 49) has recently finished a study of the
company’s 500 customers. He wanted to know whether
people’s zip codes vary by the last product they bought.
They have 16 different products, and the ANOVA table of
zip code by product showed the following:

ANOVA table
Sum of Mean
Source DF Squares Square Fratio P-value
Product 15 3.836e10 2.55734e8 4.8422 <0.0001
Error 475 2.45787e11 517445573

480 2.84147e11

(Nine customers were not included because of missing
zip code or product information.)

Total

What criticisms of the analysis might you make? What al-
ternative analysis might you suggest?

. In Chapter 5, Exercise 22, we
looked at what these boxplots told us about the relation-
ship between the number of cylinders a car’s engine has
and the car’s fuel economy.

35
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N
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20

:

a) State the null and alternative hypotheses.
b) Do the conditions for an ANOVA seem to be met here?
Why or why not?

4 5
Cylinders

- 10.

. The boxplots we saw in Chapter 5,
Exercxse 25 dlsplay case prices (in dollars) of wines pro-
duced by wineries along three of the Finger Lakes.
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a) What are the null and alternative hypotheses? Talk
about prices and location, not symbols.

b) Do the conditions for an ANOVA seem to be met here?
Why or why not?

. Abank is studying the time that it takes 6 of its

tellers to serve an average customer. Customers line up in

the queue and then go to the next available teller. Here is

a boxplot of the last 200 customers and the times it took

each teller:

13.

a) What are the null and alternative hypotheses?

b) What do you conclude?

¢) Would it be appropriate to run a multiple compar-
isons test {for example, a Bonferroni test) to see which
lists differ from each other in terms of mean percent
correct? Explain.

. An experiment to determine the effect of sev-
eral methods of preparing cultures for use in commercial
yogurt was conducted by a food science research group.
Three batches of yogurt were prepared using each of
three methods: traditional, ultrafiltration, and reverse
osmosis. A trained expert then tasted each of the 9
samples, presented in random order, and judged them

= I '
E % T on a scale from 1 to 10. A partially complete Analysis of
g £ Variance table of the data follows.
= 60— (]
An incomplete ANOVA Table for the Yogurt Data
30
o Sum of  Degrees of Mean
2 3 4 5 8 Source Squares  Freedom  Square Fratio
Teller Treatment  17.300
Residual 0.480
Analysis of Variance Total 17.769
Sum of Mean a) Calculate the mean square of the treatments and the
Source DF Squares Square Fratio P-value mean square Of‘ thg error.
Teller 5 3315.32 8683.084 1508 0.1914 b) Form the F-statistic by dwldmg the two mean squares.
Error 134 58919.1 439.695 ¢) The P-value of this F-statistic turns out to be 0.000017.
Total 133  B0o034.4 What does this say about the null hypothesis of equal
means?
. -
a) Whatare the null and alternative hypotheses? d) What assumptions have you made in order to answer
b) What do you conclude? part c?

¢) Would it be appropriate to run a multiple compar-
isons test {for example, a Bonferroni test) to see which
tellers differ from each other? Explain.

A researcher investigated four different word
lists for use in hearing assessment. She wanted to know
whether the lists were equally difficult to understand in
the presence of a noisy background. To find out, she
tested 96 subjects with normal hearing randomly assign-
ing 24 to each of the four word lists and measured the
number of words perceived correctly in the presence of
background noise. Here are the boxplots of the four lists:

e) What would you like to see in order to justify the
conclusions of the F-test?

f) What is the average size of the error standard devia-
tion in the judge’s assessment?

Particulate matter is a serious
form of air pollution often arising from industrial produc-
tion. One way to reduce the pollution is to put a filter, or
scrubber, at the end of the smokestack to trap the particu-
lates. An experiment to determine which smokestack
scrubber design is best was run by placing four scrubbers
of different designs on an industrial stack in random or-
der. Each scrubber was tested 5 times. For each run, the

50 -~ same material was produced, and the particulate emis-
o} 45 — sions coming out of the scrubber were measured (in parts
540~ per billion). A partially complete Analysis of Variance
5 g‘g 1 table of the data is shown below.
%25 - - An incomplete ANOVA Table for the Smokestack Data
§ ?g : il Sumof Degrees of Mean
Source Squares Freedom Square F-ratio
0 Treatment 81.2
List1  List2 . List3  List4 Residual 0.8
List Total 112.0
Analysis of Variance a) Calculate the mean square of the treatments and the
mean square of the error.
Sum of Mean b} Form the F-statistic by dividing the two mean squares.
Source DF Squares Square Fratioc Pvalue ¢) The P-value of this F-statistic turns out to be
List 3 920.45683 308.818 4.8182 0.0033 0.00000949. What does this say about the null hy-
Error 92 5738.1887 82.371 pothesis of equal means?
Total 95  BB5B.6250 d) What assumptions have you made in order to answer

part ¢?
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e) What would you like to see in order to justify the con-
clusions of the F-test?

f) What is the average size of the error standard devia-
tion in particulate emissions?

. Astudent wants to investigate the effects of real
vs. substitute eggs on his favorite brownie recipe. He
enlists the help of 10 friends and asks them to rank each
of 8 batches on a scale from 1 to 10. Four of the batches
were made with real eggs, four with substitute eggs. The
judges tasted the brownies in random order. Here is a
boxplot of the data:

8 -
7 b
g
8%
5
4 -
Real Substitute
Eggs
Analysis of Variance
Sum of Mean
Source DF Squares Square Fratio P-value
Eggs 1 8.010013 9.01001 31.0712 0.0014
Error 5] 1.738875 0.28988
Total 7 10.749883

The mean score for the real eggs was 6.78 with a standard

deviation of 0.651. The mean score for the substitute eggs

was 4.66 with a standard deviation of 0.395.

a) What are the null and alternative hypotheses?

b) What do you conclude from the ANOVA table?

¢) Do the assumptions for the test seem to be reasonable?

d) Perform a two-sample pooled t-test of the difference.
What P-value do you get? Show that the square of the
t-statistic is the same (to rounding error) as the F-ratio.

. In a statement to a Senate Public
Works Committee, a senior executive of Texaco, Inc., cited
a study on the effectiveness of auto filters on reducing
noise. Because of concerns about performance, two types
of filters were studied, a standard silencer and a new de-
vice developed by the Associated Octel Company. Here
are the boxplots from the data on noise reduction (in deci-
bels) of the two filters. Type 1 = standard; Type 2 = Octel.

se (decibe
S8I
FTTrTrTTId

S 78
=z
77 =
e L
75
1 2
Type

Analysis of Variance

Sum of

Source DF Squares
Type 1 B.31
Error 33 271.47
Total 34 2.77

Level n

Standard 18

Octel 17

Exercises 28-33
Mean
Square F-ratic  P-value
8.31 0.7673 (0.3874
8.22
Mean StdDev
81.5558 3.21686
80.7058 2.43708

a) What are the null and alternative hypotheses?

b} What do you conclude from the ANOVA table?

¢) Do the assumptions for the test seem to be reasonable?

d) Perform a two-sample pooled f-test of the difference.
What P-value do you get? Show that the square of the
t-statistic is the same (to rounding error) as the F-ratio.

A school district superintendent wants

to test a new method of teaching arithmetic in the fourth
grade at his 15 schools. He plans to select 8 students from
each school to take part in the experiment, but to make
sure they are roughly of the same ability, he first gives a
test to all 120 students. Here are the scores of the test by

school:
27 -
25 —
23 -
82 -
§ 19 -
17 -
15
13
ABCDEFGHI JK LM
School
The ANOVA table shows:
Analysis of Variance
Sum of Mean
Source DF Squares Square F-ratio
School 14 108.800 7.7714 1.0735
Error 105 760.125 7.2392
Total 119 868.925

N O

P-value
0.3899

a) What are the null and alternative hypotheses?
b) What does the ANOVA table say about the null hy-
pothesis? (Be sure to report this in terms of scores and

schools.)

¢} Anintern reports that he has done t-tests of every
school against every other school and finds that sev-
eral of the schools seem to differ in mean score. Does
this match your finding in part b? Give an explanation
for the difference, if any, of the two results.

Abiology student is studying the effect

of 10 different fertilizers on the growth of mung bean
sprouts. She sprouts 12 beans in each of 10 different petri
dishes, and adds the same amount of fertilizer to each
dish. After one week she measures the heights of the 120
sprouts in millimeters. Here are boxplots and an ANOVA

table of the data:
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28-34 CHAPTER 28  Analysis of Variance

a) What are the null and alternative hypotheses?

::g b) What does the ANOVA table say about the null hy-
120 T pothesis? (Be sure to report this in terms of Sugars and
. - Shelves.)
£ :;g E ¢) Can we conclude that cereals on shelf 2 have a higher
g T mean sugar content than cereals on shelf 37 Can we
= 9% conclude that cereals on shelf 2 have a higher mean
T 80 -~ sugar content than cereals on shelf 17 What can we
70 conclude?
60 d) To check for significant differences between the shelf
50 +~ means, we can use a Bonferroni test, whose results are
A B C D E F H o1 shown below. For each pair of shelves, the difference
Fertilizer is shown along with its standard error and signifi-
cance level. What does it say about the questions in
Analysis of Variance partc?
Sum of Mean
Source DF Squares Square Fratioc P-value Dependent Variable: SUGARS
Fertilizer g 2073.708 230.412 1.1882 0.3087
Eror 110 21331.083 193.918 Mean
Total 118  23404.791 Differ- 95%
. m (J] ence Std. P- Confidence
a) What are the null and alternative hypotheses? SHELF SHELF (1) Error  value Interval
b) What does the ANOVA table say about the null hy- Prra— Tomer Uppar
pothesis? (Be sure to report this in terms of heights Bound  Bound
and fertilizers).
c) Her lab partner looks at the same data and says that 1 2 -4.819(*) 12857 0001 -7.968 -1.670
he did t-tests of every fertilizer against every other 3 -1.728 11476 0.409 -4.539 1.084
fertilizer and finds that several of the fertilizers seem 2 1 4819(*) 1.82857 0.001 1.670 7.989
to have significantly higher mean heights. Does this 3 3.091(*) 1.1299 0023 0323 5859
match your finding in part b? Give an explanation for 3 1 17es 1.1476 0408 -1.084 4.539
the difference, if any, between the two results. 2 -3.091(*] 1.1299 0.023 -5.859 -0.323

* The mean difference is significant at the 0.05 level.

.. Supermarkets often place similar types of ce-
real on the same supermarket shelf. The same data set we
met in the Step-By-Step of Chapter 8 keeps track of the
shelf as well as the sugar, sodium, and calorie content of

20, 4 %. We also have data on the protein con-
tent of cereals by their shelf number. Here are the boxplot

77 cereals. Does sugar content vary by shelf? Here is a and ANOVA table:
boxplot and an ANOVA table for the 77 cereals:
6 Q
15 5 =]
- By - ®
<
- 10 2
2 L £3r
«
fo 2]
&H 5b 2
- 1 b
0 — 1 2 3
- Shelf
1 z 3
Shelf Analysis of Variance
Analysis of Variance Sum of Mean
Source DF Squares Square F-ratioc  P-value
Sum of Mean Shelf 2 124258 6.2129 58445 0.0044
Source DF Squares Square F-ratio P-value Error 74 78.6650 1.0830
Shelf 2 248.4079 124,204 7.3345 (0.0012 Total 76 91.0909
Error 74 1253.1246 16.834
Total 78 1501 5305 Means and Std Deviations
Leval n Mean StdDev Level n Mean StdDev
1 20 4.80000 4.57223 1 20 2.65000 1.48089
2 21 9.61905 4.12888 2 21 1.80476 .98523
3 38 B.52778 3.83882 3 38 2.86111 0.72320
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Exercises 28-35

a) What are the null and alternative hypotheses? Dependent Variable: PROTEIN
b} What does the ANOVA table say about the null hy- Bonferroni

pothesis? (Be sure to report this in terms of protein

Mean
content and shelves.) .
- Differ- 95%

¢) Can we conclude that cereals on shelf 2 have a lower )

mean protein content than cereals on shelf 37 Can we M ) ence Std. P Confidence

: SHELF SHELF {-J1 Error value Interval

conclude that cereals on shelf 2 have a lower mean
Lower Upper

protein content than cereals on shelf 17 What can we
Bound Bound
conclude?

d) To check for significant differences between the shelf 1 e 0.75 0322 0070 -004 153
means we can use a Bonferroni test, whose results are 3 -0.21 0288 1.000 -0892 049
shown below. For each pair of shelves, the difference 2 1 ~0.75 0322 0070 -1.53 0.04
is shown along with its standard error and signifi- 3 -0.88(*] 0283 0004 -1.65-0.28
cance level. What does it say about the questions in 3 1 0.21 0.288 1.000 -0.48 082
part ¢? 2 0.96(*) 0283 0004 026 165

“The mean difference is significant at the 0.05 level.

1. 7. To see how much of a difference time of download it at three different time periods of the day.
day made on the speed at which he could download files, He downloaded the file 48 times in all, 16 times at each
a college sophomore performed an experiment. He Time of Day, and recorded the Time in seconds that the
placed a file on a remote server and then proceeded to download took.

Time of day Thme e Time of day Time fsed Thne of day Time e
Early (7 am.) 68 Evening (5 p.m.} 299 Late night (12 a.m.) 216
Early (7 am.) 138 Evening (5 p.m.) 367 Late night (12 a.m.) 175
Early (7 am.) 75 Evening (5 p.m.) 331 Late night (12'a.m.) 274
Early (7 a.m.) 186 Evening (5 p.m.) 257 Late night (12 a.m.) 171
Early (7 a.m.) 68 Evening (5 p.m.) 260 Late night (12 a.m.) 187
Early (7 a.m.) 217 Evening (5 p.m.) 269 Late night (12 a.m.) 213
Early (7 am) 93 Evening (5 p.m.) 252 Late night (12 a.m.) 221
Early (7 a.m.) 90 Evening (5 p.m.) 200 Late night (12 a.m.) 139
Early (7 am.) 71 Evening (5 p.m.) 296 Late night (12 a.m.) 226
Early (7a.m.) 154 Evening (5 p.m.) 204 Late night (12 am.) 128
Early (7a.m.) 166 Evening (5 p.mv.) 190 Late night (12 a.m.} 236
Early (7 am.) 130 Evening (5 p.m.) 240 Late night (12 a.m.) 128
Early (7 a.m.) 72 Evening (5 p.m.) 350 Late night (12 a.m.) 217
Early (7 a.m.) 81 Evening (5 p.m.) 256 Late night (12 a.m.) 196
Early (7 a.m.) 76 Evening (5 p.m.) 282 Late night {12 a.m.) 201
Early (7a.m.) 129 Evening (5 p.m.) 320 Late night (12 a.m.) 161

a) State the null and alternative hypotheses, being care- ¢) Check the assumptions and conditions for an
ful to talk about download Time and Time of Day as ANOVA. Do you have any concerns about the ex-
well as parameters. perimental design or the analysis?

b) Perform an ANOVA on these data. What can you d) (Optional) Perform a multiple comparisons test to de-
conclude? termine which times of day differ in terms of mean

download time.
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28-36

CHAPTER 28  Analysis of Variance

A pharmaceutical company tested three

b} Perform an ANOVA on these data. What can you

‘formuiations of a pain relief medicine for migraine conclude?

headache sufferers. For the experiment, 27 volunteers
were selected and 9 were randomly assigned to one of
three drug formulations. The subjects were instructed to
take the drug during their next migraine headache
episode and to report their pain on a scale of 1 = no pain

¢) Check the assumptions and conditions for an
ANOVA. Do you have any concemns about the experi-
mental design or the analysis?

d) (Optional) Perform a multiple comparisons test to
determine which drugs differ in terms of mean pain

to 10 = extreme pain 30 minutes after taking the drug. level reported.
Drug Pain Drug Paln Drug Pairt
A 4 B 6 c g JUST CHECKING
A 5 B 8 C i
A . B 4 c 6 Answers
A 3 B 5 c 6 1. The null hypothesis is that the mean flight distance
A 2 B 4 c o for all four designs is the same.
A 4 B 6 C 5 2. Yes, it looks as if the variation between the means is
A 3 B 5 C 6 greater than the variation within each boxplot.
A 4 B 8 C 5 3. Yes, the F-test rejects the null hypothesis with a
A 4 B 6 C 5 P-value < 0.0001.
4. No. The alternative hypothesis is that af least one
a) State the null and alternative hypotheses, being mean is differ'ent from th? other three. Rejecting the
careful to talk about Drug and Pain levels as well null hypothesis does not imply that all four means
as parameters. are different.
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