Biological Building Blocks III

Dr. James Hebda 9/16/11

Chemical Functional Group Reminder

PROTEINS

Amino Acids

Building blocks of Proteins

- Composed of two parts:
 - Backbone
 - Side-chain

- Biology employs 20 amino acids
 - Some can be modified for additional variability

Biomolecules: Amino Acid

- The general formula is
- H₂N-CHR-COOH
 - amino (H₂N----)
 - acid (----COOH)
 - ----CHR--- group varies, and gives its identity to one of 20 amino acids used in proteins

Proteins are made up of Amino Acids

- About half of the amino acids are "essential" meaning that they cannot be made by metabolic conversion from other molecules and thus need to be eaten
 - For the ten essential amino acids:
 - Threonine, Tryptophan, Valine, Arginine, Histidine, Lysine,
 Phenylalanine, Leucine, Isoleucine, Methionine
 - Remember this phrase:
 - These Ten Valuable Amino Acids Have Long Preserved Life In Man
 - This means our body has the ability to make the rest of the 20 amino acids from simpler building blocks

Structures

Side chains come in 4 "flavors"

AMINO ACID

Aspartic acid Glutamic acid

. . .

Arginine

Histidine

Lysine

Asparagine

Glutamine

Serine

Threonine

Tyrosine

SIDE CHAIN

negative

negative

positive

positive

positive

uncharged polar

uncharged polar

uncharged polar

uncharged polar

uncharged polar

AMINO ACID

Alanine

Glycine

Valine

Leucine

Isoleucine

Proline

Phenylalanine

Methionine

Tryptophan

Cysteine

SIDE CHAIN

nonpolar

POLAR AMINO ACIDS

(hydrophilic)

NONPOLAR AMINO ACIDS

(hydrophobic)

Amino Acids can sometimes be Modified in interesting ways

- Amino acids side groups may be further modified to have sugars, fats, other modifications
- Often these modifications are very important in changing the way the amino acid behaves

Amino Acids are joined together using Peptide Bonds to make Proteins

- Biologists calls this process translation, and it happens when a messenger RNA is "read" by a ribosome.
- Peptide bonds link amino acids together through -NH₂ on one amino acid and -COOH on another

Peptide Bond is Planar and rigid

* The peptide plane consists of six atoms, $C_{\alpha 1}$, C, O, N, H, $C_{\alpha 2}$

* H-N-C α bond angle is 121°, not 109.5°.

Properties of Peptide Bond

- Barrier to Rotation about C-N bond is 20 kcal
- Peptide bond is planar with $C\alpha$ groups typically trans to the peptide bond (better accommodate R groups)
- C and N are planar (2-D) and not able to rotate
- C_{α} groups are tetrahedral (3-D) and able to rotate though some angles are unfavorable due to steric repulsion with other atoms.
- C_{α} Naturally occurring amino acids are ALMOST exclusively the L stereoisomer.