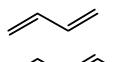
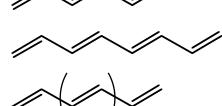
Lecture outline

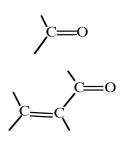

3. Conjugation — for a given chromophore, increasing conjugation increases λ_{max} for the lowest-E transition.


This implies that inc. conjugation has what effect on the HOMO-LUMO gap?

e.g., polyene chromophores

 λ_{max} for HO-LU transition

 $H_2C = CH_2$



carbonyl-based chromophores

 $\longrightarrow \pi^* \qquad \pi \longrightarrow \pi^*$

n

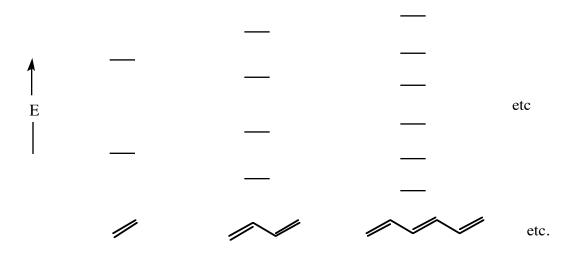
Increasing conjugation decreases ΔE (HOMO - LUMO) because π -MOs are not really localized to individual π -bonds, but *delocalized* over the entire conjugated π -system.

(in fact, *all* MOs are really delocalized over the entire molecule, rather than localized to individual bonds. Our localized bonding models are easy to understand and serve us well enough for as a basis for understanding most aspects of structure and reactivity. But now we need to consider a property that depends on *orbital energies*, so we need a more correct description of the orbitals involved.)

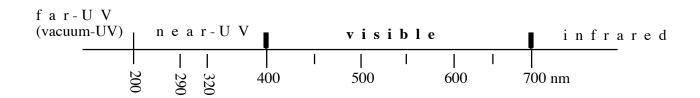

Let's see why by building the π -system of butadiene from two isolated π -bonds...

H₂C

π* —


CH^{CH}2

π



Extending this idea to longer π -systems, we see the following patterns of π -MO energy levels.

Color —

The transmitted or reflected color we see is the *complement* of the color absorbed... (e.g., if a compound *absorbs red* light, it *appears green*)

Here's a simple way to remember wavelengths that correspond to various colors. Each 50-nm section of the visible corresponds *roughly* to one of six colors. Fill them in (refer to a rainbow if necessary), and mark the complementary pairs.

