Faraday's and Maxwell-Ampere Laws

• A changing magnetic flux produces a curly electric field:

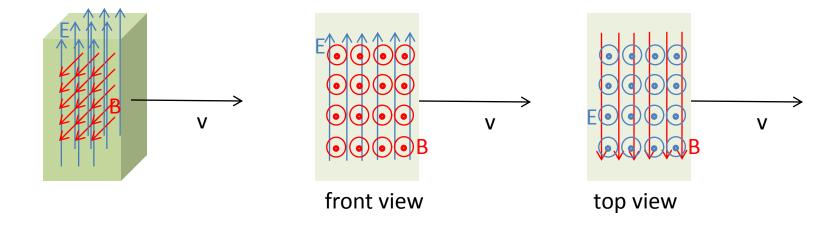
$$\oint \vec{\mathbf{E}} \cdot \mathbf{d}\vec{\mathbf{l}} = -\frac{d}{dt} \int \vec{\mathbf{B}} \cdot \hat{\mathbf{n}} dA$$

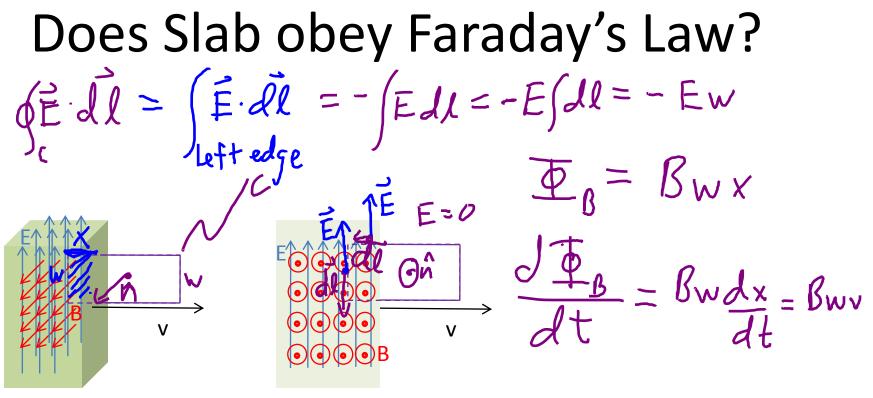
• A changing electric flux produces a (curly) magnetic field:

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 \left(I_{encl} + \varepsilon_0 \frac{d}{dt} \int \vec{\mathbf{E}} \cdot \hat{\mathbf{n}} dA \right)$$

A moving "slab" of E and B fields

- Thin region in which there are uniform electric and magnetic fields.
 - No charges or currents in the vicinity of the slab.
 - Outside the slab, both fields are zero.
 - Inside the slab, E and B are perpendicular to each other.
 - Slab moves in a direction perpendicular to both fields.



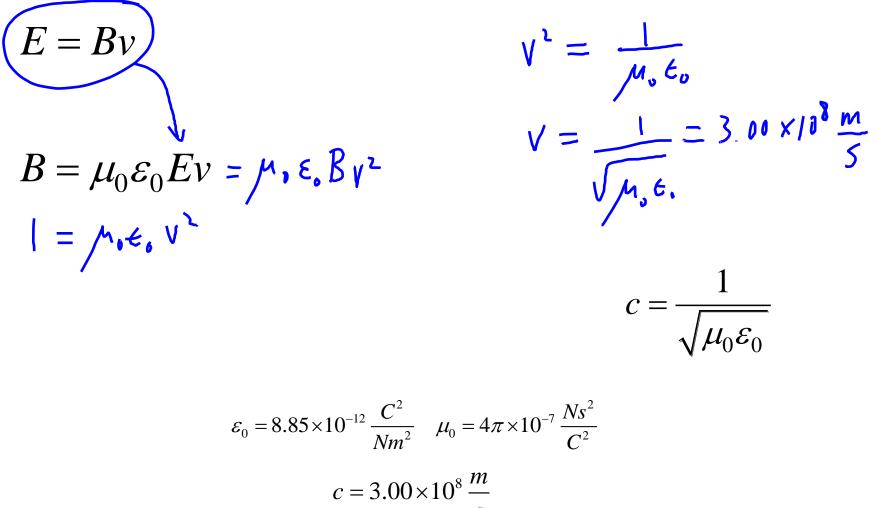


front view

$$\oint_{C} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = -\frac{d}{dt} \int_{S} \vec{\mathbf{B}} \cdot \hat{\mathbf{n}} dA$$
$$+ \mathbf{E} \mathbf{v} = + \mathbf{B} \mathbf{v} \mathbf{v} \mathbf{v}$$
$$\vec{\mathbf{E}} = \mathbf{B} \mathbf{v}$$

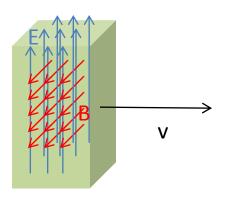
Does Slab obey Maxwell-Ampere Law? $\int_{c}^{B} \cdot dl = \int_{c}^{B} \cdot dl = \int_{c}^{B} \cdot dl = B \int_{c}^{C} \cdot dl =$ top view 'n W 0 V E 0 Φ_E= ∫E·ndA = E (dA = Ewx $\oint_{\mathbf{C}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 \left(I_{encl}^{\uparrow 0} + \varepsilon_0 \frac{d}{dt} \int \vec{\mathbf{E}} \cdot \hat{\mathbf{n}} dA \right)$ By $\exists \mu_0 \in \mathcal{E}_0 E \neq V$ $\frac{dI_{E}}{dt} = E v \frac{dx}{dt} = E w v$

Constraints imposed by Faraday's and Maxwell-Ampere Laws



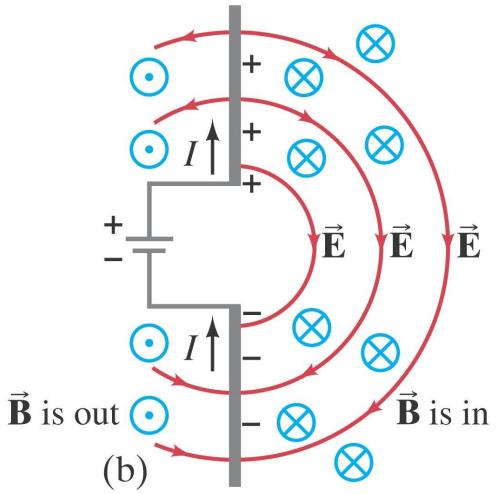
Properties of EM Waves

- Move at the speed of light (in vacuum): c = -
- Magnitudes of fields related by E = Bc.
- \vec{E} and \vec{B} are perpendicular to each other.
- Wave moves in direction of $\vec{E} \times \vec{B}$, i.e. perpendicular to both fields.



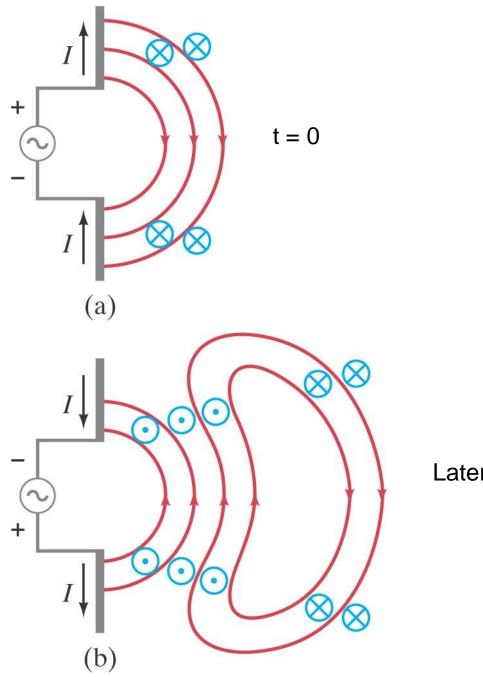
Dipole Antenna

- To create electromagnetic waves, charges must be accelerating.
- Recall that in the steady state, the fields are constant.



Copyright © 2008 Pearson Education, Inc.

Figure 31.6b



Later time

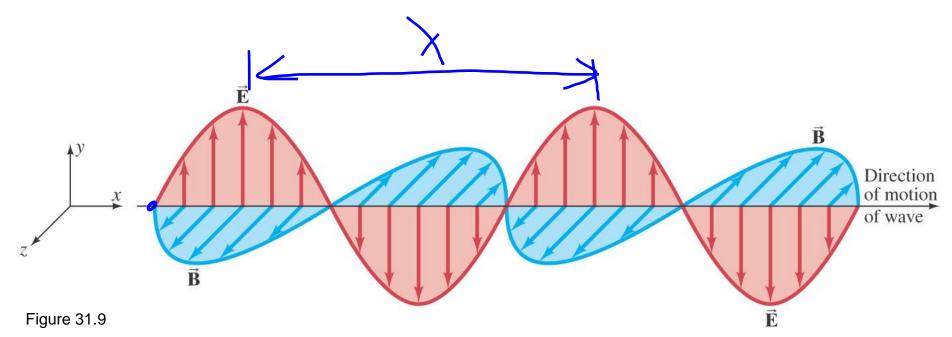
Copyright © 2008 Pearson Education, Inc.

Plane waves

- Far from the antenna, the EM waves are well described as *plane waves* – the fields are uniform within planes perpendicular to the direction of propagation.
- Sinusoidal waves fields are sinusoidal functions of position and time.
 - E.g. wave moving along x axis:

$$\vec{\mathbf{E}} = E_0 \sin(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T})\hat{\mathbf{j}} = E_0 \sin(kx - \omega t)\hat{\mathbf{j}}$$

$$\vec{\mathbf{B}} = B_0 \sin(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T})\hat{\mathbf{k}} = B_0 \sin(kx - \omega t)\hat{\mathbf{k}}$$



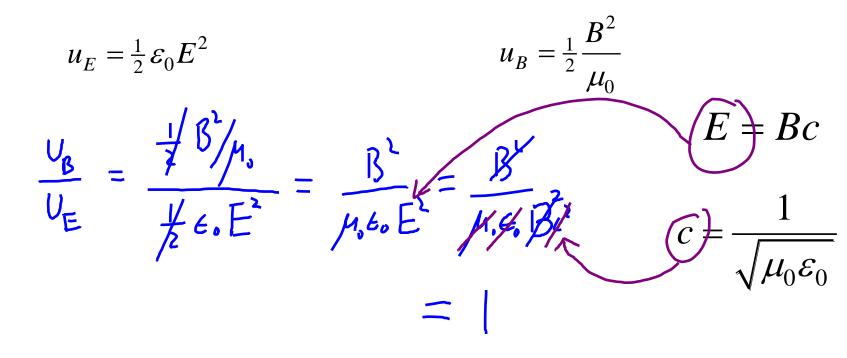
Copyright © 2008 Pearson Education, Inc.

$$\vec{\mathbf{E}} = E_0 \sin(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T})\hat{\mathbf{j}} = E_0 \sin(kx - \omega t)\hat{\mathbf{j}}$$
$$C = \frac{\lambda}{T} = \lambda f$$
$$\vec{\mathbf{B}} = B_0 \sin(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T})\hat{\mathbf{k}} = B_0 \sin(kx - \omega t)\hat{\mathbf{k}}$$

Energy density in EM Waves

Electric Field Energy density

Magnetic Field Energy density



Half of the energy in an EM wave is in the electric field and half is in the magnetic field.