Lecture outline

Ch 20 - Rxns a to α carbonyl group -
enols and enolates, aldol and Claisen condensations
Carbonyl compounds exist in equilibrium with enol tautomers -

Compound
enol
amount of enol at equilibrium

$6 \times 10^{-5} \%$

$6 \times 10^{-7} \%$

$1.4 \times 10^{-2} \%$

9.1%

80 \%

Draw the enol tautomer of each compound above and explain the variation in the position of the equilibria, reflected in the enol \%s. Think about the relative stabilities of the carbonyl compound and enol and how this varies from case to case. Why is enolization so favorable for the β-dicarbonyl compound?

Enolization mechanisms (review, eh?) Fill in the details.
a. Acid-catalyzed

b. Base-catalyzed

Resonance stabilization makes Hs a to a carbonyl group moderately acidic

Cmpd

aldehyde or ketone

(ester)

(nitrile)

β-dicarbonyl cmpd

On the number line below, put a simple carbonyl cmpd, a β-dicarbonyl cmpd, an alcohol, H_{2}, and NH_{3} above the pK_{a} ranges, and then put the conjugate base of each one below the pK_{a} ranges for their conjugate acids.

conj.
base:
What's the point of this? A base can completely deprotonate any acid to the left/right (pick one).

What bases can quantitatively deprotonate a ketone?
... and which ones can deprotonate a ketone to a small extent?

What bases can quantitatively deprotonate a β-dicarbonyl compound?

Reactions of enols and enolate ions

1. H-D exchange

write the mechanisms
2. Stereoisomerization
write the mechanisms

or

$$
\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}
$$

