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Introduction

This thesis is the fourth describing a recent effort to measure the electron electric

dipole moment (EDM) using a large, polycrystalline sample of gadolinium iron garnet.

The experiment began in 2002 under the direction of Professor Larry Hunter, with

Noah Charney as the first thesis student. Oliver Elliott took up the reins the next

year, and Ben Heidenreich two years thereafter.

The experiment has set an upper limit on the magnitude of the electron EDM of

|de| < 1.5 × 10−24 e cm, which is almost a factor of four lower than the previously

reported limit [1, 2]. Our sensitivity has been limited by the presence of a large signal

that is symmetric upon reversal of the sample magnetization. This thesis describes

recent efforts to understand this systematic effect, which we refer to as the M-Even

effect. Current results indicate that it may be related to the method of coupling

electrodes to the sample, possibly resulting from relative motion between them.

Chapter 1 describes the mathematics of “discrete” symmetries and motivates our

current pursuit. Chapter 2 discusses the theory of our experiment, beginning with

the features of solid state EDM searches and the properties of gadolinium iron garnet.

Certain points that were skimmed over elsewhere have been emphasized at length.

Chapter 3 characterizes the M-even effect and discusses the methods used to obtain

these data. Chapter 4 describes the miniature system that we have constructed to

model the effect, along with preliminary results, and chapter 5 presents the most

accurate data obtained. Chapter 6 concludes the thesis with preliminary analyses of

vii



Introduction viii

the data.

Four appendices are included, the first of which presents a mathematical proof

relevant to the field but not essential to this thesis. Appendix B describes the lan-

guage of complex circuit analysis and builds to a description of the detector filter,

which is new since the previous student. Appendix C overviews the design of the

EDM apparatus, which should give the reader a picture of how everything physically

connects. The final appendix includes the details of many experiments we performed.
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Chapter 1

Discrete Symmetries

Symmetries find beautiful form in the laws of physics. They are mathematically

rigorous and experimentally verified patterns, and provide more than aesthetic satis-

faction: they are physically insightful. In this way, physical symmetries are similar to

conservation laws. Both are on the one hand guiding principles helpful in formulating

laws, and on the other consequences of the fundamental, dynamical equations. The

formulation of physical law must not only be formed by, but also account for these

relationships. Are symmetries, then, natural results or imposed boundary conditions?

The answer is probably a little bit of both, for, as we shall see, symmetry conser-

vation is not as steadfast as once imagined. New theories are guided by a desire for

increasingly high levels of symmetry, and experimental results endlessly challenge our

devotion to them. The experiment described in this thesis is one such test of physical

symmetry.

This chapter introduces a subset of symmetries referred to as discrete, and provides

a basis for the discussions of later work. Symmetries have been important throughout

the lifetime of physics, and so we will approach them from both classical and quantum

perspectives. The former is more mathematically approachable than the latter, but

both follow from the same basic principles. Symmetry violations and the general

1



1.1. DISCRETE SYMMETRIES IN CLASSICAL DYNAMICS 2

motivation for our research are discussed to close.

1.1 Discrete Symmetries in Classical Dynamics

The three discrete symmetries of physics are parity, time, and charge. They are

all conserved in classical dynamics, which is to say that the original and symmetric

worlds are both physically sensible – simply by looking at the worldlines of particles,

we cannot tell the difference [3]. Let us examine each symmetry in turn.

1.1.1 Parity

Parity symmetry indicates that the laws of physics should be invariant under inversion

of the spatial axes. In three-dimensional, Cartesian space, this amounts to reflecting

a system through a plane and then rotating it 180◦ about the vector perpendicular

to the plane. Generally speaking, this changes the “handedness” of a coordinate

system [4, §4.6]. Consider the two coordinate systems in Figure 1.1, which are related

by parity. The first is called “right-handed” because the sign of the cross product

x̂ × ŷ = ẑ is positive, in agreement with the right-hand rule. The second is “left-

handed” for the opposite reason. In Cartesian space these definitions suffice, though

we may generalize in three dimensions by considering the triple product ẑ · (x̂ × ŷ).

In right-handed coordinate systems the triple product is greater than zero, and in

left-handed coordinate systems less than zero.

Parity takes xi → −xi, where the xi are spatial coordinates. This operation

changes the signs of many vectors, such as position, velocity, momentum, and force.

These are called polar vectors. Others, such as angular momentum l = r×p, preserve

their signs and are known as axial. The same distinction can be made of scalar

quantities, where scalars preserve their signs under parity and pseudoscalars change.

As examples, the dot product of two polar vectors is scalar, but the dot product of a
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Figure 1.1: Right- and left-handed coordinate systems.

polar and an axial vector is psuedoscalar.

In order for a system to conserve parity, its vectors must change sign uniformly.

This leads to an insight into classical theory: no parity invariant theory can involve

adding polar and axial vectors [4, §4.6]. Take for example the Lorentz force law, which

states

F = q
(
E + v ×B

)
. (1.1)

E is a polar vector but B is axial, so the two could not normally be added; however, v

is polar and therefore v×B is as well. The force law of classical electromagnetism is

therefore parity invariant. Gravity also is invariant under parity because its direction

depends on the positions of massive bodies, whose coordinates change sign.

1.1.2 Time

Time symmetry states that the laws of physics are the same forward and backward in

time. Physically this means that any process that we see occurring in one direction

could also occur in reverse. This seems counter to reason; experience shows us that

time certainly has an “arrow,” and some events would appear ludicrous were they to

occur in the opposite fashion. If physical processes are reversible, can shattered eggs

miraculously reform and jump back into our hands? And if they can, why do we keep

buying new ones?

Technically, this could happen. If all particles in our clumsily dropped egg were
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suddenly excited into precisely the opposite motion that they had before coming to

rest, and all frictional and chemical energy were returned in precisely the opposite

fashion to that in which it left (light, heat, sound, etc.), we would indeed have our

egg once again. The likelihood of such an occurrence is incomprehensibly small, and

figurative descriptions would serve only to confuse. Suffice it to say, if the reader

drops an egg in his future then he is advised to find another, and not to wait for his

old egg to revitalize.

But the point is that physics works forward and backward in time. The difficulties

we have with the above picture are probabilistic and due to the initial conditions of

a scenario [5, §2.1.2]. This is in essence a statement of entropy and our inability to

control precisely the microscopic behavior of more than a few particles (a few being

quite close to one).

Time-reversal replaces t with −t, thereby reflecting time about a certain point

defined to be t = 0. Newton’s second law depends on d2x/dt2 and remains unchanged.

Maxwell’s equations,

∇ · E =
ρ

ε0
∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E

∂t
,

are similarly invariant. The magnetic field depends inherently on currents (the situa-

tion is more complex in quantum mechanics), which reverse sign under time reversal,

so both B and J become negative. E depends on charge distributions which are un-

affected by the symmetry, and so it is invariant under time-reversal. This difference

between E and B is interesting to examine a bit further.

Consider the example of a charged particle moving through static, parallel, electric

and magnetic fields, E and B [5, §2.2.3]. Assume that the particle is positively charged

and that its motion is initially perpendicular to the applied fields, which lie along the
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positive z-axis. If the particle has initial velocity V0 along the y-axis, then its equation

of motion is given by the Newton and Lorentz force laws as

m
d2r

dt2
= q
(
Eẑ + V0ŷ ×Bẑ

)
. (1.2)

Expanding this into three first-order, partial differential equations, we find

ẍ(t) =
qB

m
ẏ, ÿ(t) = −qB

m
ẋ, and z̈(t) =

qE

m
, (1.3)

which are uncoupled and solved to find the full solution

r(t) =
mV0

qB

(
cos

qB

m
tx̂ + sin

qB

m
tŷ

)
+
qE

2m
t2ẑ. (1.4)

The electric field will therefore accelerate the particle vertically and the magnetic

field will cause it to revolve, tracing out a left-handed helix as shown in Figure 1.2a,

below. We are now in a position to examine more rigorously the behavior of the

particle under time-reversal. First we must pick a point an origin t0 about which to

reflect time. In general, upon reversing time about this point t = t0, the equation of

motion becomes

r̄(t) = −mV0

qB

(
cos

qB

m
(t0 − t)x̂− sin

qB

m
(t0 − t)ŷ

)
+
qE

2m
(t0 − t)2ẑ. (1.5)

This motion retraces the steps of the original left-handed helix, just as expected.

If instead we reflect time about the initial point in the xy-plane, t0 = 0, then

the particle’s trajectory is a right-handed helix (Figure 1.2b). At first this may seem

odd; however, this is just the time-reversed particle continuing past the initial point

(Figure 1.2c). The difference is simply one of initial conditions, and time symmetry

is conserved in classical dynamics.
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Figure 1.2: Trajectories of charged particles in parallel electric and magnetic fields.
(a) A positive particle, forwardin time. (b) Time-reversed from the initial point of
motion. (c) Motion in the time-reversed world retraces the steps of (a) and then
continues to (b).

1.1.3 Charge

Charge symmetry states that the laws of physics are invariant under the exchange of

all particles for their antiparticles, a process known as charge conjugation. This is in-

trinsically a subject of relativistic quantum mechanics and therefore beyond the scope

of this thesis, but we can understand it intuitively. For the moment, consider that an-

timatter particles have the same masses and opposite charges as their corresponding

matter particles. Coulomb’s law,

F =
1

4πε0

q1q2
r2

r̂, (1.6)

is obviously invariant under a global reversal of charge, and Newton’s law does not

depend on it. Furthermore, electric fields, magnetic fields, and current densities

all change signs under charge conjugation and Maxwell’s equations are invariant [5,

§2.2.1]. Classical dynamics therefore conserves the three discrete symmetries.
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1.2 Discrete Symmetries in Quantum Mechanics

Discrete symmetries also find expression in the laws of quantum mechanics, but their

descriptions require more mathematics of the reader. First, we will define some

essential features of linear and unitary operators. We will then be in a position to

discuss parity, time, and charge in more rigorous terms.

1.2.1 Linear and Unitary Operators

Linear operators are mappings between vector spaces that preserve the properties

of vector addition and scalar multiplication.1 Specifically, a linear operator L̂ that

acts on a vector |v〉 in a vector space S produces a vector L̂|v〉 in another space, W .

This is written more compactly as L̂ : V → W . Linear operators satisfy the defining

condition

L̂
(
a1|α1〉+ · · ·+ an|αn〉

)
= a1L̂|α1〉+ · · ·+ anL̂|αn〉 (1.7)

for any complex constants an and vectors |αn〉. Antilinear operators switch the con-

stants to their complex conjugates. Both sorts of operators crop up when examining

discrete symmetries, so it worth examining them a bit further.

Unitary operators are a type of linear operator that perform one-to-one mappings

of vectors in one space onto vectors in another space, such as

Û |α〉 → |α′〉. (1.8)

If the operator is a matrix, then by definition its adjoint equals its inverse:

Û † = Û−1, (1.9)

Û Û † = Û †Û = Î , (1.10)

1This section combines details from [5, 6, 7, 8].
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where Î is the identity matrix. Unitary operators preserve the value of the inner

product,

〈α|β〉 = 〈α|Î|β〉 =
(
〈α|Û †

)(
Û |β〉

)
= 〈α′|β′〉, (1.11)

and antiunitary operators switch it to its complex conjugate. Such operations have

no effect on experimental outcome, which is a defining property of discrete symmetry

transformations [5, pg. 18]. We shall therefore seek to describe parity, time, and

charge through unitary or antiunitary operators.

The action of a symmetry on a specific quantity, such as position or momentum, is

described by the symmetry operator acting on the observable operator. This follows

because a transformation of state vectors is accompanied by a similar transformation

in operators. However, the latter are slightly more complex.2 Consider a symmetry

operator Ô with eigenvectors |ψn〉 that serve as a basis. Ô acts linearly on each

component of a vector expressed in this basis, and therefore we may consider only

one component without loss of generality. Suppose then that Ô acts on a basis vector

|ψ〉 such that Ô|ψ〉 = λ|ψ〉. All observable quantities are the same under symmetry

transformation, so the transformed operators and vectors must be related in the same

manner as the original operators and vectors, such that Ô′|ψ′〉 = λ|ψ′〉, where Ô′ and

|ψ′〉 are the transformed operator and vector, respectively. Replacing |ψ′〉 with Û |ψ〉

as in Eq. 1.8, we find

Ô′Û |ψ〉 = λÛ |ψ〉,

Û−1Ô′Û |ψ〉 = λÛ−1Û |ψ〉. (1.12)

2This description comes directly from Ballentine, L. E. [8, §3.1], and is reproduced here for
convenience with only minor changes.
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Subtracting from this the earlier result that Ô|ψ〉 = λ|ψ〉, Eq. 1.12 becomes

(Û−1Ô′Û − Ô)|ψ〉 = 0. (1.13)

Because |ψ〉 is an arbitrary basis vector, we may generalize and conclude (after some

minor footwork) that

Ô′ = ÛÔÛ−1. (1.14)

This is the formal result defining a coordinate system transformation for operators,

and will be referenced frequently in the coming discussion. With these mathematics

behind us, we may consider the discrete symmetries in turn.

1.2.2 Parity

Parity is a unitary operator, which we show by considering the commutator of position

and momentum. The momentum operator is defined as P̂ = −ih̄∇, and position is

simply X̂i = xi for each of the three coordinates. The commutator is given by

[X̂i, P̂j] = X̂iP̂j − P̂jX̂i = ih̄δij (1.15)

where δij is the Kronecker delta. The parity operator, P̂ (boldfaced to distinguish it

from momentum), switches the signs of position and momentum by definition. These

signs cancel and only the right side of Eq. 1.15 will change, so by applying Eq. 1.14

we find the transformed commutator to be

[X̂ ′
i, P̂

′
j ] = X̂ ′

iP̂
′
j − P̂ ′

jX̂
′
i = P̂ih̄δijP̂

−1. (1.16)

This agrees with Eq. 1.15 only if P̂iP̂−1 is equal to i, implying that the parity operator

must be unitary, not antiunitary.
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If we invert a system’s parity twice then it remains unchanged. We express this

mathematically as

P̂2 = P̂P̂ = Î , (1.17)

which reveals that P̂ is hermitean and has eigenvalues of ±1. (Strictly speaking,

actually, one could add a complex phase eiδ to the eigenvalues and still satisfy the

defining condition. This can be done many times in the upcoming mathematics,

but the complexities are unnecessary and do not change the results, so it is avoided

whenever possible.) States with parity eigenvalue +1 are known as even, and those

with eigenvalue -1 as odd.

1.2.3 Charge

Charge symmetry is also expressed by a unitary operator, as can be seen through

another example of Bigi and Sanda [5, §3.2]. Consider the Hamiltonian for a charged

particle in a weak electromagnetic field:

Ĥ = − h̄

2m
∇− q

2m
(A ·P + P ·A) +

q2

2mc2
A2 + qV. (1.18)

Charge conjugation changes the signs of only q, A, and V , leaving the Hamiltonian

invariant. Therefore, the charge operator Ĉ acting on Ĥ,

ĈĤĈ−1 = Ĥ, (1.19)

leaves it unchanged, and Ĉ must also be a unitary operator.

1.2.4 Time

Time symmetry is expressed by an antiunitary operator, which again follows from

the position-momentum commutator. Time reversal inverts momentum but does not
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change position, so the transformed commutator is

T̂[X̂i, P̂j]T̂
−1 = −[X̂i, P̂j] = T̂ih̄δijT̂

−1 = −ih̄δij. (1.20)

This will only be true if T̂iT̂−1 is equal to −i, and therefore T̂ must be antiunitary.

This immediately distinguishes it from the other discrete symmetry operators.3

The mathematics of discrete symmetry operators will prove essential to our dis-

cussion of electric dipole moments in fundamental particles, but first we shall consider

some interesting situations under which symmetries are broken.

1.3 Symmetry Violations

With formal expressions for the discrete symmetry operators in quantum mechanics

behind us, we now turn our attention to conservation and violation, both theoretical

and observed. To begin, we shall address the notion of “symmetry violation” with a

bit of history.

Parity, time, and charge were taken to be rigorously upheld symmetries until 1956,

when Lee and Yang proposed an experiment to test parity in the weak interaction

[9]. The next year, C. S. Wu observed the radioactive decay of magnetically aligned

60Co and the results were definitively asymmetric [10]. More electrons were emitted

opposite to the direction nuclear spin, which is anisotropic and therefore a parity-

violating observation, as Figure 1.3 shows.

Discrete symmetries can therefore be violated, and the observed violations vary

significantly by degree [4, §4.8]. Lee and Yang argued additionally that an experi-

ment to measure parity nonconservation in β decay could also distinguish a violation

of charge symmetry [11]. They made this prediction noting that no rigorous tests

3An interesting consequence of the antiunitary nature of T̂ is Kramer’s Degeneracy Theorem.
The proof and some of its consequences are outlined briefly in [5, §3.4].
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Figure 1.3: Parity violation in β decay of 60Co nuclei. (a) Electrons are emitted
preferentially opposite to the nuclear spin axis. (b) Parity switches the spin axis
relative to the preferred direction of electron emission.

of charge invariance in the weak interaction had been performed, and before the

publication of observed parity nonconservation.

These violations of both parity and charge are two of several discrete symmetry vi-

olations that have now been observed. For a comprehensive overview, see [5] and [12].

There are strong experimental and theoretical reasons to believe that the combined

operation CPT, taken in any order, is the fundamental symmetry transformation in

a relativistic quantum field theory. Such a theory allows each discrete symmetry to

transform a system partially, provided that the product CPT returns it to its original

state. This naturally allows for parity and charge violation in 60Co β decay, and also

for the predicted parity and time violations of intrinsic EDMs, which we now proceed

to discuss.
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Figure 1.4: An electric field induces a parallel EDM in an atom.

1.4 Electric Dipole Moments

1.4.1 Classical, Quantum, and Intrinsic

In classical electrodynamics, an electric dipole moment (EDM) is a spatial vector

pointing generally from regions of negative charge to those of positive charge. It is

given the formal definition

d =

∫
r′ρ(r′)dτ ′, (1.21)

where r′ points from the origin to a piece of charge whose density is ρ, and the

integral is taken over the region of interest [13, §3.4.2]. In the context of our study

of symmetry, an interesting example of an EDM is that induced in an atom exposed

to a weak electric field.

Consider an atom with a spherically symmetric electron distribution and a point-

like nucleus exposed to an electric field E [13, §4.1.2]. Neglecting shape distortions,

the electron cloud shifts oppositely to the direction of E and the nucleus parallel to

it, as in Figure 1.4. This internal asymmetry creates a field of opposite strength to

that of the applied field, and thereby a dipole d = αE, where α is a constant of

proportionality, the value of which varies by element. The energy U of an electric

dipole in a field is equal to −d · E, and therefore in this case U = −αE2.

Parity switches the direction of both the electric field and the induced EDM, so
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the mirror image is still physically sensible. Charge symmetry also switches E and d,

and time reversal changes nothing. This classical dipole moment therefore conserves

the discrete symmetries.

In quantum mechanics, an electric dipole moment is the expectation value of the

operator

d̂ =
∑

i

riqi, (1.22)

where the integral of Eq. 1.21 has been replaced with a sum over i discrete particles.

Its energy is described by a term in the Hamiltonian of the form Ĥdip = −d ·E, which,

for induced and atomic EDMs, is invariant under reversal of the discrete symmetries.

But what of those dipole moments whose magnitude and direction are independent

of any applied field? These are called intrinsic EDMs and are the subject of interest

in this thesis. We now consider some properties of these dipole moments in an effort

to motivate our research.

1.4.2 Symmetry Violations in Intrinsic EDMs

Any fermionic EDM must point either parallel or antiparallel to the spin axis to

prevent added degeneracy. The Pauli exclusion guarantees this by stating that no

two fermions in a system may have the same quantum numbers. Were the dipole

moment oriented in any other direction then it would grant an extra degree of free-

dom and require another quantum number to describe the state. No experimental

evidence supports this. We therefore express the electric dipole moment as a vector

proportional to the spin: d = dσ̂.

Were such a dipole moment to exist, it would constitute a direct violation of both

parity and time symmetries. Classically the argument is quite direct, as Figure 1.5

shows. Consider an electron whose dipole moment is (arbitrarily) parallel to its spin

axis. Parity ultimately reverses the direction of the dipole moment, but not that
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of the spin; time reversal does the opposite. Both situations result in the dipole

moment antiparallel to the spin axis, representing a fundamentally different particle.

If an intrinsic EDM were measured in a charged particle, it would therefore constitute

a violation of both parity and time.

These arguments are made quantum mechanical by considering the operators P̂,

T̂, and Ĉ [5, ch. 3]. The parity operator acts on a state |ψ〉 and maps it onto |ψ′〉,

such that P̂|ψ〉 → |ψ′〉. It switches the sign of r in Eq. 1.22, and therefore also the

sign of d̂, which we express formally as P̂d̂P̂−1 = −d̂. The expectation value of the

electric dipole moment is then given by

〈ψ|d̂|ψ〉 = 〈ψ|P̂−1P̂d̂P̂−1P̂|ψ〉 =
(
〈ψ|P̂†)(P̂d̂P̂−1

)(
P̂|ψ〉

)
= −〈ψ′|d̂|ψ′〉. (1.23)

In a parity symmetric theory, the first and last terms must be equal, but in this case

they are opposites. The presence of an intrinsic EDM therefore constitutes a violation

of parity symmetry.

Time symmetry is also violated, as we demonstrate by similar arguments. If

the system is to be non-degenerate, then the expectation value of d̂ must be pro-

portional to that of the angular momentum operator, Ĵ , because this is the only

three-dimensional vector that describes the state of the system. The dipole moment

is invariant under time reversal, so we find

〈ψ|d̂|ψ〉 =
(
〈ψ|T̂−1

)
T̂d̂T̂−1

(
T̂|ψ〉

)
= 〈ψ′|d̂|ψ′〉, (1.24)

Substituting for d̂ = kĴ in the first and last terms, and noting that Ĵ → −Ĵ under

time reversal, we find

k〈ψ|Ĵ |ψ〉 = −k〈ψ′|Ĵ |ψ′〉, (1.25)

which can only be true if k = 0. In a time-reversal symmetric theory, the dipole
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Figure 1.5: Parity and time reversal result in fundamentally different electrons than
the original. (a) Parity, (b) Time.



1.4. ELECTRIC DIPOLE MOMENTS 17

moment must therefore be zero. If a non-zero, intrinsic EDM were measured, this

would constitute a violation of both parity and time symmetries – a worthwhile field

of study, indeed!

The field of intrinsic electric dipole moments has quite a history, beginning with

studies of the neutron. In 1947, Havens, Rabi, and Rainwater examined the inter-

actions of neutrons with electrons in lead [14], and their data provide a limit on the

magnitude of the neutron EDM of |dn| < 3 × 10−18 e cm [15]. Smith, Purcell, and

Ramsey specifically intended to measure the neutron EDM and in 1957 they refined

the limit to |dn| < 5 × 10−20 e cm [16]. The present limit on the neutron EDM is

|dn| < 6.3× 10−26 e cm, as measured by Harris et al. [17].

The current limit on the electron electric dipole moment is |de| < 1.6 × 10−27 e

cm, as obtained by Regan et al. at the University of California at Berkeley [18]. Our

present experiment has yielded a limit of |de| < 1.5× 10−24 e cm as of the summer of

2006. The last published limit was |de| < 5×10−24 e cm [1], which is above the present

limit but better than the only previous limit obtained by a solid state experiment,

|de| < 2× 10−22 e cm [19, 20].

Electric dipole moment searches have not only continued until the present but

have accelerated and spread. The reason for this profound increase in the popularity

of the field is that EDMs provide excellent tests of theories beyond the Standard

Model. Many theories predict (however loosely) values for intrinsic EDMs that are

naggingly close to the current experimental limits. This is powerfully motivating.



Chapter 2

Experimental Theory

The current Amherst experiment to measure the electron electric dipole moment

uses a large, polycrystalline sample of gadolinium iron garnet. This distinguishes it

immediately from nearly all other EDM searches; we are, indeed, only the second

group ever to perform a solid-state EDM measurement.

The use of a solid sample has many advantages and disadvantages that merit

discussion, and this chapter addresses these issues. We begin by considering the

general principles of EDM measurements, and particularly those of our solid state

system. The properties of gadolinium iron garnet are then described along with the

design of the sample. Methods of signal detection and analysis are discussed to close.

2.1 Solid State Experiments

Fundamental particles with electric dipole moments will align in electric fields. This

alignment is the signature of a non-zero EDM and therefore the focus of related

experiments. Unfortunately, it comes with a bit of a snag: most fundamental particles

carry charge and therefore cannot be held in stable equilibrium by electrostatic forces.

It is therefore no wonder that EDM searches began with neutrons.

18
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Atomic systems provide an attractive solution to this because they are electrically

neutral and contain lots of particles (whether electrons, protons, or neutrons) held

rigidly in bound states. However, in 1963 Schiff published a theorem stating that the

first-order energy shift due to electric dipole moments should be completely shielded

in atoms [21].1 His proof concerns only non-relativistic particles interacting electro-

statically, which led Sandars to complete a fully relativistic calculation in 1965 [22].

His results are staggering: not only does relativity allow EDMs to perturb atomic

systems, but their effects are enhanced. The magnitude of enhancement depends in-

tricately upon the structure of the atom, but generally scales as the atomic number

cubed and can reach several orders of magnitude.

Heavy atoms therefore present ideal systems for studying the electric dipole mo-

ments of fundamental particles. To this end, our experiment uses a large, polycrys-

talline sample of gadolinium iron garnet (GdIG), which provides an enormous number

of heavy atoms. The magnetic properties of GdIG will be discussed in the next sec-

tion, but first we shall consider the principles, advantages, and limitations of solid

state EDM experiments in general.

The basic principle of such experiments is that magnetic moments align in applied

magnetic fields. A magnetic material has many such moments, both macroscopically

in domains and microscopically in the particles that they comprise, and so it will

magnetize in an applied field. This magnetization corresponds to the average align-

ment of the moments parallel or antiparallel to the field. In fundamental particles,

the magnetic dipole moment is parallel to the spin, which, by previous arguments in

§1.4.2, is also parallel to the electric dipole moment. A magnetically polarized solid

will therefore be electrically polarized if its constituent particles have electric dipole

moments.

The argument works equally well in reverse: electric dipole moments align in

1A derivation of his theorem is included in appendix A, but the mathematics are lengthy and
would prove distracting at this point.
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Figure 2.1: A basic design for a solid state EDM experiment. The magnetic field
aligns the EDMs, electrically polarizing the sample.

applied electric fields, thereby aligning the magnetic moments. Our experiment is of

the former type, in which we apply a magnetic field to our GdIG sample and measure

its electrical polarization. It can be shown that an electrical polarization induces

bound surface and volume charges, σb and ρb, given by

σb = P · n̂, (2.1)

ρb = −∇ ·P, (2.2)

where P is the polarization vector, defined as electric dipole moment per unit volume

[13, §4.1–2]. This surface charge creates a potential difference across the sample,

which we measure by capacitively coupling it to a detector. Figure 2.1 shows one

such apparatus, where the polarized material is cylindrical and has its axis parallel

to the applied field.

This is the essence of our experiment. Geometrical and circuitry changes aside,

we magnetize a sample of gadolinium iron garnet and measure the potential across it.

We must consider details such as input impedances, capacitance, noise, shielding, and

other systematic effects, but the premise is identical. An improved design requires
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placing the system in a Faraday cage and accounting for finite input impedance, finite

sample capacitance, and non-zero detector capacitance.

Our apparatus is more intricate than the one pictured in Figure 2.1, and the vari-

ous differences will be explained throughout the coming sections. To give them some

preparative structure, a brief overview follows. First, we use two-channel detection

rather than a differential amplifier; the channels are labeled A and B. This allows

us to see the behavior of each electrode individually, which is of great advantage in

locating systematic effects. The data are eventually subtracted to obtain a potential

difference corresponding to the electron EDM, but the ability to analyze each channel

separately is important.

Second, our GdIG sample is toroidal rather than cylindrical. This decreases de-

magnetizing fields by closing field lines inside the magnetic material, rather than in

free space. Third, the detector circuit is divided into two stages, the first of which

has extremely high input impedance (approximately 1013 Ω). This isolates the signal

and amplifies it approximately seventy-fold before sending it to a filter.2

Finally, our applied magnetic field is not constant, but rather alternates with

pulses that flip the magnetization of the sample. This makes the EDM potential

an antisymmetric which helps to distinguish it from other effects. In fact, the en-

tire apparatus and measurement scheme are built on principles of symmetry such

as this. Many things are reversed so that effects without the antisymmetric, EDM

characteristic are naturally subtracted.

It is useful now to consider the magnetic properties of gadolinium iron garnet.

These play a crucial role in our experimental design, and the reasons for our modi-

fications and changes to the apparatus will be unclear without an understanding of

the physics involved.

2See appendix B for explanations of complex impedance, filter analysis, and the five-pole Bessel
filter used in our detector.
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2.2 Gadolinium Iron Garnet

Sandars’s work demonstrates that atoms enhance the effects of their constituent elec-

tric dipole moments by factors that scale roughly as the atomic number cubed. Heavy

atoms therefore present ideal systems for the study of EDMs: the 1989 Amherst ex-

periment used cesium vapor cells [23], and the current limit was set with atomic

beams of thallium [18].

Our experiment uses a polycrystalline sample of gadolinium iron garnet (GdIG),

which has numerous favorable qualities that merit explanation. Sensitivity to the

electron electric dipole moment comes from the gadolinium, which has an atomic

number of 64. The material is also highly resistive, which is necessary given the

nature of our signal detection. However, it is the magnetic behavior that provides

the primary motivation for our experimental methods, so we will discuss this first.

2.2.1 Magnetic Properties

The chemical formula of gadolinium iron garnet is

Gd3
3+Fe2

3+Fe3
3+O12

2-.

The gadolinium can be replaced by other rare-earth ions, such as yttrium or gal-

lium, to change the thermal and magnetic properties of the material. All have the

same crystal structure, which is pictured in Figure 2.2. There are three magnetic

sub-lattices, which contain ions that align parallel to each other. The iron ions in

lattices (a) and (d) align antiparallel to each other; lattice (c) contains the gadolin-

ium ions, which align parallel to (a). These magnetizations always have the same

relative orientations, but their magnitudes are temperature dependent, as shown in

Figure 2.3. Specifically, the magnitude of gadolinium magnetization decreases rapidly

with increasing temperature; compared to this, the iron changes little. The overall

magnetization is the sum of those of the three sub-lattices, and because Gd varies so
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greatly there is an intermediate point at which the total magnetization drops to zero.

This is known as the compensation temperature.

It is important to note that while the overall magnetization of GdIG drops to zero

at the compensation temperature, this is simply because the magnetizations of the

atoms add to zero; they are not individually zero. Because the direction of overall

magnetization follows that of the applied field, the gadolinium and iron atoms of

lattice (c) will align parallel to the field below the compensation temperature, and

against it above the compensation temperature. The directions flip, but the mag-

nitudes change smoothly; there is therefore significant microscopic order throughout

[25]. These ideas are important to discussions in the next section, which explains the

geometry of our sample.

As a first approach to understanding the magnetic behavior of GdIG, let us con-

sider the general response of materials to applied magnetic fields. The magnetization

M of a material is defined as the magnetic dipole moment per unit volume, given by

M =
1

µ0

B−H, (2.3)

where H is the applied field and B is the total flux density.3 There is in general

some relationship between H and M, and this allows us to distinguish at least three

different types of materials: paramagnetic, ferromagnetic, and ferrimagnetic.4

Paramagnetic materials magnetically align in an applied field, but do not retain

their magnetizations after the field dissipates. They contribute positively to the field,

and their magnetizations vary approximately proportionally to the applied field, and

3This amounts to the same thing as a field, but with a headache from unit conversions. H is what
we apply in a controlled fashion, and B is the total field, which may include material contributions.
They are related by Eq. 2.3, where µ0 = 4π × 10−7 A/m2 is the permeability of free space.

4The following discussion of magnetic materials combines details from [26, 27, 28]. The last deals
most directly with rare-earth garnets.
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Figure 2.2: Partial crystal structure of an iron garnet, showing the immediate envi-
ronment of the rare-earth ion. (After [24, Figure 5.8b].)
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Figure 2.3: Magnetization of the GdIG sub-lattices with temperature. Total magneti-
zation is the dashed curve, and its sign indicates the direction relative to gadolinium.
(After [24, Figure 5.9].)
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inversely with the temperature. This relationship,

M ∝ H

T
, (2.4)

is known as Curie’s law. Magnetization decreases with increasing temperature be-

cause thermal energy prevents complete alignment with the applied field. The re-

lationship is only approximate in the low temperature region, because M obviously

does not diverge as T approaches 0 K.

Ferromagnetic materials have many domains, each with a spontaneous moment

in the absence of any applied field. This implies that the individual, paramagnetic

constituents align in parallel, and that their exchange interactions are strong enough

to maintain the alignment and preserve the field. However, increasing thermal energy

decreases the alignment of the domains, and there is a temperature at which ferro-

magnets lose their spontaneous moments. This is known as the Curie point, TC ,

above which ferromagnets behave paramagnetically [13, §6.4.2]. From Figure 2.3 we

see that the Curie temperature for GdIG is roughly 560 K.

Ferrimagnetic materials are ferromagnets whose total magnetization at T = 0

K does not correspond to complete parallel alignment of all constituent moments

(spins). This implies that some magnetic moments must align antiparallel to others,

decreasing M. GdIG is ferrimagnetic because the iron ions in lattices (a) and (d)

are ferromagnetic, but orient oppositely. To demonstrate this, we again refer back to

Figure 2.3 and examine the magnetic moments of the ions at T = 0 K. Gd has seven

unpaired 4f and one unpaired 5d electron, giving it the highest spin of any element

in the Lanthanide series. Its electron structure is

Gd: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f 7 5s2 5p6 (5d1) (6s2),
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where the bracketed 4d and 6s shells are completely removed in the trivalent ion.

Gd3+ therefore has total spin 7
2
, and contributes 7 µB to the overall GdIG moment.

The electron structure of iron is

Fe: 1s2 2s2 2p6 3s2 3p6 (3d6) (4s2),

where the trivalent ion lacks its entire 4s shell, and one electron from the 3d shell.

Fe3+ therefore has spin 5
2

and contributes 5 µB to the overall moment. Were GdIG

a uniformly aligned ferromagnet, the total spin would be the sum of the moments of

each atom, giving S = 46 µB per formula unit. However, the extrapolated moment

at T = 0 K is only 16 µB, which is the predicted value if three of the five iron ions are

oriented oppositely to the Gd3+. Gadolinium iron garnet is therefore best described

as a ferrimagnetic.

Gadolinium ions in GdIG experience fields primarily due to the aligned iron ions

[25]. Within a magnetized sample at 100 K, the interaction between iron and gadolin-

ium ions is around seven times stronger than the interactions between gadolinium ions;

the iron-iron interactions are another order of magnitude stronger. Because iron is

ferromagnetic it maintains its magnetization after an applied field has dissipated, and

its field is strong enough to keep the gadolinium aligned roughly as 1/T (Figure 2.3).

The domains of GdIG therefore act as ferrimagnets, whereas the gadolinium atoms

would act as paramagnets in isolation. This is useful because our sample remains

magnetized without our having to maintain an applied field, as will be discussed

further in §2.4.

2.2.2 EDM Enhancement

The enhancement factor of an atom is the amount by which the effects of its con-

stituent EDMs are scaled due to the particulars of the atomic structure. As a first
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approach, consider that the enhancement factor of the electron EDM, k, scales ap-

proximately as α2Z3, where α ≈ 1/137 is the fine structure constant and Z is the

atomic number [29]. For gadolinium this gives k ≈ 14 but for iron only k ≈ 1 (oxygen

is negligible); gadolinium has the largest effect by far, so EDMs in the other atoms

are neglected. However, in GdIG the gadolinium atoms are located within a lattice

of oxygen atoms small enough that their wave functions overlap. A more precise

calculation is therefore required to determine the exact enhancement factor of Gd in

the garnet structure.

T. N. Mukhamedjanov et al. performed this calculation in 2003 [30]. Their ap-

proach was to calculate the perturbation that the presence of electron electric dipoles

would have on the lattice energy of GdIG; these perturbations are then later related

to physically observable quantities. We will discuss their work by emphasizing the

logic used and the approximations made, but without delving into the mathematics.

The elastic properties of GdIG are discussed first, to prepare for a direct consideration

of the quantum mechanical description of gadolinium ions in GdIG. By introducing

electron EDMs we state, but do not derive, a result relating the lattice distortion en-

ergy to the magnitude of the electron EDM. Finally, this is related to a macroscopic

polarization.

For small disturbances, GdIG should behave in an approximately spring-like man-

ner, giving it a potential response of the form

U(x) =
1

2
kx2, (2.5)

where k is a constant and x is the magnitude of some displacement that occurs

in the position of the Gd3+. The energy minimum in this case clearly occurs at

x = 0. However, if the system is perturbed by some energy ∆U(x), then the potential
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becomes

U(x) =
1

2
kx2 + ∆U(x) (2.6)

and the minimum must be recalculated. EDMs have this effect in GdIG, as we now

proceed to show.

First, the potential in which the gadolinium electrons reside must be calculated.

Gd3+ is a trivalent ion whose potential can be described by an effective potential with

parameters chosen to match observed energy levels. The potential is given by

VGd(r) =
1

r

(Zi − Z)(e−µ/d + 1)

(1 + ηr)2(e(r−µ)/d + 1)
− Zi

r
, (2.7)

where µ, d, and η are fit values, and Zi is the charge of ionic gadolinium core (Zi = 4

for Gd3+, as reported). Solving the Dirac equation with the above potential, the

authors find energy levels for single-electron states that differ by approximately 2%

from the observed values in isolated Gd3+ ions. Eq. 2.7 is therefore considered to be

a good model of free, trivalent gadolinium ions.

As Figures 2.2 and 2.4 show, the oxygen atoms surround gadolinium in a dodec-

ahedral shape resembling a twisted cube. To make the calculations manageable, the

authors approximate the effects of these oxygens as a spherically symmetric, attrac-

tive potential around the gadolinium. This potential is of the form

VO(r) = −A0e
−( r−r0

D )
2

, (2.8)

where r0 is the distance of separation between Gd and O, and A0 and D are fit

parameters. The total potential in which the gadolinium electrons are located is the

sum of Eqs. 2.7 and 2.8, and the fit parameters of the latter are chosen such that the

total potential approximates observed energy levels of gadolinium in GdIG.

Further calculation shows that the shift in lattice energy due to electron EDMs,
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Figure 2.4: Oxygen atoms form a dodecahedral structure around gadolinium, analo-
gous to a twisted cube. (After [30, Figure 1].)

when gadolinium is displaced by a distance x, is given by

∆U(x) = −A x

aB

(
de

eaB

)
E0(n̂S · x̂), (2.9)

where A is a calculated parameter, e is the fundamental unit of charge, aB is the Bohr

radius, n̂S is a unit vector in the direction of the Gd spin, and x̂ is a unit vector along

the direction of displacement. A is calculated to be approximately 0.095, as a lower

bound. The energy shift due to a displacement of Gd by a distance x is therefore

given by Eqs. 2.6 and 2.9 as

U(x) =
1

2
kx2 − A

x

aB

(
de

eaB

)
E0. (2.10)

U will naturally be minimized, but to calculate the value of x that does this we must

know more about the effective spring constant k. Mukhamedjanov et al. choose a

value of

k = 0.095
E0

a 2
B

(2.11)

based on infrared spectroscopy data of GdIG and YIG. By coincidence, the dimen-
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sionless factor above is equal to the lower bound of A in Eq. 2.9, and so the value of

x that minimizes U is

x ≈ de

e
, (2.12)

which is a remarkably simple relationship. This is the fundamental result of Muk-

hamedjanov et al.’s calculation, and may be manipulated directly to yield an observ-

able polarization.

The electrical polarization P is defined as the dipole moment per unit volume.

For a point particle the dipole moment is d = qr, where q is the particle’s charge

and r is its position relative to some origin. In our case, trivalent gadolinium ions

are displaced by a distance x ≈ de/e, so we have q = 3e and r = x. The macroscopic

polarization is therefore given by

P = 3nGddeσ̂, (2.13)

where nGd = 1.235 × 1022 atoms/cm3 is the number of gadolinium ions per unit

volume in GdIG, and σ̂ is a unit vector along the direction of Gd spin.5

This result incorporates the complete response of GdIG to the alignment of elec-

tron EDMs. We emphasize this because GdIG is a dielectric material, and one might

be led incorrectly to assume that the polarization in Eq. 2.13 induces a dielectric

response. On the contrary, such behavior has already been explicitly included in the

calculation of x, which involved modeling the lattice elasticity. Earlier work by the

same group used the dielectric constant in these approximations [31], but this has

been exchanged for spectroscopic data.

5Interestingly, this is exactly what we would have gotten by assuming that each unpaired electron
in Gd3+ contributes de to the overall dipole moment.
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2.2.3 A Rough Prediction

To get a sense of the magnitudes of the involved numbers, Mukhamedjanov et al. con-

sider the example of a 10 cm long sample of pure GdIG magnetized at T = 0 K.

Eq. 2.13 gives the polarization in unspecified units, but we revert to SI for consis-

tency. The internal electrical field in a uniformly polarized cylinder is given by

Ein = − 1

ε0
Pin, (2.14)

where ε0 ≈ 8.85 × 10−12 C2/Nm2 is the permittivity of free space [13, 30]. If the

polarization is approximately constant within the cylinder, the potential difference

between its ends will be simply ∆V = El, where l = 10 cm is the length of the

cylinder. If we take the size of de to be the upper bound of the current world limit,

|de| < 1.6× 10−27 e cm, the potential is

∆V =

∫
E · dl = − 1

ε0
Pedml = − 1

ε0
3denGdl ≈ −1.1 nV, (2.15)

which agrees with the reported result.

Roughly speaking, our experiment is ten times less sensitive to the EDM, the

details of which will be discussed toward the end of this chapter. To reach the world

limit we would have to measure a potential difference on the order of 0.1 nV, which

is arrestingly small. Our present measurements are accurate to the level around 0.1

µV, and so our limit is approximately 10-24 e cm.

In the final sections of this chapter, we will return to this result and relate our

measured potential asymmetry to a value of the electron EDM more specifically. For

now, we must modify this picture a bit further by considering the geometry of our

sample. The logic behind the present construction depends heavily on the temper-

ature dependence of the various sub-lattices’s magnetizations. We will consequently
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refer back to Figure 2.3 frequently to justify certain decisions and claims.

2.3 Sample Structure

This section describes the geometry and composition of our polycrystalline GdIG

sample, focusing on two new concepts. The first is toroidal geometry, which changes

our approach to the EDM search considerably. The second is sample doping, in which

the concentration of gadolinium is decreased and some yttrium added in its place.

2.3.1 Toroidal Geometry

The cylindrical model presented in Figure 2.1 has the disadvantage of strong demag-

netizing fields. In one sense this means that the field it produces must be maintained

in free space to close field lines, which is energetically disfavored. Microscopically,

when a sample is magnetized its poles align parallel to the applied field and enhance

it. However, finite samples have ends where opposite poles will effectively “build up.”

A field opposing the magnetization will therefore form and tend to cancel it, as in

Figure 2.5a [32]. This is called the demagnetizing field and is typically given the

symbol HD.

A toroidal geometry avoids these difficulties by closing field lines within the ma-

terial, as in Figure 2.5b. Poles do not build up at endpoints because there simply

aren’t any. However, this is immediately the source of another problem: endpoints

are necessary for a potential difference! In a pure toroid magnetized circularly about

it axis, there will be no point at which surface charge can build up unopposed. To

counter this difficulty we introduce the topic of sample doping.
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Figure 2.5: Demagnetizing fields. (a) Poles build up on the ends of a sample, creating
a demagnetizing field. (b) Field lines close within a toroidal sample.

2.3.2 Gadolinium-Yttrium Doping

Mixed rare-earth garnets are commonly made, and involve two or more trivalent

ions mixed together in a single sample. The chemical formula for such a mixture of

compounds A and B is

AxB3-xFe5O12,

where 0 ≤ x ≤ 3 indicates the average number of A per formula unit. Our sample in-

cludes a mixture of gadolinium and yttrium, which is commercially available and is in

fact less expensive than pure GdIG. Yttrium is nonmagnetic, so any sample of GdIG

doped with yttrium will have less net magnetization from gadolinium. (In Figure 2.3

this translates into vertically scaling down the Gd3+ curve.) As the gadolinium con-

centration is decreased, the compensation temperature decreases. Eventually there is

not enough gadolinium to counter the iron (d) lattice and there is no actual point of

net zero magnetization. The limits for this construction are 0.73 ≤ xGd ≤ 3 [25].

To take advantage of toroidal geometry while still maintaining a potential differ-

ence between two points, we use a vertically separated, split-toroid of two differently
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doped halves. Each has a different compensation temperature, and so between the

two there is a temperature at which the gadolinium magnetizations are oppositely

directed. The overall magnetization of the sample is continuous, but in one half the

Gd moments point parallel to the applied field and in the other half antiparallel. We

therefore identify three temperature regions of interest:

1. Below both compensation temperatures: Gadolinium magnetization dom-

inates in both halves, and the Gd moments are parallel to the applied field.

2. Between compensation temperatures: One half has Gd moments parallel

to the applied field, the other half against. They oppose at the interface.

3. Above both compensation temperatures: Iron (d) dominates in both

halves. Gd moments are parallel to each other and antiparallel to the field.

These temperature regions are important because our sensitivity to the electron EDM

comes from gadolinium. Yttrium is nonmagnetic, so it does not align in applied fields

and creates no observable signal. The direction of the gadolinium magnetization is

therefore the direction of electrical polarization.

Each region is interesting because the EDM signal should appear differently at

each temperature. (We will return to an exact calculation of these differences in

§2.5.2.) By varying the sample temperature between the three regions we can isolate

temperature-dependent effects and non-EDM signals, and subtract them to improve

our resolution. We consequently have chosen to use a sample with one half of 1.8

Gd3+ ions per formula unit, and another with 1.35. This places their compensation

temperatures at approximately 153 K and 104 K, respectively, as shown in Figure

2.6.6

These compensation temperatures allow for a lower measurement above the boiling

point of liquid nitrogen (77 K), which is a convenient cold reservoir in our experiment.

6The experimental methods used to obtain these data are described in [2, §5.8].
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Figure 2.6: Magnetization of the toroid halves with temperature. (After [2, Figure
4.9]).

The intermediate region falls in the ideal operating range of JFETs, which are the

high-impedance devices used in our detector; the upper temperature is fairly arbitrary.

The three temperatures at which we operate are chosen to be 88 K, 127 K, and 178

K for these reasons. A schematic showing the relative magnetizations of the ions in

the various sub-lattices in GdIG is shown in Figure 2.7. The positive and negative

signs are chosen because de points towards positive charge by convention.

The physical toroid has a rectangular, vertical cross section. Its outer diameter is

4”, inner diameter 2”, and height 2”. We have glued it to a ceramic mount that has

extremely high resistance and a thermal expansion coefficient near that of GdIG. As

the temperature of the apparatus is cycled from room temperature to its minimum

point of 88 K, the mount tends to shrink with the GdIG, thereby reducing stress and

limiting the possibility of fracture. Figure 2.8 shows the construction in schematic.

The electrode plates are 0.002” thick copper attached to the sample with silver-doped,

conductive epoxy.
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Figure 2.7: Magnetization of the split toroid at different temperatures. (a) Magneti-
zations of the different sub-lattices. (b) Total magnetization and electron EDM.
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Figure 2.8: Schematic of the physical toroid.

2.3.3 Magnetization Calculations

It is instructive at this point to present a calculation of the predicted magnetizations

of the different halves of our toroid. The actual data are presented in Figure 2.6, but

we should have a basis for understanding if they are reasonable.

The magnetization of a material is defined as magnetic dipole moment per unit

volume, or in terms of the applied field H and the flux density B as

M =
1

µ0

B−H. (2.16)

The magnetic moment can be expressed in many units, but a convenient choice is

Bohr magnetons, as given in Figure 2.3 for each sub-lattice in GdIG. The figure shows

that the total moment density depends on both the temperature and the gadolinium

concentration. In fact, the contributions of the iron atoms change barely at all at low

temperatures, and so any variation is due primarily to the gadolinium.

To calculate the magnetization we begin with the curves shown in Figure 2.3, and

add up the individual contributions at a specific temperature and doping; let us choose
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the 1.8 Gd half at 100 K, as an example. The iron ions in lattice (d) contribute -15 µB

and those in (a) 10 µB, for a total of -5 µB from iron. Gadolinium would contribute

approximately 10 µB, but its concentration is decreased by a factor of 1.8/3 = 0.6,

so it contributes 6 µB. The total magnetic moment is therefore approximately 1 µB

per formula unit. There are 3 Gd3+ per formula unit in GdIG, so the volume density

of formula units is nGd/3. (Recall from §2.2.2 that nGd = 1.235× 1022 atoms/cm3 is

the volume density of Gd3+ in pure GdIG.)

The magnetization of the 1.8 Gd half at 100 K is therefore

M ≈
(

1 µB

formula unit

)
1

3
nGd. (2.17)

By directly substituting 1 µB = 9.274 × 10−24 J/T and converting nGd to units of

m-3, we find the magnetization in SI to be

M = 3.8× 104 A

m
, (2.18)

which has units of magnetic field. While this result is correct, expressing it in SI

units is not typical. The preferred units are Gauss, which are the analogue of Tesla in

Gaussian units (1 T = 104 G). Gauss and Tesla are units of magnetic flux density, so

converting the above result to Gauss requires switching both to the new set of units

and from field to flux density.

In Gaussian units the magnetization is given by

4πM = B−H, (2.19)

where the product 4πM is in units of Gauss, which takes care of the field to flux

conversion. Therefore, we need only convert between SI and Gaussian field units, the

conversion for which is 1 A/m = 4π × 10−3 Oe [13, App. C]. Multiplying the result
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of Eq. 2.18 by this factor gives 4πM = 480 G, in close agreement with the measured

values of Figure 2.6.

Calculations of this sort, involving scaling the magnetization of the ions in GdIG

differently, are used frequently in the final sections of this chapter, which deal with

signal analysis. Before getting there, we will discuss the methods by which the sample

is magnetized and the signal detected. This is a complicated process and merits a

thorough examination.

2.4 Applied Field and Signal Detection

With a good sense of how the sample works magnetically, we now examine how its

magnetization is periodically flipped and the signal detected. Because of the toroidal

geometry and ferrimagnetic nature of the material, we do not bother to maintain

the applied field during measurement. Instead, we magnetize the sample largely to

saturation with a “pulse” of applied field, and then switch it off during data collection.

When the sample magnetization flips, our circuity responds inductively with large

pulses; the detector has been modified to deal with these problems.

2.4.1 Inductive Pulses and Optical Switches

Inductive pulses are simply a manifestation of Faraday’s law, which relates time-

varying magnetic fields and electrical potentials. The sample magnetization creates a

large field that changes rapidly, so ∂B/∂t is also large. The loops through which this

changing flux occurs are not immediately obvious. They involve the detector circuitry

and capacitance to ground in order to be complete, but they are very real. When the

potential due to this changing flux appears on the input, it sends an extremely large

signal to the detector, which decays quite slowly.

To counter these signals, a detector has been designed that incorporates optical
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Figure 2.9: Optical switches isolate the second stage both from the electrode and
from ground.

switches to isolate various stages of the circuit during the pulses (Figure 2.9). These

switches have high input impedance, but nowhere near the range of our JFETs and

1013 Ω resistors. We therefore place them in the circuitry after the transistor outputs

to maintain our high impedance to ground at the input. When a “blanking pulse”

is sent to the detector, the switches open and provide an excellent signal block.

Otherwise, they provide a negligible 7 Ω of resistance [33].

The first switch is located directly after the transistor output stage, blocking the

rest of the circuitry from the signal. The second switch blocks the input of the second

stage from ground, thereby preserving the signal level before the pulse. This reduces

capacitive charging and discharging during the blanking period. The electrode signal

ideally should change very little between pulses, so it is useful to maintain the charge

on the capacitors.

2.4.2 Triggering Scheme

The overall sequence of events in magnetizing the sample and taking data is as follows:

Switches open → Field pulse → Switches close → Measure potential →

Reverse polarity → Repeat.
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Our triggering scheme successfully accomplishes this by using one master function

generator as the global sync. It sends out a square wave signal at some frequency f

into a 555 timer circuit that emits a 5 ms pulse, which we refer to as the sync pulse.

This pulse triggers two other function generators, one of which controls the switches

(blanking) and the other the magnetic field. The blanking generator triggers at the

beginning of the sync pulse, and opens the switches for approximately 50 ms. This

length of time must be significantly longer than the pulse time, so that the detector

sees as little of the inductive pulses as possible, but short enough that the data region

is adequately long. The field generator triggers at the end of the sync pulse and

turns the current on for approximately 12 ms. This time is chosen to allow the field

generator to reach a current necessary to fully magnetize the sample. The overall

triggering scheme for one field flip is shown in Figure 2.10a.

The blanking and field generators run at just over twice the frequency of the

master generator, so that they complete one full cycle before the next sync pulse

arrives (the difference is about 1%). The blanking pulses repeat normally, but the

field pulses have an additional stage to alternate their signs. A DC current switch

directs this process, taking current from a large current supply and directing it via the

signal from the field pulse generator, but alternating the sign with its own, internal

circuity. A diagram of this triggering scheme is shown in Figure 2.10b.

2.4.3 Signal Detection

The signal that we detect should be a slight potential asymmetry that is antisymmet-

ric upon reversal of the applied field. The surface charge difference will be constant

while the sample is magnetized in one direction, but our detector measures the po-

tential relative to ground across a 1013 Ω resistor that does allow some charge to flow

from the electrode plate. Each channel also has capacitance to ground of approxi-

mately 20 pF [2, §6.5]. The signal will therefore have an RC time of approximately
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Figure 2.10: Triggering scheme for the pulsed waveform. (a) One cycle for positive
field pulse, showing exact timing. (b) Extended plot showing complete process with
a positive, negative, and another positive pulse.
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Figure 2.11: A typical trace taken at 2.3 Hz, showing both up and down pulses. This
trace is averaged 512 times, and displayed voltages are compensated for gain.

(1013 Ω)(20× 10−12 F) = 200 s, and so the delay between pulses must be significantly

less than this. However, we must also give time for the inductive pulses to decay, and

the balance that we choose is a frequency between 1.2 and 2.3 Hz.

The detector measures each channel independently relative to ground; we desig-

nate them A and B. This is advantageous because the apparatus is intended to be

perfectly symmetric, so any differences between the two channels point to accidental

asymmetries. Each signal undergoes separate but identical amplification and filtra-

tion, and the final results are eventually subtracted on a computer. Figure 2.11 shows

a typical trace taken at 127 K; the bumps near the middle are noise introduced by

the optical switches, and the relatively flat regions provide the actual data.

The most common and harmful noise sources are microphonics, which are charac-

terized as the signals created by charges physically oscillating in electrical fields. To

address this, essentially anything that can move in the circuit has been bolted down,

but ringing still occurs and creates havoc when it does. Physically preventing motion

is the most effective way to reduce the signals, but once this approach has reached

its limits we may electronically filter out certain pesky frequencies.

Acoustic noise, typically in the range of around 200–600 Hz, is especially irritating.
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Figure 2.12: Gain of the pre-amplifier at 127 K as a function of gate-source voltage.
(After [2, Figure 6.14].)

Our detector circuit therefore contains a five-pole Bessel filter designed to filter these

frequencies. A discussion of complex impedances, transfer functions, and our detector

filter can be found in appendix B, but for now we will mention the following results.

The filter has its -3dB point at 80 Hz and by 200 Hz the gain has dropped to 1/10.

There is minimal waveform distortion in the pass-band region because it is a Bessel

filter, and acoustic noise is effectively filtered.

Total amplification from the detector is typically around -4,200. The first stage,

known as the pre-amplifier, is kept within a temperature-controlled Faraday cage

above the sample. Ben Heidenreich discusses the mathematics behind this circuit

in his thesis [2, ch. 6], but the results are plotted in Figure 2.12. At 127 K, with

the gate-source voltage held at approximately 0.95 V, the pre-amplifier has a gain of

around −75. The second stage has a constant gain of 56 and is located outside of the

apparatus. To analyze the signal we must account for these gains and discuss voltage

at the detector input. Accordingly, all future analyses discuss voltage to the input

unless otherwise specified.
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2.5 Data Analysis

A complete data set includes measurements made at a variety of temperatures, field

strengths, and sample orientations. We therefore cycle the sample temperature be-

tween the three operating points, 88 K, 127 K, and 178 K, and take averaged data at

varying maximum field strengths. We then warm the apparatus to room temperature,

rotate the toroid by 180◦, and repeat the process. This procedure allows us to correct

for asymmetries due to temperature fluctuations and sample orientation, significantly

increasing our resolution.

2.5.1 Fitting the Data

Data are taken at various maximum values of the applied field because we find that

the measured potential asymmetry varies with the magnetization of the sample, de-

creasing at higher fields. An EDM potential should do just the opposite, and increase

as more dipoles align. The measurements are well described by a function of the form

∆Vasym =
a

Hmax

+ ∆V, (2.20)

where Hmax is the maximum value of the applied field, and a and ∆V are fit parame-

ters. We select this fit because the decay appears related to the overall magnetization

of the sample, and the magnetization of materials approaching saturation fits a func-

tion of the form [34]

M = M0 −
b

H
− c

H2
. (2.21)

Including the last term increases variation in the other parameters and yields a poor

description of our data, so we neglect it. Theoretically, we expect the potential

asymmetry to be independent of the magnitude of the applied field, when the sample

is magnetized. Therefore, in Eq. 2.20, a should be zero and ∆V should correspond
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Figure 2.13: Asymmetry versus field data at 127 K from summer 2006. The solid line
is the a/H fit, and the dashed line the high field asymptote ∆V .

directly to the EDM potential. However, a is non-zero and we must fit the data to

extrapolate to the “high field” limit where ∆Vasym ≈ ∆V . Figure 2.13 shows a typical

plot of asymmetry versus field at 127 K; these data were part of the complete set used

to establish our current limit in the summer of 2006.

In the past this fit has worked well to describe the gathered data, but, after several

changes were made to the sample in early 2006, the decay became smaller and less

clear. The data are improved and the calculated limit on de has dropped by a factor

of four, but the trends are less obvious. The changes that were made to the sample

are discussed in chapter 3.

2.5.2 Sensitivity to the EDM

We must now calculate the connection between the calculated, high-field asymmetry

∆V and the magnitude of the electron EDM. This potential depends on the electrical

polarization of the sample, which in turn depends on the magnetization of gadolinium.

The latter varies both with temperature and the concentration of Gd, so we must

account for these effects.
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The electrical polarization of a magnetized sample of GdIG due to the electron

EDM is given by Eq. 2.13, as calculated by Mukhamedjanov et al. It states

P = 3denGd, (2.22)

where de is the magnitude of the electron EDM and nGd is the number density of

Gd3+ ions in GdIG. In our experiment, we use differently doped samples at a variety

of temperatures, so this polarization must be scaled appropriately. Four principle

effects contribute to these changes:

1. Temperature: The magnetic alignment of Gd decreases with increasing tem-

perature.

2. Doping: The concentration of Gd is different in each half of the toroid.

3. Flux matching: The magnetizations of the two halves vary differently with

temperature, so they are in general not matched in their flux.

4. Pulsed field: The magnetic field is turned off during measurement, so magne-

tization is not externally maintained.

The temperature dependence of gadolinium magnetization can be determined

by comparing the magnetization at a given temperature to that at T = 0 K.7 From

Figure 2.3, we find approximate values at the operating temperatures, as listed in

Table 2.1. The function representing the relative magnetization of Gd as a function

of temperature will be assigned the name R(T ).

Doping scales the polarization by the relative concentration of Gd3+ ions. In our

sample, this decreases nGd by a factor of 1.8/3 = 0.6 in one half, and 1.35/3 = 0.45

7Recall that gadolinium behaves paramagnetically in the field created by the iron ions in GdIG,
so its magnetization varies roughly as 1/T .
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Temperature µB/formula unit Relative Gd Magnetization
0 K 21 1
88 K 11 0.5
127 K 8 0.4
178 K 6 0.3

Table 2.1: Gadolinium magnetization at the operating temperatures, from Figure 2.3.
Magnetic moments have been approximated to the nearest integer value.

in the other. This scaling will be represented by the variable c, and its effects are

plotted in Figure 2.14a.

Flux matching is the result of different gadolinium concentrations in the two

halves of the toroid. Each has a different magnetization at any given temperature

(Figure 2.6), so, when the applied field dissipates, the unmatched poles at the elec-

trodes create demagnetizing fields. Observation shows that the magnetization of the

more magnetized half rapidly decreases to match the level of the lesser. At 88 K,

which is below both compensation temperatures, the relative magnetization is de-

termined by Gd concentration; the 1.35 side is less magnetized because it has fewer

Gd per formula unit. At 127 K the magnetizations are equal (it was chosen for this

reason), and at 178 K, which is above both compensation temperatures, the 1.8 side

is less magnetized because more gadolinium ions oppose the iron (d) ions. These

predicted magnetizations are plotted in Figure 2.14b. To mathematically describe

the decrease that results from flux matching, we introduce the function λ(T ), defined

by

λ(T ) =

∣∣∣∣M1.8(T )

M1.35(T )

∣∣∣∣ , (2.23)

where M1.8 and M1.35 are the predicted magnetizations before flux matching (Figure

2.14c). The magnetization of the stronger side is scaled by λ appropriately so that

it equals that of the weaker side. In the temperature region 0 K < T < 127 K, M1.8

must decrease to equal M1.35 and so we scale it by 1
λ
. Above 127 K we must scale
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down M1.35 directly by λ. These results are summarized below:

Temperature Range Effective Magnetizations

T < 127 K M ′
1.8 = 1

λ
M1.8, M ′

1.35 = M1.35

T > 127 K M ′
1.8 = M1.8, M ′

1.35 = λM1.35.

Pulsing the applied field allows the sample to partially demagnetize before data

are collected. This is mainly because the polycrystalline sample comprises many

magnetic domains, each of which has its preferred axis oriented in a different spatial

direction. An applied field can push these magnetizations closer into alignment, but,

when it dissipates, the moments relax and M partially decreases. We observe a 23%

decrease due to this effect, such that the total remaining magnetization is only 77%

of that of the lesser magnetized half [2, §7.6]. We will symbolize this demagnetization

by the factor D.

2.5.3 Scaling Factors

If we consider all of the above four effects (temperature variation, doping, flux match-

ing, and pulsed field) as factors that scale the EDM polarization, then P can be

re-expressed as

P =
(
Rcλ′D

)
3denGd = 3γT

c nGdde. (2.24)

Here R represents the relative magnetization of Gd3+ in pure GdIG as a function of

temperature, c is the doping factor, λ′ symbolizes the effect of flux matching (multi-

plication by λ, if necessary), and D is the demagnetization factor. The temperature-

and doping-dependent variable γT
c = Rcλ′D has been introduced to keep track of the

product of these four factors. From now on, we will refer to the γT
c as scaling factors.8

Before continuing to calculate explicit values of the scaling factors, let us establish

a sign convention. Figure 2.7 shows that at 88 K the EDMs align parallel to M; we

8Superscripts will be used to indicate the temperature at which a variable is evaluated, and
subscripts will generally indicate the doping of GdIG, where 3 is the maximum.
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Figure 2.15: Scaling factors for the EDM signal over the range of temperatures. (a)
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c of each half of the toroid. (b) Difference in scaling factors, ∆γT = γT
1.8 − γT

1.35.

will take this direction to be positive, such that each half flips to negative polarization

above its compensation temperature. (The sign of the γT
c is therefore the same as the

sign of MT
c from Figure 2.14b.) Accounting for this sign convention, we calculate the

scaling factors as shown in Figure 2.15a.

With a sign convention established, we may now examine the behavior of induced

surface charges and charge flow on the electrodes.

2.5.4 Electrodes and Capacitance

When an EDM polarization forms in the sample at a given temperature, it induces

surface charge density on the ends of the toroid halves, as in Figure 2.7. This charge

density is given formally by Eq. 2.1, which states

σb = P · n̂. (2.25)

The sample magnetization is toroidal overall, but perpendicular to the electrode

plates, such that n̂ is parallel to P. The surface charge at the electrode due to
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the EDM polarization is therefore equal to P . Additionally, each electrode sees sur-

face charge from both halves of the toroid, so according to our sign convention the

total electric charge should be

∆qT
edm =

(
σT

1.8 − σT
1.35

)
A =

(
P T

1.8 − P T
1.35

)
A, (2.26)

where A = 11.7 cm2 is the area of the plate, and the P T
c are the EDM polarizations.

However, the presence of electrodes introduces free charge into the system, which

fundamentally alters the calculation.

The bound charge due to P will induce free charge flow qf onto the electrodes,

which will in turn induce a dielectric response in the GdIG. This response reduces the

internal field due to the free charge, Ef , by a factor of κ = χ + 1.9 For convenience,

we define the effective charge to be the free charge that must flow from one electrode

to the other in order to to fully cancel out the signal between them.10

If we approximate the assembly as a parallel plate capacitor, then the relationship

between the free charge qf and the electric field Ef that it creates is quite simple:

Ef =
1

ε0
σf =

qf
ε0A

, (2.27)

where A is the area of one of the capacitor plates. The EDM polarization is approx-

imately uniform within the sample, and therefore creates a field given by Eq. 2.14,

which here states

Eedm = − 1

ε0
Pedm, (2.28)

where Pedm = 3nGddeσ̂Gd is the polarization calculated in Eq. 2.13. (We recall that

this polarization already considers the dielectric response of GdIG to the alignment

9Both GdIG and YIG have approximately the same dielectric constant, so κ should be the same
for each half of the toroid [30, 35].

10This definition derives from [2, §2.7–8].



2.5. DATA ANALYSIS 53

of the electron EDMs.) Substituting the field in Eq. 2.27 for Eedm above, we find the

free charge that will cancel the field due to the EDM polarization to be qf = PedmA.

The effective charge is a factor of κ larger than this:

qeff = κPedmA. (2.29)

The product κPedm is referred to as the effective polarization in the previous work.

The effective charge that flows onto the electrodes due to the EDM polarization,

at a particular temperature, is given by

∆qT
eff = 2κ

(
σT

1.8 − σT
1.35

)
A = 2κ

(
P T

1.8 − P T
1.35

)
A

= 6κnGddeA
(
γT

1.8 − γT
1.35

)
. (2.30)

The factor of two has been added because the polarizations flip from negative to

positive during measurement, so twice the charge must flow. The negative sign arises

because of our sign convention, which states that the EDM polarizations are parallel

at 88 K, and therefore will point oppositely at an electrode plate. For clarity, let us

state this directly: the direction of the EDM relative to its 88 K direction is contained

within the scaling factor. Eq. 2.30 should hold at every temperature provided that

we have been careful when evaluating the γT
c .

It is therefore the difference in scaling factors in which we are interested; a plot

of these values is shown in Figure 2.15b. From this plot, we find the differential

sensitivities to the EDM at each operating temperature, relative to γ0K
3 = 1. The

approximate values are listed in Table 2.2.

The actual circuit within our apparatus can be modeled by treating the electrodes

as capacitors to ground, connected together by a capacitance due to the detector. This

circuit is shown in Figure 2.16. Ben Heidenreich explicitly calculates the relationship
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Temperature γ1.8 γ1.35 ∆γ = γ1.8 − γ1.35

0 K 0.25 0.35 -0.1
88 K 0.05 0.2 -0.15
127 K 0.15 -0.15 0.30
178 K -0.15 -0.05 -0.1

Table 2.2: Scaling factors γT
c at the various operating temperatures.

Ch1 Ch2

Ce Ce
Cd

Figure 2.16: Circuit diagram of the electrodes as capacitors to ground. Ce are the
electrode capacitances, and Cd is the capacitance between the electrodes.

between the effective charge ∆qeff and the potential ∆V on the electrodes in his thesis,

and finds

∆V =
∆qeff

Ce + Cg/2
, (2.31)

where Ce = 3.5 pF is the capacitance between the electrodes, due to the sample

and the detector circuitry, and Cg = 20 pF is the capacitance of each electrode to

ground.11 By combining this result with Eq. 2.30 and rearranging slightly, we find

∆V T =
6κnGdA

Cd + Ce/2

(
γT

1.8 − γT
1.35

)
de. (2.32)

Direct substitution of the values κ = 15 [35, 30], A = 11.7 cm2, nGd = 1.235 × 1022

atoms/cm3, Cd = 3.5 pF, and Ce = 20 pF simplifies Eq. 2.32 to the more applicable

form

∆V T =

(
1.7× 1017 V

e cm

)(
γT

1.8 − γT
1.35

)
de, (2.33)

where the constant has been adjusted so that de is in units of e cm.

11This equation is from §7.1, but draws on earlier calculations from §4.9 [2].
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Eq. 2.32 in principle will yield a value of the electron electric dipole moment at any

temperature we choose, provided that ∆V T is due entirely to the EDM polarization.

This is extremely unlikely; in fact, all of the data points taken over the summer of 2006

would have yielded non-zero EDMs on the order of 10−23 e cm had we analyzed the

data by only this method. Rather, we combine the data in such a way as to subtract

any first-order, non-EDM potentials due to sample orientation and temperature. We

now describe these analyses.

2.5.5 Data Analysis and Basic Systematics

A complete data set comprises measurements of ∆Vasym (from Eq. 2.20) at every

combination of operating temperature and sample orientation, and at many values of

Hmax. We cycle the sample temperature between 88 K, 127 K, and 178 K, and flip

the orientation of the sample between two states. Hmax varies between 100 G < H <

350 G in roughly 25 G intervals, for a total of at least 10 values. This leads to a

total data set of at least 60 values of ∆Vasym, and typically many more for improved

statistics.

The potential asymmetries versus applied field, at constant temperature and sam-

ple orientation, are fit to Eq. 2.20, from which we obtain a “high field” value of ∆V T .

(The superscript T has been added because we now see that this value is a function of

temperature.) There are six combinations of temperature and sample orientation, for

a total of six ∆V T . As previously mentioned, these data do not yield consistent values

of de from Eq. 2.33 until they are combined to remove zeroth- and first-order effects

in temperature and sample orientation. Suppose, then, that each of the measured

asymmetries ∆V T actually comprise four terms, given by

∆V T = ∆V T
edm +O + (αT + β), (2.34)
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where ∆V T
edm indicates the asymmetry due to the EDM polarization, and is the value

that eventually will be used in evaluating Eq. 2.33. Here O is a term that switches

sign upon reversal of the toroid, and (αT + β) accounts for offsets that are linear

and constant in the temperature. Other terms may perturb our results, including

high-order terms in T , but we may at least deal with those given above.

We account for the sample orientation term O by averaging the values of ∆V T

at each orientation, to get something between the two that is probably more accurate.

Rotating the toroid switches the inputs at the detector (e.g. channel A of the sample

corresponds to channel B of the detector), so we switch the sign of the reversed

measurement to compensate, such that

∆V T
avg =

1

2

(
∆V T

normal −∆V T
reversed

)
. (2.35)

To eliminate the temperature dependent terms, we must have measurements at

three temperatures equally spaced by some amount ∆T = ε. Subtracting the average

of the lower and higher measurements from the middle one, all non-EDM terms vanish

from ∆V T
avg. The temperatures 88 K, 127 K, and 178 K approximately satisfy this

condition, with ε ≈ 45K. The data combination used to eliminate these effects is

therefore

∆V 127K
avg − 1

2

(
∆V 88K

avg + ∆V 178K
avg

)
= ∆V 127K

edm − 1

2

(
∆V 88K

edm + ∆V 178K
edm

)
, (2.36)

where the left side involves measured data, and the right side purely EDM potentials.

Eq. 2.33 gives the relationship between the measured potential asymmetry due to

the EDM and the magnitude of de, so combining this with Eq. 2.36 we find

∆V 127K
avg −

∆V 88K
avg + ∆V 178K

avg

2
=

(
1.7× 1017 V

e cm

)(
∆γ127K − ∆γ88K + ∆γ178K

2

)
de,
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where ∆γT = γT
1.8 − γT

1.35. Substituting these values from Table 2.2 and isolating

de, we find the final result for the relationship between the extrapolated, high-field

asymmetries, averaged over orientation, and the electron EDM:

de =

(
1.8× 10−17 e cm

V

)(
∆V 127K

avg − 1

2

(
∆V 88K

avg + ∆V 178K
avg

))
. (2.37)

These are the mathematics used in analyzing the asymmetry data that we collect.

As previously mentioned, the ∆V T reflect potentials at the input. Measured potentials

must therefore be scaled to compensate for gain, which is typically around -4,200 total

as discussed in §2.4.3. We now present the most recent data set, both to serve as

an example of how the preceding methods are used, and also to establish the current

status of the experiment.

2.6 Present Limit

The sample was last cooled down in July and August of 2006, when a complete set

of data was taken. Three major modifications had been made to the sample since

the previous cool down. First, 3/16” was ground off of the top, where the 1.8 Gd

half had been chipped after arriving at the Los Alamos receiving room. Secondly,

the electrodes were completely reconstructed. New wires were soldered rigidly to the

electrode plates, fixing a break in channel A that occurred in the preceding years.

The plates were thickened from 0.001” to 0.002” copper, and were re-attached to the

sample with a different epoxy.

The data for these cool downs (one with each sample orientation) are shown in

Figure 2.17, and the calculated values of ∆V T and ∆V T
avg are shown in Table 2.3.

These data yield a limit on de, according to Eq. 2.37, of

de = (−0.18± 1.33)× 10−24 e cm. (2.38)
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Temperature Orientation ∆V (µV) ∆Vavg (µV)

88 K
normal −0.05± 0.13

0.48± 0.09
reversed −1.01± 0.13

127 K
normal 0.70± 0.05

0.45± 0.05
reversed −0.19± 0.08

178 K
normal 0.10± 0.08

0.43± 0.07
reversed −0.76± 0.11

Table 2.3: Data from the summer of 2006. Potentials are compensated for gain to
reflect the signal at the input. ∆V for the reversed orientation are shown as measured,
but in the average their signs switch.

We set a limit on the size by assuming that de must be less than its highest possible

value, and so our reported result is

|de| < 1.5× 10−24 e cm. (2.39)

As previously mentioned, this is three orders of magnitude larger than the world

limit, but it represents improvement by almost a factor of four over the previous

result published in December 2005 [1].

The data in Table 2.3 show a dependence on sample orientation. Consider, for

example, the measurements at 88 K. Reversing the orientation takes ∆V from 0.05

to 1.01 µV, an increase of almost twenty fold; this trend is also apparent at the other

temperatures. If we average to account for sample orientation, then this dependence

is significantly reduced. Nevertheless, it is indicative of troubling asymmetries within

the apparatus.

The most important systematic effect evident from these data is what we refer to

as the M-even effect, which we believe to be the source of the observed 1/H decay

of ∆V . This effect is a potential asymmetry that is symmetric upon reversal of

the magnetic field and therefore does not display the same sign-dependence as the

EDM potential. However, the effect is not identical on the two channels. Chapter 3

discusses the properties of this effect in greater detail.
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Figure 2.17: Asymmetry versus field plots from the summer of 2006. The solid curves
are regressions according to Eq. 2.20, the data for which are given in Table 2.3.



Chapter 3

M-Even Effect

This chapter discusses many characteristics of the particular systematic effect on

which all current work has focused. The qualities of so-called “symmetric” and “anti-

symmetric” effects are discussed in the context of our experiment, along with relevant

examples. We then proceed to characterize the effect as it is currently understood,

explaining methods that have been adopted to minimize the disturbance.

3.1 Symmetric and Antisymmetric Effects

To begin a discussion of systematic effects, we should address some initial vocabulary.

First let us distinguish between effects and noise. The former are reproducible, yet

undesirable and often mysterious, signals that somehow end up on our oscilloscope

during data collection. The latter is defined vaguely as small, irreproducible fluctua-

tions that are, above all else, not correlated to the signal of interest. This becomes a

little hazy when dealing with microphonic ringing, but we tend to isolate that in its

own category.

Noise can be significantly reduced by averaging over long periods of time. This

works because the noise signals have no phase or frequency relationship to the exper-

60
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imental signal, and so after sufficient iterations their sum approaches zero. However,

the most effective approach is always either to shield the apparatus from the signal,

or to reduce the noise at its source. For example, to free our system of 60 Hz oscilla-

tions due to the wall voltage, we place the apparatus in a Faraday cage. Other noise

sources, such as Johnson noise and shot noise, plague any real electrical system; both

of these are described at length in Ben’s thesis [2, ch. 4].

Systematic effects are distinguishable from noise because they are not random,

and averaging does nothing to reduce their signal size. Instead, they perturb the

signal in such a way that either the system must be physically changed or the data

cleverly subtracted. A few examples of these are described in §2.5.5; data analysis

does well at eliminating these effects, but we would do better if they weren’t there in

the first place.

Effects may also be characterized by their symmetry. Symmetric (even) effects

are identical after something has been reversed, whereas antisymmetric (odd) effects

switch sign. Mathematically, this says that for some symmetric and antisymmetric

functions fsym(x) and fanti(x), taking x→ −x gives

fsym(−x) = fsym(x), (3.1)

fanti(−x) = −fanti(x). (3.2)

If we have some composite function f = fsym + fanti, we may isolate its contributions

with the following identities:

fsym(x) =
1

2

(
f(x) + f(−x)

)
, (3.3)

fanti(x) =
1

2

(
f(x)− f(−x)

)
. (3.4)

Figure 3.1 shows one such signal and its decomposition.
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x

f(x)

(a) (b) (c)

Figure 3.1: Any function can be broken down into symmetric and antisymmetric
contributions: (a) total function, (b) symmetric contribution, and (c) antisymmetric
contribution.

To decompose a signal in the manner of Eqs. 3.3 and 3.4, the physical variable

represented by x and its origin must be chosen. Regarding the current work, we

choose the strength of the applied field and the point H = 0, respectively. Both the

EDM signal and inductive pulses, for example, are antisymmetric signals.

As discussed in the previous chapter, our apparatus and methods of data analysis

are designed to eliminate many non-EDM effects, both symmetric and antisymmetric.

Offsets are even because they remain unchanged upon reversal of either the applied

field or the sample orientation; each is separately considered. The EDM signal is odd

upon the reversal of sample orientation, so we average the odd contributions from

each orientation. Temperature effects can be even and odd because we account for

both linear and constant terms, and these can be modeled by purely even and odd

contributions.

The apparatus is also designed with symmetry in mind; specifically, it is largely

symmetric under rotation about the vertical axis.1 This places the two electrodes in

similar environments and ensures that each undergoes identical amplification and fil-

1This requires qualification: much of the apparatus is continuously symmetric under such rota-
tion, but the circuitry is only symmetric under 180◦ rotation.
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tration. However, despite these internal symmetries, a symmetric effect has bothered

us for the past year.

3.2 Even Systematic

We have already encountered the most profound evidence for this systematic in the

previous chapter, when discussing the 1/H decay of the measured voltage asymmetry

(§2.5.1, Eq. 2.20, Figure 2.13). This behavior is present on each channel separately,

but not identically; hence, subtracting the data decreases, but does not eliminate, the

effect.

These data compare the measured voltage asymmetry to the maximum strength

of the applied field, but each point is collected separately. We have found that a more

revealing (and much faster) method for measuring the effect is to use a triangular,

field waveform because it progresses through all field strengths linearly. A plot of the

signal under these conditions is shown in Figure 3.2. The detector signal is clearly

asymmetric, yet we would expect it to be perfectly antisymmetric with contributions

from both the inductive pulses and the EDM potential. Before decomposing the signal

into its symmetric and antisymmetric parts, we must understand precisely what the

curves imply.

3.2.1 Hysteresis

As discussed in §2.4.1, when the GdIG toroid’s magnetization flips, the surrounding

circuitry responds inductively with large pulses. The field coil surrounding the sam-

ple also responds, as Figure 3.2 shows. Notice that the field trace suffers a slight

perturbation to its linearity after the points at which H = 0. This is evidence of

sample hysteresis, which is the tendency of a system not to follow immediately the

forces applied to it [32, §2.1]. Ferromagnetic materials, for example, exhibit hysteresis
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Figure 3.2: Output signal when the applied field has a triangular waveform (127 K,
Hmax = 100 G, f = 1.02 Hz, from summer 2006). The applied field is the triangular
curve, scaled against the secondary axis.

because they have spontaneous moments in the absence of applied fields. They resist

demagnetizing until H has reached a material-specific level known as the coercive

field, Hc.

The distinction between paramagnetism and ferromagnetism can be recast in

terms of hysteresis.2 Paramagnets exhibit no hysteretic effects because they fully

demagnetize as the applied field drops to zero. Ferromagnets resist these changes

until their temperature reaches the Curie point. The magnetization of ferromagnets

is therefore a function of more than H; it depends on the magnetic history as well. A

hysteresis loop, such as Figure 3.3, shows the behavior of magnetization as the applied

field changes, and may be divided into the following segments.

1. H increases positively from zero and M saturates.

2. H decreases to zero but M remains largely unchanged.

2Recall that our ferrimagnetic material behaves ferromagnetically, except that the gadolinium
ions have paramagnetic temperature dependence. A hysteresis loop for the GdIG toroid is shown in
Figure 6.1.
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Figure 3.3: Hysteresis loop for ferromagnetic materials. (After [32, Figure 2.3].)

3. H reaches the coercive field and M drops to zero.

4. H decreases to its minimum and M saturates, now in the opposite direction.

These steps repeat after the initial magnetization and create a small lag time between

H and M each time the field flips direction. The small bumps in the field trace of

Figure 3.2 are evidence of this delay; when the sample magnetization eventually flips,

the driving coil responds inductively and its current increase momentarily slows.

The field trace in Figure 3.2 therefore does not directly reflect the behavior of

the sample’s magnetization in time. A qualitative version of such a plot is shown

in Figure 3.4, from which it is evident that the magnetization is always asymmetric

about the point H = 0. Rather, the magnetization is antisymmetric forward in time

and so we decompose the signal by comparing points one half-cycle apart. This is

expressed as

M(t) = −M(t+ τ/2), (3.5)

where τ = 1/f is the period. The applied field, with its small disturbance due to the

sample’s field, actually exhibits this type of symmetry as well. H reaches the coercive

field at the same time after it crosses through zero, so the dips occur at equal points
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Figure 3.4: Qualitative plot of sample magnetization versus time. Magnetization is
the solid curve, and applied field is the dashed curve.

in time after the direction of the field flips. It therefore obeys the same symmetry as

in Eq. 3.5, such that H(t) = −H(t+ τ/2).

3.2.2 Decomposition

Based on these symmetries, we decompose the signal from the triangular waveform

into contributions that are symmetric and antisymmetric in the magnetization:

Vsym(t) =
1

2

(
V (t) + V (t+ τ/2)

)
, (3.6)

Vanti(t) =
1

2

(
V (t)− V (t+ τ/2)

)
. (3.7)

These mathematics provide the basis of many figures and analyses throughout the

remainder of this thesis. Applying them to the data in Figure 3.2, we find the sym-

metric and antisymmetric contributions to the detector signal, as shown in Figure

3.5. The antisymmetric signal comprises a step when ∂H/∂t changes abruptly, and

an inductive pulse when the sample magnetization flips. The symmetric contribution

is what we refer to as the M-Even effect ; it has been given this name precisely because

of these analyses.
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Figure 3.5: (a) Antisymmetric and (b) symmetric contributions to the detector signal
at 127 K. DC offsets have been subtracted.

To understand the M-Even effect has been the purpose of our current work. Its

symmetry is puzzling, though recent data and much thought on the parts of Professors

Hunter and Gordon have revealed that many things could potentially cause symmetric

potentials to appear at our input. Indeed, narrowing the search has been the difficult

part. The remainder of this chapter will characterize the M-Even effect further, which

should help to place the succeeding chapters in better context. Few of the results are

intuitive, but they have all contributed to our current methods, for better or worse.

3.3 Characteristics

3.3.1 Structure

The structure of the M-even signal is not well understood, but it is experimentally

reproducible. The signal consistently includes the following features when plotted

against the applied field.

• Slight decrease as H increases from the negative maximum and approaches zero.

• Sharp rise and drop as the magnetization flips.
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• Negative peak after M flips, followed by 1/H decay in the high-field limit.

The last of these was discussed in the section dealing with data analyses, and is

the reason that we use a pulsed waveform during data collection. This wave form

allows us to magnetize strongly without overheating the sample. In theory a high field

is helpful but not necessary to obtain an accurate EDM reading. With the M-even

effect present, high fields are essential. The first two characteristics are presently not

understood, but we can make some reasonable assumptions.

When the sample is magnetized, the two halves of the toroid strongly attract

each other, just as do two bar magnets placed with opposite poles adjacent. As the

applied field increases oppositely and approaches the coercive field, the magnetization

decreases along with the force of attraction. Then the field reaches full strength and

the attraction is restored. If we associate the signal with some changing behavior in

the magnetization, then the M-even effect’s structure might be explained.

Varying the maximum value of the applied field changes the shape of the signal

and reveals a deeper connection between the effect and the sample magnetization.

Figure 3.6 shows several curves of the M-even effect taken at different amplitudes of

the applied field. They are vertically offset from each other to emphasize similarity

in the shape of the high-field falloff regions. The value of zero is essentially arbitrary,

but a particular trace always has the same value at its endpoints. Were H to increase

further, the M-even signal would decrease and more of the 1/H falloff would be visible;

displaying the curves this way emphasizes that they would be identical if H continued

to increase. This is evidence of hysteresis in the M-even effect, a plot of which would

look something like Figure 3.7.

The M-even effect produces signals on the order of 100 µV, which are enormous

in our experiment. Recall from §2.2.3 that our current sensitivity is on the order

of 1 µV, and to reach the world limit of the electron EDM we must distinguish

0.1 nV. This systematic effect therefore produces potential differences two orders of
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Figure 3.7: Hysteresis loop of the M-Even signal at 127 K.
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Figure 3.8: M-even effect at the operating temperatures, from summer 2006 (Hmax =
100 G, f = 1.02 Hz).

magnitude larger than our current resolution, and six orders of magnitude larger

than the sensitivity that we hope to achieve. All current research has focused on the

M-even effect for this reason.

3.3.2 Temperature Dependence

The structure of the M-even signal changes slightly with temperature, as shown in

Figure 3.8. The most interesting change occurs at 178 K, when the signals from the

two channels differ just before H = 0. This is disturbing because the channels are

well matched in all other measurements. We currently have no explanation for this

discrepancy, although it has been observed consistently at 178 K, and never at the

other temperatures. The perturbation is due to the GdIG toroid, not the detector,

because it tracks with the sample orientation.

3.3.3 Frequency Independence

The M-even effect is largely frequency-independent, which means that regardless of

the driving frequency of the applied field, Figure 3.5 looks the same. Such behav-
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Figure 3.9: M-even signals at varied frequencies, from summer 2006. Hmax = 75 G
for both traces.

ior argues against some type of inductive, ∂H/∂t effect (which couldn’t explain the

symmetry anyway). We understand this to be consistent with the interpretation that

the M-even signal is magnetization-dependent. Figure 3.9 shows the M-even signal

for two different driving frequencies, but with the same maximum field. The plots

are essentially identical, apart from some substructure around H = 25 G. We observe

this occasionally but not predictably, and so it remains unexplained; it is certainly

atypical. Figure 3.6 also includes plots of different frequencies, none of which show

this substructure.

3.3.4 Compensating Techniques

The most important technique adopted to combat the M-even signal is the pulsed

waveform. High field increases the magnetization of the sample and therefore de-

creases the effect, but strong fields also require large currents. Large currents dissipate

power in the form of heat, which becomes unacceptable as temperature regulation is

important to our data collection. The problem is worst at 88 K, where the system
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temperature is just 11 K above that of the cold reservoir, liquid nitrogen (TBP ≈ 77

K).

We compromise by applying the strongest field possible with current3 equipment,

but we turn it off as soon as the sample is magnetized. The prices we pay are large

inductive pulses, demagnetization due to flux matching, and the 23% overall loss, all

of which are discussed in §2.5.2. Lowering the frequency of field pulses also helps, by

decreasing the duty cycle of the heating. For this reason, much of the data from the

summer of 2006 was collected at a frequency of 1.02 Hz instead of the usual 2.3 Hz.

3.4 Remounting the Sample

For many years, the two channels of the sample had produced inexplicably asym-

metric signals. Channel A responded much more to microphonic excitations, and the

magnitudes of its inductive pulses were consistently only 68% of those of channel B

[2, §7.3]. For publication [1], the data from channel A were corrected by a factor of

1.47 to correct for this difference, but the asymmetry was still puzzling. Additionally,

the 1.8 Gd half of the toroid was chipped before arriving at Amherst, breaking the

symmetry of the toroid. The consequences of this were unknown.

To correct for both of these defects, the mounted, epoxied toroid was decon-

structed in the spring of 2006. We found that the electrode wire of channel A had

become significantly detached from the electrode plate, and the exposed surfaces quite

oxidized; physical stability was certainly compromised. The sample was returned to

the manufacturer, Pacific Ceramics, to be ground down below the level of the chip,

reducing the height by 3/16”. It was then heated to burn off the epoxy that was keep-

ing the two halves together, giving us a fresh start. The thickness of the electrode

plates was doubled from 0.001” to 0.002”, and the wires were directly soldered to

3No pun intended.
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the plates. The two halves of the toroid were then reattached with Epo-Tek EE149-2

silver-doped epoxy, which is different from the previously used brand. (This changed

simply because the previous type was no longer available.)

After remounting the sample and collecting new data, we have found two primary

changes. First, the signals from the two channels are well enough matched that no

correction is required. Secondly, the M-even signal has decreased on both channels

by a factor of approximately six. While the former correction is pleasing, it is the

latter is the most relevant to the current work.

3.5 Summary, Interlude

The theoretical background for this thesis is now complete. The mathematics of

discrete symmetries have been introduced, the nature of solid state EDM experiments

explained, and the mathematics of our experiment derived in full. With the aid of

appendix C, we hope that the reader has a good sense of how and why our apparatus is

constructed. Now that the M-Even effect has been characterized to the most accurate

level yet reported, we turn to a description of recent experiments to examine it further.

The next chapter outlines our early experimental methods and results, in an ef-

fort to motive the work presented in chapter 5. It begins with a description of the

model system designed to facilitate these tests and then presents the data in roughly

chronological order.



Chapter 4

Early Results

This chapter describes the first sets of experiments conducted to examine the M-even

effect outside the EDM apparatus. The essential methods and results are discussed,

but the details are located in appendix D. As mentioned in the previous chapter,

we observed a factor of six decrease in the size of the effect after the sample was

ground down and reassembled with new epoxy, electrodes, and electrode wires. The

volume of the sample was changed by only 10% but the M-even signal decreased six

fold, indicating that the effect is not due to the bulk, magnetic properties of GdIG.

The epoxy was changed to a different brand, and the electrodes were differently

constructed, so we next considered possible surface interactions at the electrode.

We first describe the model system constructed to examine the M-Even effect, and

then some preliminary results. Few of these experiments yielded intuitive results, but

some questions regarding the nature of the M-even effect begin to be addressed. Con-

clusions are drawn at the end of the chapter, where the results have been summarized.

74
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4.1 Model System

The electrodes of the GdIG toroid are practically inaccessible because the Faraday

cage surrounding the sample is encased by a field coil. Accessing the toroid requires

cutting off and eventually rewinding this coil, which takes two people the better part

of a week to complete. A more accessible model system therefore had to be built,

and we chose a solenoidal coil and cylindrical samples. This cylindrical geometry

introduces demagnetizing fields; however, it is easy to assemble and to alter.

4.1.1 Structure

Certain features of the new system are similar to those of the larger apparatus: a

sample is mounted within a strong magnetic field and has an electrode somehow

attached to its surface. This electrode connects to the gate of a high input impedance

amplifier that isolates the electrode and prevents loading by the oscilloscope. Both

the sample and the detector are kept within a Faraday cage to minimize noise.

The model system comprises a set of two solenoidal coils in parallel, one inserted

into the other. Figure 4.1 shows the entire system in cross-section. The outer coil

was constructed by Jared Hertzberg ’98E for a different experiment. It is 10” tall and

has extra windings for 1.5” at the bottom and top to diminish end effects; the three

regions may be connected in any combination.

The inner coil was made by Dan Krause, Jr. and Benjamin Heidenreich in the

winter of 2006. It is 8.75” tall and has the detector circuit mounted above it, sur-

rounded by a 2” tall, accessible Faraday cage. The top of the cage is a brass plate

with BNC inputs for positive and negative voltage supplies, ground, and output. This

entire unit is inserted vertically into the outer coil and rests on a brass plate that

is screwed into the bottom of the latter (completing the Faraday cage). The inner

region of the inner coil therefore provides space to mount a sample. Electrode wires
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Coil Resistance (Ω) Field Strength (G/A)
Top end 0.3

90Bottom end 3.5
Outer main 8.2
Inner coil 9.0 140

Combination 8.1 130

Table 4.1: Resistance and field strength of each coil in the model system. Field
strength is measured at the center of each coil, and is given for the outer coil with all
three sections in series. The combination is the circuit shown in Figure 4.2.

extend vertically through the detector circuit board, where they are soldered to the

input of the amplifier.

Mounting samples is challenging, but our system generally includes braces that

are constructed to hold samples and center them vertically within the inner coil. The

designs of various braces will be discussed in §4.2.

4.1.2 Magnetic Field

The inner coil is connected in parallel with the main body of the outer coil, and this

combination is in series with the end coils. A circuit diagram for this combination is

given in Figure 4.2. We connect them in this way to reduce the overall resistance while

maintaining adequate current through the two main coils. (For example, virtually no

current would flow through the inner coil were it connected in parallel with an end

coil.) The resistance and field strength of each coil is given in Table 4.1, as measured

directly with a Gaussmeter and an Ohmmeter.1

A linear amplifier, originally constructed by Phil Grant for the EDM apparatus,

drives the solenoidal coils. It outputs up to ±6 A of current, which is adequate for the

model system, although we now require ±10 A in the toroidal coil. The amplifier has

two output terminals, positive and negative relative to ground, each in series with a

1The resistance of the top end coil is disturbingly low; this may be due to internal shorting.
The field at the top of the outer coil is observed to be lower than at the bottom, supporting this
conclusion.
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Figure 4.1: Cross-section of the model system; dimensions are largely to scale.
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Figure 4.2: Circuit diagram for the field coils.

0.1 Ω resistor. We measure the voltage across this resistor with an isolation amplifier

so that neither side is placed at ground potential, which would draw significant current

and potentially damage circuitry. This amplifier has unity gain.

The linear amplifier is controlled by an Agilent function generator that can be

arbitrarily programmed, though we typically use a triangular waveform. The driving

amplitude is 11 V peak-to-peak in nearly all experiments, which results in ±4 A of

current. By the conversions in Table 4.1, this gives an applied field of ±520 G at the

center of the solenoids, and an average of roughly ±500 G over the entire volume.

4.1.3 Detector

The detector circuit used in the model system, shown in Figure 4.3a, is much simpler

than that found in the main apparatus, Figure B.4. In fact, the entire amplifier is

contained within a single IC, known as an INA116, manufactured by Burr-Brown

Inc. It comprises three interconnected op-amps that function as an instrumentation

amplifier with a single external resistor to adjust the gain [36]. We set the gain at

10 with a 5.6 kΩ resistor. The amplifier has extremely high input impedance, which

we approximate to be on the order of 1016 Ω, and we decrease this by connecting a

1011 Ω resistor from the gate to ground. This is necessary so that the RC time of the

circuit is much longer than the data collection time, but short enough that detector

offset voltages practically decay.

The circuit is printed on a single G10 board, as shown in Figure 4.3b, with resistors
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Figure 4.3: The detector circuit of the model system: (a) circuit diagram, and (b)
printed board with 1011 Ω and 1012 Ω resistors in parallel to ground.

mounted flat to lessen microphonic noise. The circuit usually takes several minutes

to “settle” after being switched on, which is to say that DC offsets appear on the

output and decay slowly to zero. This is reassuring because it indicates extremely

high resistance to ground at the input, but it also inhibits our resolution. Typical

offsets are several hundred millivolts in size.

4.1.4 Mounting Samples

Samples can be positioned within the inner coil in any number of ways, but they all

must somehow be stabilized and vertically centered. The bottom plate of the inner

coil provides an anchor point for any type of mechanical brace; a hole in the center

allows a screw to extend into the space and hold whatever mounting system has been

constructed.

Most braces discussed in this thesis follow the same principles of design. Our

samples are generally long and thin, so we brace them at the top and bottom with

“caps” connected by thin rods. The rods are 1/8”, threaded brass with nuts on the

top and bottom that are tightened to provide overall pressure on the sample. The
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bottom caps can be elevated to any height by placing spacers beneath them. There are

many examples of this throughout the next chapters; later generations are noticeably

prettier. With a description of the model system behind us, we now consider the first

samples used and the mounts constructed to hold them.

4.2 Samples and Mounts

Ben Heidenreich began tests with the model system using a long, hollow cylinder of

yttrium iron garnet (YIG). He observed a symmetric signal from an electrode attached

to the surface of this sample [2, §7.9]. We believe that this is entirely analogous to

the M-Even effect. If this is true, then the effect is not coupled to the EDM signal

because YIG has essentially no sensitivity to the electron EDM (yttrium has no

net spin, and iron and oxygen contribute only negligibly to the enhancement). We

therefore hope to eliminate the effect without compromising our sensitivity. These

experiments continued with various YIG samples for the next several months, but

the data were largely irreproducible.

We continued from these preliminary results by experimenting with several new

samples. Three are discussed in this chapter, along with preliminary results. We

hope that this will outline the many difficulties encountered and the efforts made to

improve the reproducibility of our data.

4.2.1 YIG Cylinder

The first sample that we purchased is a 7” long cylinder of YIG manufactured by

Pacific Ceramics, the same company that fabricated our GdIG toroid. It has a 1.2”

diameter and is therefore somewhat thin relative to its length, which diminishes

demagnetizing effects. The mount that we constructed has plastic end caps to ensure

high resistance to ground, and the aforementioned brass rods to apply tension. These
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Figure 4.4: The brace built to hold the long, YIG cylinder. Dimensions are to scale.

rods attach to brass plates that grip the plastic end caps. The brass plates in turn

connect to a metal spacer, which is in contact with the bottom plate; this ensures

not only that all metal on the brace is grounded, but also that the YIG touches only

plastic. Figure 4.4 shows both a photograph and a schematic diagram of the brace.

Electrodes are attached to the side of the sample, usually in the middle because

this is the region of strongest field. A wire attaches to the electrode and extends

vertically (bending around the top) to reach the detector above.

4.2.2 YIG Toroids

To mimic better the interface of the electrodes and the sample in the GdIG toroid, we

next chose to “sandwich” electrodes between two samples of YIG. The lab possesses

two suitable samples, which are small, irregular cylinders with holes drilled down

their centers. They each have at least one face polished flat and perpendicular to its

axis. We refer to these as toroids, though their geometry is essentially cylindrical.
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Figure 4.5: The brace built to hold the small, YIG toroids. Dimensions are to scale.

One toroid is 1.75” tall, and the other 1.25”, for a total length of 3”; both have 1.5”

diameters. The effective length of the sample is therefore only half that of the longer

cylinder, and so demagnetizing effects are worse. Nevertheless, symmetric signals are

observed and the samples adequately magnetize in our applied field.2

The brace constructed to hold these samples follows the principles of the previous

generation. It is almost entirely plastic, and has brass tensioning bars on both the

top and bottom. Brass rods provide tension, and because the bars at each end are

thin, they flex to provide variable force up to approximately 400 lbs. A photograph

and a schematic diagram of this brace are shown in Figure 4.5. Circular electrodes

are constructed to match the cross-sectional dimensions of the toroids.

This brace suffers from being constructed almost entirely of plastic. It provides

extremely high resistance from the electrode to ground, but we believe that static

charge also builds up on the plastic and creates undesirable fields near the electrode.

2This conclusion is based on data regarding the force of attraction between the samples. These
results may be found in §D.5.
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Figure 4.6: The initial brace to hold the ferrites. It is simply the long, YIG cylinder
brace with plastic spacers. Dimensions are to scale.

4.2.3 Ni-Zn Ferrites

In order to obtain a comparison with YIG and to gain practice in making permanent

bonds, we also carried out experiments with Nickel-Zinc ferrite samples. These ferrites

are inexpensive and highly magnetic, but, unfortunately, have much lower resistivities

than YIG (approximately 108 Ω versus 1015 Ω for our dimensions). This reduces the

RC time of the circuit.

The symmetric signals that we observe with the YIG samples do indeed appear

with the ferrites, although they are smaller and often distorted. Only a few results

from these samples are presented in this chapter; the majority of the tests conducted

with them used a different brace and are discussed in chapter 5.
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4.3 Preliminary Results

All data presented in this chapter were taken using a 1.1 Hz, triangular waveform

giving a maximum applied field of ±500 G within the solenoids. The signals are

decomposed via the methods of §3.2.2, and it is the symmetric contributions that

are shown here. (The antisymmetric contributions tend to be extremely small, at

least relative to the symmetric ones.) The symmetric signals are largely symmetric

about the point of zero applied field because demagnetizing fields limit hysteresis.

As a control, we measured the output signal when the samples were present but the

electrode wires removed. No symmetric signals were observed.

All traces are additively adjusted so that they are zero-valued at the point of

maximum applied field strength. We do so because our detector experiences time-

varying DC offsets and so only potential differences are interesting. The measured

potential asymmetry in the GdIG sample has its minimum in the high-field limit, and

so we adopt this convention.

4.3.1 Adhesives

We first tested the model system by mounting the long, YIG cylinder and wrapping

conductive tape on its surface as an electrode. This tape is approximately 0.001” thick

and has acrylic adhesive on at least one side; the contact resistance of the adhesive is

on the order of 0.01 Ω, according to manufacturer specifications. The electrodes were

vertically centered and approximately half the height of the sample. Each comprised

five strips of conductive tape partially overlapping to be electrically continuous.

Three different types of tape were used separately: copper, aluminum, and tin-

plated copper. Each produced a symmetric potential on the electrode as the sample

was magnetized; these results are shown in Figure 4.7a. We note particularly that

the signal from the tin-plated copper electrode has an opposite sign to those from
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Figure 4.7: Symmetric signals from conductive tape electrodes on the long, YIG
cylinder. (a) Different metals, (b) Aging of the copper electrode.

both copper and aluminum, although we observe inconsistent sign changes when

experimenting with conductive tape. Copper reproducibly exhibits the largest signal,

and aluminum the smallest. All signals, however, are approximately an order of

magnitude larger than the M-even effect in the EDM apparatus (Figure 3.5b), which

is approximately 100 µV at its peak.

Once we observed symmetric signals, we began to vary the properties of the elec-

trodes. We note that the symmetric signals are largely independent of the size and

position of the electrode, as well as the frequency of the applied field. The signal size

does depend on the amplitude of the applied field.

Unfortunately, the signals from conductive tape electrodes decrease over time, as

shown in Figure 4.7b. The adhesive bonded more tightly to the YIG over time, and

we speculate that this may have limited the motion of the electrode. Regardless,

this caused significant irreproducibility in our results, and prompted us to consider

different adhesives. We tested one such material, silver paint, before deciding to

abandon adhesives temporarily.
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Figure 4.8: Symmetric signals from metal electrodes without adhesive. (a) YIG
toroids, (b) Ferrites.

4.3.2 Interfaces

With the YIG toroids, we are able to compress and stabilize electrodes between

the samples without any adhesive. Based on the observation that tin-plated copper

exhibits a signal of opposite sign to the others, we decided to test a variety of different

metal electrodes. The results, a selection of which are shown in Figure 4.8a, indicate

that the sign difference between tin and copper is not consistent.

We note that the sizes of the signals are largely independent of the size and

thickness of the electrode, if we disregard apparent differences in sign. The signals do

not noticeably change over time, which is an improvement over the previous methods.

At this point we also obtained the Nickel-Zinc ferrites and tested both copper and

lead electrodes between them. These results are shown in Figure 4.8b; the sign of

the lead signal is inconsistent between the YIG and ferrite tests, and copper shows

interesting structure.

In these early experiments with the YIG and ferrite samples, we occasionally

anchored the electrode wire to the side of the samples with plastic zip-ties, to reduce

vibrational noise. Unfortunately, this tended to alter the signal sign, shape, and size
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Figure 4.9: Symmetric signals from 0.02” copper electrodes, with and without one
sheet of 0.001” mylar above and below the electrode. The signal size increases by two
orders of magnitude.

upredictably. The data presented in Figure 4.8 were taken later, without zip ties, for

consistency.

4.3.3 Dielectrics

The magnitudes of the symmetric signals significantly increase when we insert thin,

dielectric material between the electrode and the YIG samples. We first tried paper,

simply to see if a signal would be observed at all, and then 0.001” thick mylar sheets.

When mylar is inserted with a copper electrode, the symmetric signal changes sign

and increases by two orders of magnitude, as shown in Figure 4.9.

Preliminary models of the M-even effect involved unknown surface interactions

between the YIG and the electrode, but none of these could explain the observed

signal increase from mylar. However, it is not clear from these tests whether or not

the large signals are directly related to those from the metal electrodes. Perhaps,

for example, the large signal is the sum of two terms, one arising from a surface

interaction with the YIG, and another due to the dielectric. Further experiments

address this issue in greater detail, and these are discussed in chapter 5. At this
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Figure 4.10: Symmetric signals from 0.02” copper electrodes under variable brace
pressure. (a) YIG toroids, (b) Ferrites.

point, the signals from the dielectric tests were reproducibly large (within factors of

two or so) but did exhibit some inexplicable sign differences.

4.3.4 Pressure Variation

We observe significant changes to the symmetric signals when we variy the pressure

applied to the samples. The braces are designed simply to provide physical stability

without concern for quantitatively measurable pressure, but we note that the sizes

of the signals increase dramatically when the braces are loosened. Data from these

tests with both the YIG toroids and the ferrites are shown in Figure 4.10.

In both cases the signals become large and negative, increasing by three orders

of magnitude in YIG and two orders of magnitude in the ferrites. This variation is

entirely reproducible and we observe it with every assembly in which an electrode is

compressed between two surfaces; no comparable tests were performed with the long,

YIG cylinder. To examine the effect further, we altered the assembly to apply time-

varying pressure to the top of the toroid brace, as described fully in §D.2.6. We note

that pressure variations yield extremely large signals, and that this requires neither
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YIG nor an applied, magnetic field to be observed.

4.4 Conclusions

Several significant trends emerge from these results. First and foremost, large sym-

metric signals are observed when electrodes are coupled to the surfaces of YIG samples

that are periodically magnetized. If these signals correspond to the M-even effect,

then our model system successfully reproduces the systematic effect of interest, and

in a highly accessible environment. Second, the structure of the effect depends on

how the electrodes are coupled to the surface. Both dielectric materials and adhesives

dramatically affect the signals.

Perhaps most importantly, the methods of mounting the samples affect the ob-

served signals. Varying the brace pressure can change the amplitude of the signal

by over three orders of magnitude. When we tighten the toroid brace as much as

possible without breaking it, the signals generally decrease to the order of 0.1 mV

peak-to-peak, which is an order of magnitude less than those shown in Figure 4.8.

This signal size is comparable to that of the M-Even effect.

Additionally, these symmetric signals are observed not only with YIG samples,

but also with Nickel-Zinc ferrites. This is reassuring because it implies that the effect

is not specific to iron garnets, and therefore we need not seek another material for

the EDM experiment. Instead, our method of assembly may require refinement.

Unfortunately, these experiments yield unacceptably irreproducible results for the

smaller signals. We desire a system by which we may examine precise changes in

the size and structure of the M-even effect, and the data from variable pressure tests

evidence that these methods of mounting samples are insufficient. Additionally, the

system is extremely sensitive to microphonic noise when these plastic braces are used.

To limit the accumulation of static charge, we now mount samples in purely metal
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braces. The results of these tests are described in the next chapter.



Chapter 5

Experimental Results

This chapter describes the final experimental results from the current work. The data

are significantly more reproducible than those described in the previous chapter. The

observed signals are largely free of sign fluctuations, and their sizes and structures

are essentially consistent. We describe two sets of samples, short YIG cylinders and

Ni-Zn ferrites, and the experiments performed with them. Many experiments from

chapter 4 have been repeated, and some interesting trends have emerged. Additional

experiments with these samples are described in appendix D.

5.1 Samples and Mounts

The primary samples of interest in this chapter are short cylinders of YIG, 2” tall

with 1.2” diameters. They are held by a brass brace to prevent static charge from

accumulating near the electrode.1 The brace has four brass rods to apply tension, and

the tension bars are thickened to 1/4” to reduce bending. This limits the variability

of the force, but allows it to reach up to 1,000 lbs.2 A photograph and schematic

diagram of the brace are shown in Figure 5.1.

1Unfortunately, YIG is an excellent insulator, but we couldn’t really do away with that.
2The methods for determining this are described in §D.5.
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Brass Bottom
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Electrode

Figure 5.1: The metal brace built to hold the YIG cylinders. Dimensions are to scale.

Electrode Wire

Brass Top

Brass Rods x4

Electrode

Brass Bottom

Figure 5.2: The metal brace built to hold the Ni-Zn ferrites. Dimensions are to scale.
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Material Thickness (0.001”)
Aluminum 1
Brass 2
Copper 2, 20
Gold 1
Indium 5
Lead 8
Tin 2
Zinc 4

Table 5.1: Metals used as electrodes.

The YIG brace also serves to compress samples during epoxy and indium bond-

ing. It is 2.5” at its maximum diameter, and therefore fits into the 2.75” diameter,

cylindrical oven available in our lab. These experiments are described in §5.3.

For comparison, we pursued experiments with the Nickel-Zinc ferrites in parallel

with those of the YIG cylinders. The samples are 3” long with 1/2” diameters, and

are similarly held by a purely conductive brace. The end caps have 3/4” deep holes

in them to hold the samples and limit their relative motion. A photograph and

schematic diagram of the brace are shown in Figure 5.2.

5.2 Metal Electrodes

As a first test with each brace, we compressed eight different metal electrodes between

the samples, without any adhesive. The metals and their thicknesses are listed in

Table 5.1, and the symmetric contributions to their signals are shown in Figure 5.3.

These results should be compared to those from the YIG toroids, described in the

previous chapter and shown in Figures 4.8 and D.7.

In both cases, the signals from indium, tin, and zinc electrodes are similar to

each other, though the results are different for each sample. These electrodes yield

positive signals from the YIG toroids, and here they yield largely negative signals

with positive peaks to either side of zero applied field. Additionally, lead electrodes
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displaced for clarity.
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now give responses similar to those of the aforementioned metals.

Copper and brass electrodes, which are generally harder, produce fairly smooth,

positive signals. Thinner electrodes show slight dips to either side of the point of zero

applied field, reminiscent of those in the signals from the softer electrodes. Gold is

an interesting exception, and yields the largest signal by far. Preliminary analyses of

the YIG results are given in §6.2. The signals from the ferrites all show interesting

structure, but we are currently unable to interpret their similarities and differences.

5.3 Epoxy and Indium Bonding

In addition to the various metal electrode tests, we also bonded the samples together

using silver epoxy and indium, both with 0.002” copper electrodes. The epoxy is

Epo-Tek EE149-2, which is same as in the GdIG toroid. At the time of writing, the

YIG samples are still epoxied together after a month, but the ferrites have fallen

apart.

To indium bond the samples, Dan Krause Jr. first vacuum deposited a thin layer

of indium on the bonding surfaces of the samples, as well as on the copper electrodes

to be used. We then assembled the braces as usual, with the electrode between the

two samples, but inserted a sheet of polished, 0.005” indium metal above and below

the electrode. The entire assembly was then compressed in the brace and heated to

250◦C. Both the ferrite and YIG samples remain bonded, though we have performed

no stress tests on them. A photograph of the bonded samples is shown in Figure 5.4.

The symmetric signals from the bonded YIG and ferrite samples are shown in

Figure 5.5. The indium bonded samples produce the smallest signal in both cases,

and it is essentially zero in the ferrites. The epoxied, YIG samples produce smaller

signals than the 0.002” copper electrode without adhesive, but the ferrites produce

larger signals. The structure of the ferrite signal is also different.
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Figure 5.4: The bonded samples. From top to bottom: YIG cylinders and electrode
before bonding, all with vacuum-deposited indium; epoxied YIG cylinders; indium-
bonded ferrites.
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Figure 5.5: Signals from samples bonded with silver epoxy and indium; the electrodes
are 0.002” copper. 0.002” Cu is included for comparison. (a) YIG cylinders, (b)
Ferrites, again displaced for clarity.



5.4. PRESSURE VARIATION 97

V
ol

ta
ge

 to
 I

np
ut

 (
m

V
)

Loose

-1/4 turn

Loose

Tight

Applied Field (G)

0

60

120

180

-500 -250 0 250 500
-2

-1

0

1

2

3

-600 -300 0 300 600

(a) (b)

Figure 5.6: Varied brace pressure on the YIG and ferrites with 0.02” Cu electrodes.
(a) YIG cylinders: the signal increases by 3 orders of magnitude when the brace is
fully loosened; the fully tight curve is thinner than the x-axis, but has qualitatively
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5.4 Pressure Variation

Preliminary results from the YIG toroids demonstrate that varying the brace pressure

significantly affects the size of the symmetric signals that we observe. We explored

this further in these experiments, using both various metal electrodes and the bonded

samples.

5.4.1 Metal Electrodes

Loosening the pressure on the YIG samples with a 0.02” copper electrode increases

the size of the symmetric signal by three orders of magnitude. The signals from the

ferrites increase by two orders of magnitude, and exhibit both positive and negative

bumps. These results are shown in Figure 5.6. Pressure variation in the YIG toroids,

by comparison, yields large, negative signals from both the YIG toroids and the

ferrites (Figure 4.10).

Softer, metal electrodes between YIG all yield similarly large and positive signals
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when the braces are loosened. Results from indium, lead, and tin are shown in

Figures 5.7a, b, and c, respectively. None is quite as large as the copper signal, but

all are two orders of magnitude larger than the signals from tightened braces. Indium

electrodes between the ferrites yield signals identical to those from copper, as shown

in Figure 5.7d. Because the signals from all electrodes change in qualitatively the

same way when the braces are loosened, we conclude that these large, positive signals

are independent of the electrode type.

5.4.2 Bonded Samples

The bonded samples, by contrast, do not exhibit significant increases in their signal

sizes as the braces are loosened. Indeed, the signals remain on the same order of

magnitude as the those from the metal electrodes without any adhesive. These results

are shown in Figure 5.8. The signals from epoxied YIG increase by only a factor of

two, and those from the indium-bonded YIG barely at all.

The symmetric signals from the indium-bonded ferrites increase dramatically,

though they are negligibly different from the signals from 0.002” copper electrodes,

shown in Figure 5.3. The increases only seems large because the symmetric signals

from the indium-bonded ferrites are so unusually small.

5.4.3 Dielectrics

Large signals are also observed when dielectric material is inserted between the elec-

trodes and the samples, as shown in Figure 5.9. The signals from YIG with both

copper and lead electrodes are positive when a single sheet of 0.001” mylar is inserted;

they increase positively as the braces are loosened. The signal from the ferrites with

a lead electrode starts as negative, when the brace is tight, and grows to a larger,

positive signal as the brace is loosened.
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Figure 5.7: Softer, metal electrodes give large, positive, symmetric signals when the
braces are loosened. In all cases, the large, positive curves are from fully loosened
braces. The small curves barely visible above the x-axes are from tightened braces.
(a) YIG with In; the negative curve is from the loosened brace before the electrode
was peeled off of the sample. (b) YIG with Pb, (c) YIG with Sn, (d) Ferrite with Pb.
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Figure 5.9: Symmetric signals with one sheet of 0.001” mylar inserted above and
below the electrode. Solid curves indicate high brace pressure, and are measured
against the primary axis. Dashed curves indicate low pressure and are measured
against the secondary axis. (a) YIG cylinders with 0.02” Cu, (b) YIG cylinders with
Pb, (c) Ferrites with Pb.

We therefore conclude that dielectric material positively increases the signals from

loosened braces. The YIG signal from copper increases by three orders of magnitude

when the brace is loosened, and that from lead by one order of magnitude. The

ferrite signal increases by over two orders of magnitude. The signals from the tight-

ened braces also have unexpected shapes, particularly from the lead electrode in YIG.

Comparing the signals from copper electrodes between YIG with and without dielec-

tric material, we see that mylar increases the size of both the tight and loose signals

by a factor of 4. However, this relationship cannot be extended to the lead electrodes

because the shapes of the signals are so significantly changed.

These results should be compared with those in Figures 4.9 and D.9. By contrast,

mylar between the YIG toroids usually yields large, negative signals, and sometimes

equally large positive ones. The results presented in this section are much more

reproducible.
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Response (mV)
Sample and Brace Electrode Dielectric Tight Loose

YIG Toroids, Plastic Cu 0.02”
none 20 200

mylar 1x 60 2,000
Ferrites, Plastic Cu 0.02” none 40 60

YIG Cylinders, Brass
Cu 0.02”

none 1 50
mylar 1x 100 2,000

Epoxy n/a 5 40
Indium n/a < 1 70

Ferrites, Brass
Cu 0.02”

none 1 200
mylar 1x 30 600

Indium n/a 2 6

Table 5.2: Amplitudes of microphonic responses of the model system.

5.5 Microphonics

We observe that the microphonic sensitivity of the model system decreases dramat-

ically when we switch to the conductive braces. When collecting data from the old,

plastic braces, we are unable to touch the table on which the model system rests or

vibrational noise will overwhelm the signals of interest. The brass braces diminish the

microphonic responses enough that intentional excitations are typically imperceptible.

To be quantitative, we tested the response of the system by dropping a small

block of wood onto the bottom plate from a height of 1.5”. The amplitudes of the

initial responses are given in Table 5.2, and two example traces are shown in Figure

5.10. Looser braces uniformly give larger responses, with signals typically an order of

magnitude larger than those from the tight braces. Mylar increases the microphonic

response of every metal electrode, and plastic braces give larger signals than brass

braces.

These trends are the same as those observed in the symmetric signals due to the

applied, magnetic field. The exceptions are the bonded samples, where the micro-

phonic responses increase but the electrode signals remain unchanged as the braces

are loosened. We interpret this as further evidence that the large, positive signals are
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(a) (b)

Figure 5.10: Examples of microphonic responses of the model system. (a) Tightened
brace, (b) Loosened brace.

due to motional effects.

5.6 Force Sensors

Results from the pressure tests reveal that decreasing the pressure on the electrode

induces larger signals. One source of such pressures is the force of magnetic attraction

between the samples as they magnetize; this is simply the force of attraction between

two dipoles placed with opposite ends adjacent. To understand better these interac-

tions, we purchased force sensors that can be placed between the samples within the

model system, and measured the force as a function of applied field.

The details of the sensors themselves, including the circuity and calibration equa-

tions, are discussed in §D.5; in this section we simply cite the results. Figure 5.11

shows the measured force of attraction between the samples as a function of applied

field, for tight and loose braces. We note that the force between the YIG cylinders

increases rapidly as the applied field nears ±300 G, and then appears to saturate. We

consider this strong evidence that the samples adequately magnetize in our applied

fields. If considered upside down, this curve bears a striking resemblance to many
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Figure 5.11: Forces of magnetic attraction between the samples as a function of
applied field; the static force due to the tightened brace has been subtracted. Tight
braces provide approximately 4,400 N of force, and loose braces 900 N. (a) YIG
cylinders, (b) Ferrites.

symmetric signals that we observe.

The ferrite signal is currently not understood because it shows that the force of

attraction increases as the applied field decreases. However, we make some prelimi-

nary remarks regarding its structure in §6.2. Loosening the braces has an opposite

effect in each sample. The force of attraction between the YIG cylinders increases

somewhat as the braces are loosened, but the force between the ferrites decreases.



Chapter 6

Conclusion

In this chapter we consider the essential results of our experiments and several trends

that emerge. Some analyses of data are shown, but these are merely the prelude

of future work. Relationships between the symmetric signals observed in the model

system and the M-Even effect are then discussed, along with potential explanations.

Future prospects for these experiments and for the larger apparatus are given to close.

6.1 Summary of Results

In our experiments with magnetic materials in the model system, we observed various

signals that were symmetric upon reversal of the magnetic field. These signals were

largely irreproducible at first, but, by altering our methods of mounting samples, we

have begun to observe consistent signals. Specifically, we now apply pressure to the

samples and mount them in fully conductive braces.

We reproducibly observe symmetric signals of different sizes, shapes, and signs

from different metal electrodes. The largest signals are from gold and indium, and

the smallest from tin. Variation is also observed in the ferrite signals.

The signals from samples mounted in conductive braces are roughly an order of

105
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magnitude smaller than those from samples in plastic braces. The signals increase

positively when brace pressure is decreased, and these increases can reach three orders

of magnitude. Bonded samples do not exhibit the same sensitivity to pressure vari-

ations as do the samples without adhesive. The signals from these samples increase

only two-fold at most. Dielectric material between the sample and the electrode also

increases the signal size by up to two orders of magnitude.

Microphonic responses scale approximately with the sizes of the symmetric sig-

nals. They are worst in loosened, plastic braces with dielectric materials, and best in

tightened, conductive braces without dielectric materials. Microphonic noise from the

bonded samples increases as the braces are loosened, unlike the sizes of the symmetric

signals.

These are the most obvious trends apparent from our data and comprise the bulk

of our results. However, other interesting trends emerge if we examine the signals

from the metal electrodes in greater detail.

6.2 Electrode Analyses

The signals from the metal electrodes and force sensors display some structural fea-

tures that merit further examination. We combine and scale these data in various

ways, and find that the resulting curves often mimic those from other tests. There is

no a priori reason to suspect that the data can be combined in such fashions. These

analyses are included as motivation for future research.

6.2.1 Signals Versus Magnetization

The earliest signals that we observed with the model system bear little resemblance to

the M-Even effect in the EDM apparatus. These signals generally resemble Gaussian

curves, whereas the M-Even signals display a dip, rise, drop, and 1/H decay, as shown



6.2. ELECTRODE ANALYSES 107

in Figure 3.5b. However, the conductive braces significantly improve our data and

we now observe that the softer, metal electrodes yield signals with some structural

similarities to the M-Even effect.

Consider the negative of the signal from the zinc electrode between YIG, shown

in Figure 5.3. This demonstrates the same dip, rise, and 1/H decay that are char-

acteristic of the M-Even effect, although the region of the dip is significantly longer.

We may partially explain these differences by considering the signals as functions of

magnetization rather than of applied field, as they have typically been displayed.

To plot these data versus magnetization, we must consider sample hysteresis. The

cylindrical samples have relatively strong demagnetizing fields, so for small fields

their magnetizations track the applied field closely. Data from the force sensors,

shown in Figure 5.11, show that this approximation fails beyond approximately 300

G, when the samples magnetically saturate. The GdIG toroid, by contrast, has

relatively small demagnetizing fields. It therefore requires a stronger coercive field to

flip its magnetization, and approaches saturation much more rapidly. Ben Heidenreich

and Kyle Virgien measured a hysteresis loop for the GdIG sample at 127 K; it is

shown in Figure 6.1. From these data we see that the coercive field for the sample is

approximately 8 G, and by 15 G the sample is almost entirely re-magnetized.

The hysteresis loop demonstrates the nonlinear relationship between the applied

field and the sample magnetization. As H passes through the coercive field, the

magnetization suddenly changes by 80% of its range, yet the applied field has changed

little. This accounts for the difference between the dipped regions of the zinc signal

and the M-even effect, both of which occur around zero applied field. With a little

footwork, we may show the signals to be qualitatively very similar.

Figure 6.2a shows both the zinc and M-even signals versus applied field, as they are

usually displayed (the M-Even signal has been inverted). We now take the hysteresis

loop in Figure 6.1 to be the relationship between applied field and magnetization for
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Figure 6.1: Hysteresis loop for the GdIG toroid at 127 K, from summer 2005.

the GdIG toroid, and modify it to form an approximation of the same relationship

for the YIG cylinders.1 Less hysteresis implies that the coercive field for the cylinders

is approximately zero, so we shift the curve horizontally; the slower rise to saturation

implies that the curve should be horizontally stretched. The final curves that we

choose are shown in Figure 6.2b.

We now plot the symmetric signals in Figure 6.2a against these modified magneti-

zation curves, and results are shown in Figure 6.2c. (The domain of the M-Even signal

is linearly stretched to match that of the zinc signal, for the purposes of these com-

parisons). Here we have attempted to compare the signals from soft, metal electrodes

between the YIG cylinders in the model system to the M-Even effect observed in the

GdIG toroid. The qualitative features of the curves now appear similar, which sug-

gests that the signal from the zinc electrode may be analogous to the M-Even effect.

The signals from the tin, lead, zinc, and indium electrodes all share this characteristic

shape.

1This doesn’t quite work because the YIG cylinders are at room temperature, not 127 K, and
GdIG has contributions to its magnetization from gadolinium ions in addition to iron ions.
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Figure 6.2: Comparing the signal from a zinc electrode in the model system to the
M-Even effect at 127 K. Solid curves are the Zn electrode, and dashed curves are the
M-Even effect. (a) Signals versus applied field. (b) Magnetization curves used for
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6.2.2 Metal Combinations

Another interesting trend emerges if we consider the signals from brass electrodes

between YIG, shown in Figure 5.3. This curve is approximately Gaussian, but has

small dips to either side of zero applied field. Visual inspection indicates that this

shape might be the sum of two signals, one fairly smooth and positive, and another

with negative bumps.

We choose the thick copper and zinc curves as test functions to examine further

this possibility. Superimposing nine-tenths of the copper signal with one-tenth of

the zinc signal gives a curve which is almost indistinguishable from the brass signal.

Interestingly, these are the two components of brass, although the compositional ratio

is typically 70% Cu and 30% Zn. These results are shown in Figure 6.3a.

We note two other interesting combinations of this form, shown in Figures 6.3a and

b. First, the anomalously large gold signal emerges if we instead take the difference

between the copper and zinc signals, scaled somewhat differently.2 Second, the tin

signal is approximated by adding adding those from copper and lead.

We currently have no explanation for these observations, though it seems unlikely

that these relationships indicate a chemical interaction between the YIG and the

electrode. Rather, we imagine that the signals depend on some physical properties

of the electrodes, such as their hardnesses and elasticities. These electrodes may

represent particular values of relevant, physical variables. Accordingly, the signals

that we observe may be superpositions of two or more fundamental shapes.

2We might instead say that gold and zinc add to copper, for consistency. However, our observa-
tions indicate that the copper signal is characteristic of an entire class of electrodes, whereas gold is
unusual.
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Figure 6.3: Combinations of the symmetric signals from metal electrodes. The curves
on the left are scaled and added as indicated to form those shown on the right.
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6.3 Force of Attraction

Data from the force sensors regarding the force of attraction between the magnetized

YIG cylinders give us considerable insight into the physical behavior of the samples

during magnetization. Figure 5.11a shows that the cylinders attract each other with

approximately 14 N of force at 500 G of applied field, which we find to be reasonable

based on a simple, physical model. These results are discussed in the following section,

after which we extend them to a basic interpretation of forces in the GdIG toroid.

6.3.1 YIG Cylinders

Consider two identical, magnetized samples placed with opposite ends adjacent. If

they are close enough together that edge effects can be neglected, then the field be-

tween them will be approximately constant. If the samples are identically magnetized

then all field lines leaving the north pole of one will eventually close into the south

pole of the other. Figure 6.4 shows a diagram of this model.

We calculate the force of attraction between the samples as the gradient of the

field energy in the gap between them. The energy density of a magnetic field is given

by [13, §7.2]

u =
1

2µ0

B2, (6.1)

and the energy in the gap is therefore

U =
1

2µo

B2Al, (6.2)

where A = 7.3 × 10−4 m is the cross-sectional area of the YIG, and l is the length

of the gap. The force of attraction between the samples is the derivative of this
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Figure 6.4: Model of the field from the cylindrical samples. The field is approximately
constant in the gap.

expression with respect to l, which is

F =
dU

dl
=

1

2µ0

B2A. (6.3)

This force is quadratic in the applied field and independent of the gap size, in the

limit of small separations. This is a good approximation given that the YIG cylinders

are each 2” long, but the force sensors are only 0.007” thick. The gap is therefore

approximately one-thousandth the total length of the samples, and the ratio l/
√
A is

7× 10−3. The gap should therefore negligibly perturb the field.

To find the field in the gap, we consider the magnetic properties of YIG. Yttrium

ions contribute nothing to the total magnetic moment of the sample, so the total field

is due to the iron ions. These contributions are shown in Figure 2.3. At 0 K, fully

magnetized YIG will have a net magnetic moment of 5 µB per formula unit. At room

temperature this drops by roughly 20%, and so the net moment is taken to be 4 µB
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per formula unit. The magnetization of YIG at room temperature is therefore

M ≈
(

4µB

formula unit

)
1

3
nGd, (6.4)

where we recall that 1 µB = 9.274 × 10−24 J/T is one Bohr magneton, and nGd =

1.235 × 1022 cm-3 is the number density of rare-earth ions per unit volume in iron-

garnets.

The magnetization is most conveniently expressed in Gaussian units, in which the

magnetic flux density is defined as

B = H + 4πM. (6.5)

We calculate the magnetization via the same logic as in §2.3.3, and find it to be

approximately 1900 G. Our applied field reaches a maximum strength of 500 G.

Substituting these results into Eq. 6.5, we find the flux density in the gap between

the samples to be approximately 2400 G.

This value is converted back into SI units by the conversion 1 T = 104 G, such

that the total flux density is 0.24 T. Substituting this result into Eq. 6.3, we find

the force of attraction between the samples at magnetic saturation to be 17 N. This

value agrees closely with the measured forces shown in Figure 5.11b, which shows the

attractive force to be 14 N at 500 G. These values differ at least partially because the

samples do not fully magnetize in our applied field; however, the difference is only

20%.

Data from the force sensors reveal interesting behavior in both the YIG and the

ferrite samples. We compare these curves to select signals presented in chapter 5, and

note their similarities. The YIG force curve, if considered upside down, is roughly

Gaussian and bears striking resemblance to many signals that we observe. Figure

6.5a shows this signal compared to those from the indium-bonded YIG and a loose,
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Figure 6.5: Force curves compared to selected, symmetric signals. Force curves are
solid lines, and electrode signals are dashed. (a) YIG, force curve inverted. (b)
Ferrites, electrode curve inverted

tin electrode; all curves have been scaled arbitrarily. These are two of many such

possible superpositions.

These results indicate that the roughly Gaussian signals that we observe may share

the same dependence on the sample magnetization as does the force of attraction.

We note additionally that the force is approximately quadratic in the applied field for

small values of H. This is the region in which the magnetization varies approximately

linearly in the applied field, such that B ∝ H. By Eq. 6.3 the force is therefore

quadratic in H, in agreement with our observations.

The ferrite force curve is not currently understood because it implies that the

force of attraction increases as the field decreases. However, its shape is remarkably

similar to the signal from lead electrodes, between ferrites and mylar with the brace

tightened. This signal is shown in Figure 5.9c, and a comparison with the force curve

is shown in Figure 6.5b. The lead curve has been inverted and scaled aribtrarily. No

other signals with this shape were observed, but the similarity here is unmistakable.

One theory to explain the ferrite force curve is that the samples may undergo
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significant magnetostriction. This is the process by which a material’s dimensions

change when it is exposed to a magnetic field [32, ch. 8]. The magnetic domains align

parallel to the applied field, attracting along the magnetization axis and repelling

perpendicular to it. This translates into a net contraction along the magnetization

axis, and expansion in the perpendicular plane. Deformations are measured as δl/l,

and typically range from 10-6 to 10-5.

It is currently unclear whether such effects could account for the apparent decrease

in pressure on the force sensor when the ferrites are magnetized. Further research into

the magnetostrictive properties of the Ni-Zn ferrites may be required to understand

this behavior.

6.3.2 GdIG Toroid

The GdIG toroid behaves analogously to the YIG cylinders because its internal field,

although toroidal overall, is perpendicular to the gap created by the electrode plates.

We may therefore approximate its force of attraction by the same methods described

above, with Figure 6.6 as our picture. However, the two halves of the toroid are

differently doped with gadolinium ions and so their magnetizations are not generally

the same. These differences substantially change the behavior of the toroid during a

field pulse.

When the applied field is on, the two halves magnetize to their respective satura-

tion values and are therefore not flux-matched. The field then turns off and the more

magnetized half quickly demagnetizes to the level of the lesser. The entire toroid is

then observed to lose another 23% of its magnetization. The total magnetization of

the toroid during data collection is therefore only 77% of that of the less magnetized

half.

The total magnetization of each half of the toroid is given as a function of tem-

perature in Figure 2.14b. From these data we calculate the total magnetization after
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l

Figure 6.6: Model of the field from the GdIG toroid. The field is approximately
constant in the gap.

Temperature M1.8 (µB) M1.35 (µB) Total M (µB)
88 K 2.2 0.5 0.4
127 K 0.6 0.6 0.5
178 K 0.4 1.3 0.3

Table 6.1: Total magnetizations of the halves of the GdIG toroid at the operating
temperatures. Data for M1.8 and M1.35 are from Figure 2.14b.

a field pulse at each of the operating points, 88 K, 127 K, and 178 K. These results

are given in Table 6.1.

We may now solve for the total flux density by Eq. 6.5, and the force by Eq. 6.3.

(The cross-sectional area of the toroid is 11.7 cm2, and we double the force to reflect

the total attractive force due to both electrodes.) These results are shown in Table

6.2. According to this model, the forces of attraction between the halves of the GdIG

toroid are approximately two orders of magnitude smaller than those between the

YIG cylinders. The M-Even effect, by comparison, has approximately the same size

in both the model system and the EDM apparatus.

If the symmetric signals that we observe in the model system represent the M-

Even effect, then these results imply that the effect is largely independent of the

magnitude of the attractive force between the samples. However, some interesting

trends emerge if we consider in greater detail the changes that occur in the sample’s
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Temperature Flux Density (G) Force (N)
88 K 190 0.34
127 K 240 0.54
178 K 140 0.18

Table 6.2: Flux densities and forces of attraction in the GdIG toroid at the operating
temperatures.

magnetization during a field reversal.

The field within the toroidal Faraday cage is nonuniform, and varies as 1/r. When

the applied field is on, the inner edge of the sample will be twice as magnetized as the

outer edge, and the forces of attraction should differ by a factor of four. To confuse

matters further, the coercive fields are different for each half, so one will flip before

the other; this could lead to momentary repulsion.

If we suppose that the M-Even effect is related to changes in the attractive force

between the samples, then we may hypothesize some connections. We identify four

regions of interest in the M-Even signal, as shown in Figure 6.7. Based on the magnetic

behavior of the toroid during a field flip, we propose the following associations.

1. Slight decrease as H → 0: Decrease in force as the magnetization decreases.

2. Sharp rise: One half of the toroid flips, momentary repulsion;

3. Sharp dip: The other half flips, attraction restored;

4. 1/H decay: Magnetization increases and approaches saturation as 1/H [34].

Further experiments are required to examine these possibilities in greater detail. They

would be aided by a more precise model of the time-varying force between the toroid

halves as the field flips.
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Figure 6.7: The M-Even signal at 127 K, reproduced from Figure 3.5b.

6.4 Relations to M-Even Effect

The analyses in §6.2.1 imply that the signals we observe from the softer, metal elec-

trodes may indeed correspond to the M-Even effect observed in the GdIG toroid. This

is the most convincing evidence of any connection between the signals that we observe

in the model system and the systematic effect of interest in our larger apparatus.

We also observe other signals of significantly different character, typically resem-

bling positive, Gaussian curves. These signals increase dramatically when we alter

the method of assembly, either by loosening braces or inserting dielectric material,

but it is not clear that such alterations are directly relevant to the M-Even effect.

These Gaussian signals are certainly not observed in the EDM apparatus, although

we have not tried making these sorts of adjustments. However, these signals are

highly reproducible, magnetically symmetric, and of the same order of magnitude as

the M-Even effect. We therefore have no reason to discount them as irrelevant at

present.

Both the epoxied and indium-bonded samples exhibit exclusively Gaussian signals

in the model system, although these do not increase when the braces are loosened.
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It is possible that these signals overwhelm whatever M-Even effect may be present in

this geometry. The combinations of data from the metal electrodes seem to support

this. The tin electrode provides an excellent example: it has the same general features

of the M-Even signal, yet we may approximate its shape by adding the zinc signal to

the nearly Gaussian, copper signal. If this is true, then refining the model system to

remove these positive signals must be the next priority in our research.

Perhaps, instead, the M-Even effect truly varies in the manners that we have

observed. If this is the case, then we have learned a considerable amount about its

nature and variability. Its causes, however, are presently unclear. Some connections

have been proposed as motivation for future research, but these are tentative.

6.5 Possible Systematic Effects

Our data imply that motional effects can create extremely large signals with the same

symmetry as the M-Even effect. For example, the differences between the responses

of the bonded and non-bonded samples to pressure variation indicate the presence

of effects that depend on the relative motion of the samples and electrodes. The

symmetry of the effects is expected because the forces involved with flipping sample

magnetization from up to down and down to up are identical.

Our results are therefore largely consistent with the presence of motional effects,

and these should be considered if the GdIG toroid is modified in the future. Even if

the M-Even effect is independent of sample motion, other symmetric signals evidently

do depend on it and could eventually limit our resolution.

The decreases in microphonic sensitivity and symmetric signal size that we observe

when using the conductive braces indicate that insulating materials should be kept far

from the electrodes. It is hypothesized that static charge may build up on insulating

surfaces, creating in-homogeneous fields through which our electrodes move. We have
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the same concerns for the EDM apparatus. For example, the microphonic sensitivity

of the system dropped significantly when we removed styrofoam spacers from around

the electrode wires [2, §6.8].

If these theories are correct, then any insulating material around the electrode is

a potential source of large, symmetric signals. The GdIG toroid is currently mounted

on a ceramic base that is an extremely good insulator. We do so to maintain high

resistance from the electrode to ground, but perhaps this risks the unfavorable accu-

mulation of static charge.

6.6 Future Prospects

Through the experiments described in this thesis, we have significantly improved the

sensitivity of the model system. The data that we collect are now largely reproducible,

and we have begun to make insightful comparisons.

In a larger sense, we have reached an exciting moment. Strong evidence exists

that the model system reproduces the M-Even effect, and interesting patterns emerge

from the data. Based on the combinations of metal electrode signals presented in this

chapter, one might imagine specifically selecting an alloy to minimize the amplitude

of the resulting signal. We have considered coating copper electrodes with tin and

indium as preliminary tests of these possibilities.

A focused, theoretical model of the force of attraction between the two halves of

the GdIG toroid during magnetic reversal would benefit our experiments enormously.

Additionally, we have begun researching the magnetostrictive properties of GdIG and

YIG. Combined work in these areas will help us to understand both the parallel and

perpendicular forces acting on the electrodes as the magnetizations of the samples

change.

We hope that future efforts will reveal a clearer understanding of the M-Even
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effect. Improvements to our apparatus may include reassembling the toroid with a

different adhesive, different electrodes, or mounting it in an entirely new fashion. The

current support structure provides no pressure on the electrodes, though it is quite

rigid and minimizes stresses on the sample during temperature cycling. Modifications

to this would be difficult, but we do not discount their possibility at this stage.

If the M-Even effect can be reduced, then the sensitivity of our apparatus should

be greatly increased. Currently its signal is so large that it defines our data fit, and we

must extrapolate its behavior to the high-field limit in order to calculate the potential

asymmetry due to the electron EDM. Significant improvement beyond the M-Even

effect will likely be necessary if our sensitivity is to reach the world limit, and we

remain hopeful that such improvements are possible.



Appendix A

Schiff’s Theorem

This appendix considers the non-relativistic shielding of electric dipole moments in

atomic systems. In pariticular, Schiff found in 1963 that the first-order energy shift in

an atomic system due to EDMs is zero, which would appear to exclude atomic systems

from EDM searches. However, Sandars later extended this proof relativisitically and

found results quite to the opposite [37]. Schiff’s work is illuminating nevertheless,

and the full mathematics have been included here. His proof assumes two conditions:

1. The system consists of charged, point particles with electric dipole moments

whose distributions are equivalent to their charge distributions.

2. Particles move non-relativistically and interact electrostatically.

Schiff’s theorem is a formidable proof and general within its postulates, but

we may approach it with the benefit of hindsight.1 Consider a system consisting of i

charged particles with positions ri situated in an electrostatic potential V (r). Schiff

describes the total Hamiltonian Ĥ of his model system as the sum of five terms, each

of which describes a particular interaction. The first three terms, Ĥ1, Ĥ2, and Ĥ3,

1This proof follows from the brief outlines given in [5, 21, 37, 38]. Ben’s thesis also includes the
full mathematics, which differ only slightly from those presented here [2, §2.3].

123
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account for particulate motion, inter-particle Coulomb forces, and interactions with

the applied potential. They are defined by

Ĥ1 = −
∑

i

h̄2

2mi

∇ 2
i , Ĥ2 =

∑
i

∑
j 6=i

qiqj
2rij

, and Ĥ3 =
∑

i

qiVj, (A.1)

where ∇i denotes differentiation with respect to the ith particle’s coordinates. These

make no reference to electric dipole moments, and may be grouped as a single Hamil-

tonian Ĥ0 = Ĥ1 + Ĥ2 + Ĥ3.

The last two terms of Ĥ account for EDM interactions with the applied potential

and with the fields created by other particles, respectively. They are defined by

Ĥ4 = −
∑

i

di

qi
σi · ∇iVi, Ĥ5 =

∑
i

∑
j 6=i

qjdi

r 2
ij

σi · r̂ij, (A.2)

where di is the constant of proportionality between each particle’s dipole moment

and spin, σi. These are grouped as an “EDM Hamiltonian,” Ĥedm = Ĥ4 + Ĥ5. If

the presence of EDMs is a sufficiently small effect, then this Hamiltonian may be

treated as a first order perturbation on Ĥ0. Furthermore, if Ĥedm can be expressed

as (a scalar multiple of) the commutator of some operator and Ĥ0, then it will cause

no energy shift in the eigenstates of Ĥ0, as we will demonstrate later. There will

therefore be no energy shift to first-order in the dipole moments and their effects will

be “shielded.”

Rather than constructing an operator to satisfy the above conditions, we will

posit the “infinitessimal displacement operator” Q̂ and verify that it works.2 It has

the form

Q̂ =
∑

i

di

qi
σi · ∇i, (A.3)

2Schiff chooses this name in his original paper [21], but some other sources refer to it as the
“translation operator” [5, 38].
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which is the same as given in [21, 38], and varies only slightly from other sources.

The commutator [Q̂, Ĥ0] can be expanded into the sum of three commutators, each

of Q̂ with one of the terms of Ĥ0, such that

[Q̂, Ĥ0] = [Q̂, Ĥ1] + [Q̂, Ĥ2] + [Q̂, Ĥ3]. (A.4)

To verify Schiff’s theorem we will demonstrate that the sum of these commutator

terms is equal to −Ĥedm. Specifically, we will show that

[Q̂, Ĥ1] = 0, [Q̂, Ĥ2] = −Ĥ5, and [Q̂, Ĥ3] = −Ĥ4, (A.5)

which satisfy the requisite condition.3

Let us examine each of the terms in Eq. A.4 individually. The first can be manip-

ulated directly to yield

[Q̂, Ĥ1] =
∑

i

di

qi
σi · ∇i

(
−
∑

j

h̄2

2mj

∇ 2
j

)
+
∑

j

h̄2

2mj

∇ 2
j

(∑
i

di

qi
σi · ∇i

)

= −
∑

i

∑
j

h̄2

2mj

di

qi
σi · ∇i∇ 2

j +
∑

i

∑
j

h̄2

2mj

di

qi
∇ 2

j (σi · ∇i). (A.6)

The spin vectors σi are position-independent and so we may rearrange the dot product

in the last term to find

[Q̂, Ĥ1] =
∑

i

∑
j

h̄2

2mi

di

qi
σi · [∇ 2

i ,∇j], (A.7)

3The various other descriptions of Schiff’s theorem differ significantly in the terms they assign
to each Hamiltonian. Sandars [37] includes the first four terms, but neglects to mention Ĥ5 (The
inclusion of Ĥ2 but not Ĥ5 leaves the second commutator in Eq. A.5 incomplete.) Bigi and Sanda [5]
include neither the second nor the fifth terms, easing the mathematics but making their argument
less general. Bernreuther and Suzuki [38] provide no definition of Ĥ0. I have elected to follow Schiff
and include all terms, but to treat them by methods similar to those implied by Sandars.



A. Schiff’s Theorem 126

which is expressed in terms of the commutator [∇ 2
i ,∇j]. Mixed partial derivatives

commute and so the expression vanishes.

The second term in Eq. A.4 is treated similarly, although the mathematics are

lengthier. We may accordingly manipulate it into a simpler commutator relationship

by

[Q̂, Ĥ2] =
∑

i

di

qi
σi · ∇i

(∑
j 6=k

qjqk
2rjk

)
−
∑
j 6=k

qjqk
2rjk

(∑
i

di

qi
σi · ∇i

)

=
1

2

∑
i

∑
j 6=k

qjqk
qi

diσi · ∇i
1

rjk

− 1

2

∑
i

∑
j 6=k

qjqk
qi

di
1

rjk

(σi · ∇i)

=
1

2

∑
i

∑
j 6=k

qjqk
qi

diσi ·
[
∇i,

1

rjk

]
, (A.8)

where the last equality again invokes the commutativity of σi · ∇i. The commutator

in this expression is best understood by allowing it to act on a test function, because

operators involving derivatives are not generally associative. To clarify, consider this

brief example in which x and y are independent variables:

∂

∂x

(
y · f(x)

)
6=
(
∂

∂x
y

)
f(x). (A.9)

The proper method is to operate consecutively from right to left. Allowing the com-

mutator in Eq. A.8 to act on a test function, f , we find

[
∇i,

1

rjk

]
f = ∇i

(
1

rjk

f

)
− 1

rjk

∇if

= f∇i
1

rjk

+
1

rjk

∇if −
1

rjk

∇if

=

(
∇i

1

rjk

)
f, (A.10)
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The effect of the commutator is therefore to multiply by∇i
1

rjk
. Explicit differentiation

further simplifies this result to yield

∇i
1

rjk

= − 1

r 2
jk

∇irjk

= − 1

r 2
jk

· 1

rjk

(
(rjk)xx̂ + (rjk)yŷ + (rjk)zẑ

)
(δij − δik)

=
1

r 2
jk

(δik − δij)r̂jk. (A.11)

Using the result of Eq. A.11 in Eq. A.8, the commutator [Q̂, Ĥ2] becomes

[Q̂, Ĥ2] =
1

2

∑
i

∑
j 6=i

qjdi

r 2
ji

σi · r̂ji −
1

2

∑
i

∑
i6=k

qkdi

r 2
ik

σi · r̂ik

=
1

2

∑
i

∑
i6=j

qjdi

r 2
ij

σi · (r̂ji − r̂ij)

= −
∑

i

∑
i6=j

qjdi

r 2
ij

σi · r̂ij. (A.12)

The second to last equality follows because r̂ji = −r̂ij. This expression is equal

to −Ĥ5, which is the interaction energy between the dipole moments and the fields

created by each particle.

The third term of Eq. A.4 simplifies directly to

[Q̂, Ĥ3] =
∑

i

di

qi
σi · ∇i

(∑
j

qjVj

)
−
∑

j

qjVj

(∑
i

di

qi
σi · ∇i

)

=
∑

i

∑
j

diqj
qi
σi · [∇i, Vj]. (A.13)
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The commutator [∇i, Vj] is evaluated by similar methods to Eq. A.10, and so by

allowing it to act on a test function f we find

[∇i, Vj]f = ∇i(Vjf)− Vj(∇if)

= (∇iVj)f + Vj(∇if)− Vj(∇if)

= (∇iVj)f. (A.14)

The effect of this commutator is therefore to multiply by (∇iVj). However, ∇i dif-

ferentiates only with respect to the ith particle’s coordinates, so this expression will

vanish for all i 6= j. Inserting this result into Eq. A.13 we find

[Q̂, Ĥ3] =
∑

i

diσi · ∇iVi, (A.15)

which is equal to −Ĥ4, describing the interaction of EDMs with the applied potential.

Combining the results of Eqs. A.12 and A.15, the commutator [Q̂, Ĥ0] in Eq. A.4

becomes

[Q̂, Ĥ0] =
∑

i

diσi · ∇iVi −
∑

i

∑
i6=j

qjdi

r 2
ij

σi · r̂ij (A.16)

This shows that Ĥedm may be expressed as the commutator of Q̂ and Ĥ0,

Ĥedm = −[Q̂, Ĥ0], (A.17)

and the total Hamiltonian Ĥ of the system may therefore be written as

Ĥ = Ĥ0 − [Q̂, Ĥ0]. (A.18)

We have now only to show that the perturbation caused by Ĥedm is zero, which is

in fact true of any first-order perturbation that can be expressed as a commutator



A. Schiff’s Theorem 129

with the unperturbed Hamiltonian. To be explicit, the first order energy shift E
(1)

p

associated with a perturbation Ĥp is given by

E (1)
p = 〈ψ|Ĥp|ψ〉, (A.19)

where |ψ〉 is an eigenstate of the unperturbed system.4 If this perturbation is equal to

the commutator of an operator Ô with the unperturbed Hamiltonian, Ĥp = [Ô, Ĥ0],

then the energy shift is identically zero:

E (1)
p = 〈ψ|Ĥp|ψ〉 = 〈ψ|[Ô, Ĥ0]|ψ〉 = 〈ψ|(ÔĤ0 − Ĥ0Ô)|ψ〉

= E0〈ψ|Ô|ψ〉 − E0〈ψ|Ô|ψ〉 = 0 (A.20)

The second to last step follows because Ĥ0 is Hermitean and acts on either the bra

or the ket to yield the eigenenergy E0.

This result holds for Ĥedm, and so the first-order energy shift due to electric dipole

moments in any bound system satisfying Schiff’s conditions is zero. This result seemed

to doom future searches for the EDMs of charged particles, until 1965 when Sandars

published his famous, relativistic examination of Schiff’s theorem [22]. He showed

that atomic systems in fact enhance the effects of the EDMs they comprise. The

enhancement scales roughly as α2Z3, where α ≈ 1/137 is the fine structure constant,

and Z is the atomic number [29]. Atomic enhancement is therefore better in heavier

atoms, and can reach several orders of magnitude.

The mathematics of Sandars’s proof are complex, and indeed far beyond my abil-

ities. The reader is directed to [22, 37, 40, 41] for the original work.

4An overview of perturbation theory, focusing on first and second order calculations, can be found
in [7, ch. 6]. For a more complete study see P. A. M. Dirac [39, ch. 7].



Appendix B

Detector Filter

A basic overview of the electronics involved in our EDM search is covered in the main

body of this thesis; however, the specifics of our detector filter are located here. This

chapter begins by motivating and explaining the use of complex variables in circuit

analysis. We then apply these ideas to basic and more complex filters, and finish

with a summarized analysis of the detector filter. Primarily, therefore, this appendix

is concerned with methods ; the actual analyses are quite basic with these in hand.

B.1 Ohm’s Law Generalized

In order to examine circuits in a more powerful and ultimately illuminating way, we

require the language of complex variables as they relate to circuits.1 In order to

motivate this shift, consider the following DC circuit (Figure B.1) in which a signal

is connected to ground through a resistor and a capacitor in series.

If we assume negligible loading from the output, all current that flows through

1This discussion closely follows both the language and intent of Horrowitz and Hill’s The Art of
Electronics, [42, pgs. 23–37]. My words are ungainly and clumsy in comparison.
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VVin

R

C

Figure B.1: A typical RC circuit.

the resistor then flows into the capacitor. Applying Kirchhoff’s current law, we find

I = C
dV

dt
=
Vin − V

R
, (B.1)

which is a differential equation describing how V changes in time. It has the solution

V (t) = Vin

(
1− e−t/RC

)
, (B.2)

where the product RC is known as the time constant of the circuit. Evidently, the

voltage will increase from zero and approach Vin as the capacitor charges. This

is a good description of the DC case, and invoking higher mathematics would be

burdensome. But now consider applying a time-varying signal to the input, such as

a sine-wave of form

Vin = V0 cosωt. (B.3)

Eq. B.1 still applies, but to continue it is helpful to know more about the output

signal.

The circuit above contains only linear devices (i.e. resistors, capacitors, and induc-

tors), which allows us to conclude a useful property of its output signal: an effectively

linear circuit will output a signal of the same frequency as its input. The only differ-

ences may be in amplitude and phase. Therefore, we may write Eq. B.1 for an AC
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circuit as

C
dV

dt
=

1

R

(
V0 cosωt− V cos(ωt− φ)

)
, (B.4)

where V is the amplitude of the output signal and φ is its phase shift.

One can imagine cascading such circuits and acquiring quite a headache from

repeated trigonometric manipulations. The mathematics beg us to introduce complex

variables via the Euler identity, eiφ = cosφ + i sinφ. While doing so will surely

simplify the mathematics, it does add complexity to their interpretation. Let us be

unambiguous from the start: voltage, current, resistance, capacitance, and inductance

are all real quantities described by real numbers. As we switch to complex variables,

we represent these quantities by boldface symbols and must somehow manipulate

them at the end to recover their real values.

Sinusoidal potentials are our main signals of interest because any periodic, physical

signal can be decomposed into such frequencies by Fourier analysis. The analysis of a

sinusoidal input therefore encompasses all signals of interest, with the understanding

that some contain many superimposed frequencies. Remembering that any linear

circuit device will output a signal identical in frequency to its input, there is really

no need to expressly consider that fundamental frequency, ω. We shall consider it

understood and define our representative scheme accordingly. The only things left to

define, then, are the amplitude and phase. We may express a sinusoidal voltage of

form V = V0 cos(ωt+ φ) in the complex world as

Real Value Complex Representation

V (t) = V0 cos(ωt+ φ) → V = V0e
jφ,

where we have replaced i with j =
√
−1 to avoid confusion with electrical current,

which is typically given the former symbol. The amplitude and phase are expressly

included as V0 and φ, respectively, and frequency is understood. To recover the real
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expression simply multiply V by ejωt (thereby recovering frequency) and take the real

part.

Ohm’s law may be generalized to include all linear circuit elements by following

this example. To begin, we define the terms reactance, resistance, and impedance.

Reactance is specifically the response of ideal capacitors and inductors because they

have no resistance and therefore dissipate no power. Resistance is defined in the usual

way. Impedance, given the symbol Z, describes the total response of linear circuit

elements to time-varying signals and is the sum of reactance and resistance. Ohm’s

law therefore states

V = IZ (B.5)

where V, I, and Z are complex representations.

Further simplifying matters, engineers often work in terms of the variable s = jω,

which can be thought of as “complex frequency.” In terms of s, the reactances of

capacitors and inductors, given by XC and XL respectively, have values

XC =
1

sC
and XL = sL.

Because capacitors and inductors have no resistance, these are also their impedances.

All future calculations will be done in terms of complex impedances as functions of

s.

As a final aside, let us reconsider these representations as vectors, or phasors, in

the complex plane. Without loss of generality we associate magnitude with amplitude

and angle with phase. In terms of imaginary and real parts, they are given by

Amplitude: |V| =
√
<(V)2 + =(V)2, (B.6)

Phase: φ = arctan

(
=(V)

<(V)

)
. (B.7)
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Figure B.2: Amplitude and phase responses of an RC filter.

These identities provide a direct method for finding the amplitude and phase of any

signal for which the complex representation is known.

B.2 RC Filters

Let us return to the circuit in Figure B.1 and examine its behavior with the help of

complex variables. Applying Ohm’s law, Eq. B.5, we find that the ratio of V to Vin

is

V

Vin

=
ZC

R + ZC

=
1

1 +RCs
. (B.8)

By Equations B.6 and B.7, the amplitude and phase of the output are found to be

V =
Vin√

1 + (ωRC)2
and φ = arctan (−ωRC) , (B.9)

revealing that this circuit is a “low-pass filter.” This means that the output amplitude

is frequency-dependent and attenuates high frequencies. Reversing the positions of

the resistor and capacitor yields a “high-pass filter” whose behavior can be modeled

in a similar fashion. Figure B.2 shows these results for a low-pass filter with R = 1 Ω

and C = 1 F.

As evidenced by the above figures, RC filters do not have an abrupt “cutoff fre-
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quency” beyond which signals are significantly attenuated. Rather, the amplitude

response gradually declines and the filter is therefore not terribly useful for isolating

similar frequencies. More advanced filters, however, can achieve magnificent atten-

uation through the use of op-amps. We now proceed to examine these active filters

and begin by further developing a language to describe their performance.

B.3 Transfer Functions, Poles, and Decibels

Filters are described entirely by their amplitude and phase responses, and so may

be characterized by a mathematical function containing this information. Such an

expression is called the transfer function and is the primary quantity of interest in

filter analysis.2 It may be written formally as

H(s) =
Vout

Vin

. (B.10)

We may alternately write H in polar form as

H(s) = Gejφ, (B.11)

where G is the gain of the filter. Solving for G and φ separately gives

G = |H(s)| , (B.12)

φ = arctan |H| . (B.13)

In cascaded, isolated filters, transfer functions commute. This means that filters

can be connected one after the other, with appropriate isolating stages, and the overall

transfer function is simply the product of each. Mathematically we find that each

2National Semiconductor provides an excellent online review of transfer functions and poles [43].
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Figure B.3: Amplitude responses of cascaded RC filters.

capacitor in the circuit adds another power of s to the denominator of H, yielding an

nth-degree polynomial, where n is the total number of capacitors in the filter. This

polynomial will have n zeros in the complex s-plane, corresponding to singularities in

H that we refer to as poles. More poles generally result in better characteristics.

A convenient scale for comparing amplitude responses is the decibel, which is a

logarithmic comparison that sets unity gain at zero. It is defined as

dB = 20 log10

A2

A1

(B.14)

(or more naturally for power as 10 log10 P2/P1). Amplitude responses are typically

plotted either as decibels, or simply logA2/A1, versus logω, both of which tend

to reveal filter characteristics more clearly. To normalize further the comparisons,

frequencies are scaled such that each filter has its -3dB point (gain of 10−3/20 ≈

0.707) at a frequency of 1 rad/s. An example of such a plot, comparing RC filters of

increasing pole number, is shown in Figure B.3.
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B.4 The Detector Filter

Active filters incorporate non-linear circuit elements such as op-amps to achieve re-

markable filter characteristics. There are several different types of active, analog

filters, but the most popular designs are the Chebyshev, Butterworth, and Bessel.3

We shall focus our attention on the last because it is the design incorporated in our

detector circuit. Figure B.4 shows the complete detector circuit as of April, 2007. It

has been modified since the previous student thesis.

Bessel filters are renowned for their highly linear phase response, which causes

minimal waveform distortion in the pass-band region. To demonstrate this, simply

consider a sinusoidal voltage of form V (t) = V0 cos(ωt+φ) and set φ = kω, where k is

some constant of proportionality. Minor rearrangement reveals that each frequency

has been shifted in time by a constant amount ∆t = k. Our experiment values this

characteristic and we have therefore designed a 5-pole Bessel filter with its -3dB point

at 80 Hz.

The filter consists of three isolated stages, the first of which is a low-pass RC

filter isolated by a non-inverting op-amp with a gain of 56. The next two stages are

two-pole active filters manufactured as ICs by Burr-Brown, Inc. They are two-stage

active state filters consisting of three interconnected op-amps and a fourth to act

either for gain or as a voltage follower. The transfer function for each IC is given by

H(s) =
ALPω

2
n

s2 + s(ωn/Q) + ω 2
n

, (B.15)

where ALP , ωn, and Q are interrelated quantities determined by component values

[44]. With appropriate choice of components, the combined circuit can be modeled

as a Bessel filter, and computer programs typically are used to solve these equations.

3These filters are so named because their transfer functions are mathematical expressions involv-
ing functions of the same names.
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Figure B.4: The complete detector circuit. The boxed region is within the pre-
amplifier.
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Figure B.5: Amplitude and phase responses of the detector filter. Measured data
points are dots, and mathematical models are continuous lines.

The actual values chosen are shown in Figure B.4. To model the filter we multiply

together the transfer function for each stage because they commute as stated previ-

ously. Equations B.12 and B.13 give the amplitude and phase response of the filter,

as shown in Figure B.5.

The filter behaves as expected and matches the initial design specification that

the -20dB point occur at 200 Hz. The phase shift is linear within and far beyond

the experimental region of concern, and well beyond the passband. This results in

imperceptible waveform distortion and adequate filtration of acoustic and vibrational

noise.



Appendix C

The Apparatus

This appendix is intended as a brief, physical guide to the design of the apparatus.

Along with chapter 2 this should provide the reader with a sense of how everything is

physically constructed. Especially important are the methods that have been adopted

to minimize noise and to regulate temperature. Chapter 5 of Ben’s thesis treats much

of the design in finer detail [2]; this is intended to condense the information into its

essentials.

C.1 Sample Structure and Mount

As discussed in §2.3, our sample is a vertically-split toroid of GdIG, each half of

which contains a different concentration of gadolinium ions. The sample is extremely

resistive (∼ 1015 Ω/m), so the two electrodes are essentially isolated from each other

by the GdIG. To ensure that they remain isolated from ground, we mount the sample

on a ceramic, macor base which is considered even more resistive than the GdIG. A

photograph of the toroid on its base is shown in Figure C.1.

The sample is attached to the mount with a thin layer of Stix-All glue, which

survives cycling through liquid nitrogen temperatures. The ceramic mount is attached
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Figure C.1: The toroid situated on its ceramic mount. The G10 clamp for the elec-
trode wires is visible, as is the chip on the 1.8 Gd side, to the right of the image.

to the surrounding Faraday cage with brass screws, anchoring it in place but allowing

for easy removal. Electrode wires extend vertically from the sample and eventually

attach directly to the gates of the JFETs in the pre-amplifier, which will be discussed

in §C.3.

A clamp made from G10 board and titanium rods is attached to the sample. It

clamps the electrode wires above the sample, after their connection to the electrode

plate itself. Any tension applied to the wires is therefore transfered to the sample

itself, and not to the joint between the wire and the electrode plate. This brace

allows us significantly to tension the electrode wires, increasing the frequency of their

microphonic responses. The detector filter, discussed in appendix B, effectively filters

these frequencies. Titanium was chosen because its thermal expansion coefficient is

similar to that of GdIG; they are 8.6 × 10−6 K−1 and 10.4 × 10−6 K−1, respectively

[45, 35]. This minimizes stresses during cooling.
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C.2 Sample Faraday Cage

A toroidal Faraday cage surrounds the sample, and is encased by both a magnetic

field coil and a heating coil. The heating coil is the inner of the two and is wound

in the horizontal plane, but never in complete loops. This reduces any vertical field

that its current might create.

The magnetic field coil is wound to create a circulating field. We calculate its flux

density1 by the equation

B(s) =
µ0

2π

NI

s
φ̂, (C.1)

where N = 336 is the number of turns, I is the current, and s is the distance from

the vertical axis of the toroid [13]. Approximating the radius as s = 1.5”, which is

half way between the inner and outer radii of the sample, we find the flux density in

terms of the current to be

B = 17.6 G/A. (C.2)

The coil wrapping does not progress regularly about the axis of the toroid, but rather

changes direction regularly. This decreases any vertical component of its field.

C.3 Pre-Amplifier

The first stage of signal amplification occurs in a circuit located within a small, brass

case above the sample. This is referred to as the pre-amplifier. The electrode wires

connect directly to the gates of JFET cascode pairs, which have extremely high input

impedance. We decrease this impedance by connecting 1013 Ω resistors from the gate

to ground. This circuit is shown in Figure C.2; its gain versus temperature curve is

shown in Figure 2.12.

1I’m being a picky with terms here, by choosing flux density instead of field, but I do so for
dimensional consistency.
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Figure C.2: The pre-amplifier circuit.

The temperature of the pre-amplier is controlled by two 50 W power resistors in

series, the current through which is adjusted automatically to maintain a temperature

of 127 K. A temperature diode between the resistors gives feedback to the temperature

control box. Both the resistors and the diode are varnished onto the top of the pre-

amplifier case, and a brass tensioning clamp holds them in place should the bond fail.

At 127 K, the gain of the pre-amplifier is roughly 75.

C.4 Vacuum Can

The sample and pre-amplifier are contained within a larger vacuum can that is im-

mersed in liquid nitrogen during cooling. The top and bottom flanges of the can are

brass, and the sides are copper tubing. The can hangs down from wooden supports

above, so that the apparatus does not touch the ground. A vacuum seal is maintained

by compressing a thin bead of indium between the top flange and upper lip of the

vacuum can. The top flange of the can is soldered to stainless steel tubes that carry

the cables for all electronics within the can. These include voltage supplies for the

pre-amplifier, field coil, pre-amplifier, sample heater coils, and temperature diodes.

Stainless steel is an extremely poor thermal conductor, so the tubes remain at room

temperature just a few inches above the level of the liquid nitrogen. A schematic
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diagram of the vacuum can, pre-amplifier, and sample cage is shown in Figure C.3.

The top of the pre-amplifier case is soldered directly to the stainless steel tubes

that extend through the top flange of the vacuum can. The bottom of the pre-amplifier

is held by brass side-panels that are screwed to the top. The sample Faraday cage

is supported from beneath by an aluminum plate that is screwed to aluminum bars

that extend vertically to the top flange of the vacuum can. To drop the sample cage,

we unscrew the bottom plate from its support rods. The electrode wires extend to

the pre-amplifier through guard tubes that are permanently attached to the sample

Faraday cage, but not to the pre-amplifier. These slide out as the sample is lowered,

though the electrode wires must be unsoldered from the pre-amplifier.

C.5 Temperature Regulation

The cold reservoir for the apparatus is the liquid nitrogen that surrounds the vacuum

can. As previously mentioned, a heating coil on the sample Faraday cage and heating

resistors on the pre-amplifier maintain the desired temperatures of these two units.

Helium exchange gas is pumped into the system to accelerate heat transfer. At 88 K

the system is particularly prone to heating from the field coil, and the helium helps

to dissipate this heat.

Temperature control boxes are programmed to regulate the temperatures of both

the pre-amplifier and the sample Faraday cage. The pre-amplifier temperature is held

constant at 127 K because this falls in the ideal operating range of JFETs, and eases

calculations of the gain. The sample cage is held at the appropriate operating point.

Temperature diodes are varnished to four points inside the vacuum can: the upper

flange, the top of the pre-amplifier, the bottom support plate, and the sample Faraday

cage. The temperature control boxes report the temperatures of these four diodes

simultaneously. We are most concerned with the temperature of the sample Faraday



C.5. TEMPERATURE REGULATION 145

15 3
8

5 1
2

2

4 1
2

Pre-Amplifier

Top Flange

Feedthroughs

GdIG Toroid

Electrode Wire Feedthroughs

Support Rods

Bottom Flange

Electrode Wires

Pre-Amp Circuit Board

Indium Vacuum Seal

Sample Cage

Bottom Support Plate

Vacuum Can

19

Figure C.3: Cross-section of the apparatus. Dimensions are in units of inches. (After
[2, Figure 5.9].)
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cage because this is the surface closest to the GdIG toroid.

GdIG is particularly sensitive to temperature gradients, and so we must be careful

to vary its temperature slowly. The manufacturer recommends that we cycle the

temperature at a rate of no greater than 20 K per hour, and to be safe we select the

rate

dT

dt
≤ 0.25 K/min. (C.3)

We use an iterative procedure to estimate the sample temperature. The rate of change

of the sample temperature, TS, is assumed to be directly proportional to its difference

from the temperature of the Faraday cage surrounding it, TFC :

dTS

dt
= k(TFC − TS), (C.4)

where k is the constant of proportionality. As determined experimentally, k for our

sample is roughly 3.7×10−3 min-1 in vacuum and 1.2×10−2 min-1 with exchange gas

present [2, §5.5]. If TFC changes linearly in time, then the time rate of change of the

sample will never exceed that of the Faraday cage, as we now show.

Consider a general system with a sample of temperature T , initially at T = T0,

surrounded by a medium of temperature τ , initially at τ = τ0. Suppose that the time

rate of change of T is given by

dT

dt
= k(τ − T ). (C.5)

If we assume that τ changes linearly in time, such that τ(t) = ct+ τ0, then we find

dT

dt
= ckt− kT + kτ0. (C.6)
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We now change variables to

u = ckt+ kτ0, and
du

dt
= ck, (C.7)

such that Eq. C.6 simplifies to

dT

dt
=
dT

du

du

dt
= ck

dT

du
= u− kT. (C.8)

Rearranging slightly, and multiplying each side by eu/c, this becomes

ceu/cdT

du
+ Teu/c =

1

k
ueu/c. (C.9)

The first two terms on the left may now be combined, to yield

c
d

du
(Teu/c) =

1

k
ueu/c. (C.10)

Multiplying through by du and integrating both sides, we find

ck

∫
d(Teu/c) =

∫
ueu/cdu. (C.11)

The left hand side of Eq. C.11 is easily solved; it reduces to

ck

∫
d(Teu/c) = ckTeu/c + C1. (C.12)

The right hand side simplifies to

∫
ueu/cdu = cueu/c − c

∫
eu/cdu = (cu− c2)eu/c + C2, (C.13)
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and we combine these results to yield a relationship in terms of T and u:

ckTeu/c = c(u− c)eu/c + C ′, (C.14)

where C ′ = C1 + C2 is the total constant of integration. Because u = ckt + kτ0 is

independent of T , we may isolate T directly. After some simplification, we find

T = ct− c

k
+ τ0 + Ce−k(ct+τ0)/c. (C.15)

The constant of integration is found by applying the initial condition that T (t = 0) =

T0, which yields

C =
(
T0 − τ0 +

c

k

)
ekτ0/c. (C.16)

The final result for the temperature of the sample as a function of time is therefore

T (t) = ct+ τ0 −
c

k
+
(
(T0 − τ0) +

c

k

)
e−kt. (C.17)

The temperature of the sample will therefore change approximately linearly in

time, with the same rate c as the external medium. Some transient, exponential

terms decay relatively quickly, and at t = 0 the temperature is T = T0 as expected.

A graph of this function is shown in Figure C.4. This result is important in our

cooling procedure because we may program the temperature control boxes to change

their set-points at an arbitrary rate. According to these calculations, if we set the rate

at -0.25 K/min then the sample cooling rate will never exceed that of the Faraday

cage.2

Ideally, if the sample cooled from room temperature at the maximum rate, then

2A caveat to this bold statement is that the heaters have a limited range of operation. For
example, when the vacuum can is immersed in liquid nitrogen, the heaters are unable to keep the
sample Faraday cage above 165 K unless the helium exchange gas is pumped out. These calculations
are general, but they are helpful to us only when the heating coil can actually control the sample
cage temperature.



C.5. TEMPERATURE REGULATION 149

0

50

100

150

200

250

300

350

0 10 20 30

Te
m

pe
ra

tu
re

 (
K

)

Time (hrs)

Figure C.4: A plot of the estimated sample temperature versus time when the Faraday
cage cools at a linear rate. This curve is for kvac = 3.7 × 10−3 min-1 and c = −0.25
K/min.

it could reach 88 K in just over 14 hours. According to these calculations, however, it

would take approximately 18.5 hours if the Faraday cage started cooling immediately

at the maximum rate. In reality, cooling takes considerably longer.

We experience delays in cooling for many reasons. The vacuum can must be

cooled at a reasonably slow rate to prevent cracking that would compromise the

vacuum seal. Improvements to its design have limited these failures, but they still

occur with undesirable frequency. Heat transfer from the vacuum can to the sample

Faraday cage is rather slow because the primary route is down to the support plate,

up through the support bars, and into the top flange of the vacuum can. “Cooling

fins” provide direct thermal contact between the field coil and the support rods, but

the path to the cold reservoir is still indirect. This significantly delays the response

of the Faraday cage to changes in the external temperature.

We are therefore unable to control carefully the sample temperature at higher

temperatures, and so we proceed cautiously. Typically, liquid nitrogen is poured into

the dewar surrounding the vacuum can until it is just below the bottom flange. The

can then cools from the vapors until it has reached approximately 200 K. At this
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point we slowly immerse the bottom of the can by raising the dewar and topping up

the liquid nitrogen as necessary. Soon thereafter, the entire vacuum can is immersed.

The temperature regulators work constantly to ensure that the Faraday cage never

cools faster than 0.25 K/min.

The vacuum can is kept immersed in liquid nitrogen during all data collection,

which takes place between 88 K and 178 K. The heating coil does little work at 88

K, but at 178 K it must work at nearly full power constantly. To assist the heater,

we pump out the exchange gas at 178 K.



Appendix D

Experimental Details

This appendix elaborates on the details of experiments performed with the model

system. The essential results are outlined in chapters 4 and 5, but the methods and

a more thorough interpretation of the data are located here. Each set of samples is

considered independently and chronologically. A description of the force sensors and

their involved circuitry is discussed to close. Illustrations of the braces constructed

to hold the various samples may be found in §4.2 and §5.1.

Unless otherwise noted, all experiments presented in this appendix were conducted

using a 1.1 Hz, 11 V peak-to-peak, triangular, driving waveform from the linear

amplifier. This gives a maximum applied field of ±500 G within the solenoids. As in

chapters 4 and 5, the signals have been decomposed via the methods of §3.2.2 such that

only the symmetric contributions are displayed. (The antisymmetric contributions

change little between experiments.) All traces have been additively adjusted so that

they are zero-valued at the point of maximum applied field strength.

151
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Figure D.1: Symmetric signals from different conductive, tape electrodes on the YIG
cylinder. Electrode wires were soldered to copper and tin, but pressed to aluminum
with a plastic zip-tie.

D.1 YIG Cylinder

D.1.1 Different Metals

The first set of electrodes that we used with the long, YIG cylinder were pieces of

metal tape. These are thin strips of metal with conductive, acrylic adhesive. The

tape is on the order of 0.001” thick and has a contact resistance of approximately

0.01 Ω.

As a first approach, we experimented with three different types of metals on the

sample: copper, aluminum, and tin-plated copper. The first electrodes comprised five

strips of copper tape, overlapped slightly to completely cover the middle half of the

sample. Electrode wires were soldered to the top strips of copper and tin tapes, but

pressed to the aluminum tape with a plastic zip-tie. The signals from these electrodes

are shown in Figure D.1.

We note that copper and tin electrodes give signals of opposite signs, and that

aluminum gives the smallest signal by far. Further experiments reveal that the ob-

served sign differences are inconsistent. Some assemblies yield large, positive signals,
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Figure D.2: Symmetric signals from copper electrodes of various sizes. The small
square is approximately ten times smaller than one strip of tape.

and others equally large, negative ones.

D.1.2 Electrode Size

Direct observation reveals that electrode size has little effect on the size, shape, and

reproducibility of the symmetric signals. We varied the size of the electrode from five

strips of partially overlapping tape to a 0.25 in2 square, and the signal sizes changed

insignificantly. These results are shown for copper in Figure D.2. The only observable

change in the signal is greater vibrational noise from the smaller electrodes, which is

sensible because larger electrodes adhere to the sample better. To reduce vibrations,

we anchored the electrode wire to the YIG with plastic zip-ties.

D.1.3 Electrode Position

Changing the positions of the electrodes on the sample similarly makes very little

difference to the symmetric signals. Data from copper electrodes placed at the top,

middle, and bottom of the YIG, all still attached to the side, yield essentially identical

signals, as shown in Figure D.3. These variations are within the typical range for
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Figure D.3: Symmetric signals from copper electrodes placed at different positions
on the YIG cylinder. The signals are essentially identical.

simply reconstructing a given electrode, so we consider these signals identical.

D.1.4 Reproducibility and Aging

One of the major difficulties that we encounter with this sample is the reproducibility

of the data. For example, we often constructed electrodes and used them for several

days before switching to a different type. We observed that the amplitudes of the

symmetric signals decreased over time, though it is not obvious why such change

should occur. For example, the M-even effect in the GdIG sample is exactly repro-

ducible over time. Also, the contact that our conductive tape makes with the sample

improves over time: the tape can be easily removed at first, but after several days we

require methanol to clean off acrylic that adheres to the YIG. We hypothesize that

the improved bond between the electrode and the YIG may limit the motion of the

electrode. These observed decreases in signal size would therefore be analogous to

tightening the later braces.

Figure D.4 shows the effects of aging with two different electrodes, over different

time spans. The decrease is sudden at first but evidently slows. However, it makes
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Figure D.4: Aging of the conductive tape electrodes. (a) 5 strips of Cu tape, (b) 1
strip.

comparing data from different electrodes difficult unless the electrode is freshly con-

structed; at least then we know that the signal is as large as it ever will be. Because

of these difficulties with aging, and the observed changes in how the acrylic sticks to

the YIG, we decided to try bonding electrodes to the sample with different adhesives.

The first attempt was with silver-doped paint.

D.1.5 Silver Paint

Beyond conductive tape, we also tried bonding a copper electrode to the YIG cylinder

with silver paint. The symmetric signal from a 0.5” square, copper electrode silver

painted to the sample has a smaller magnitude than the conductive tape signal by

approximately a factor of two, but this is insignificant given the variations we routinely

observed. Most interestingly, the signal maintained its amplitude over time, as shown

in Figure D.5.

We did not try attaching the electrode to the YIG with silver-doped epoxy, as in

the main apparatus, because we felt unable to heat safely such a large sample of YIG.

Gadolinium and yttrium iron garnets are terrible thermal conductors, and both are

extremely sensitive to internal temperature gradients (e.g. our GdIG toroid had to be
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Figure D.5: Symmetric signals from a 0.5” by 0.5” copper electrode, attached mid-
sample by silver paint. The signal changes insignificantly over time.

cooled from sintering for two weeks to prevent fracturing). Heating in an oven risks

heating the outside of a sample much more rapidly than the inside, which could cause

it to crack. We performed epoxy tests on smaller samples of YIG, and the results are

discussed in chapter 5.

D.2 YIG Toroids

The second samples that we used were short, YIG cylinders with holes down their

centers. We refer to these as toroidal samples, although they are highly irregular.

They have 1.5” outer diameters, and are 1.25” and 1.75” tall. Each has one face

polished smooth and perpendicular to its axis; we press the samples together at this

interface with electrodes between.

D.2.1 Conductive Tape

The first electrodes used with these samples comprised two strips of copper tape with

acrylic adhesive on both sides. We placed these parallel between the YIG toroids
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Figure D.6: Symmetric signals from conductive tape between the toroids. (a) The
electrodes comprised two strips of copper tape. (b) Aging of the signal.

such that they touched but did not overlap, as in Figure D.6a. The electrode wire

was soldered directly to one of the pieces and extended vertically as before. Upon

turning on the applied, magnetic field, we observed a symmetric signal of comparable

size to those from previous tape measurements.

After allowing the tape to age for four days, we measured the signal again and

observed the expected decrease in amplitude. These data are shown in Figure D.6b.

In this case, as the tape aged, it became increasingly difficult to separate the samples

physically. This supports the hypothesis that the improved bond limits motion be-

tween the samples and the electrode, and that this decreases the sizes of the symmetric

signals.

D.2.2 Metal Electrodes

Metal electrodes are made from various stocks available around the lab. Most are

pure elements, although we also use brass. The materials and their thicknesses are

listed in Table 5.1.

The 0.02” copper electrode serves as a control in nearly all experiments because
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Some sign differences are observed.

it is rigid and its signals are reproducibly large. Signals for all these electrodes are

shown in Figure D.7. These are best interpreted as instances of the signals from

these electrodes; often we observe seemingly random sign changes and variations in

amplitude. These curves represent a best guess at the most frequent behavior.

Securing electrodes to the indium and tin electrodes is especially difficult because

the materials are so soft that they flex under the weight of the electrode wire. Orig-

inally we addressed this problem by attaching the electrode wires to the side of the

YIG with plastic zip ties, but experiments reveal that this can result in irreproducible

changes to the signal shape and sign. The data in Figure D.7 use no zip ties or se-

curing mechanism of any kind, and so differences are likely correlated to the changed

electrode.

Two particular qualities of these data are worth noting. First, the signals all have

roughly the same size (up to factors of three, or so), and these are quite large. The

M-even effect in the GdIG sample has an amplitude of roughly 100 µV, but here the

signals are well over 1 mV. Second, some sign changes have been observed. Neither

of these observations was to be predicted; fundamentally, it is mysterious that we
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Figure D.8: Decreasing the size of the electrode between the toroids. (a) A spacer is
inserted opposite the electrode to maintain balance. (b) Signals from the electrodes.

observe a symmetric signal in the first place, and further that the signals should vary

in this manner.

D.2.3 Size and Thickness

To test the dependence of the symmetric signals on electrode size, we reduced the

1.5” diameter, copper electrode to a 0.5 cm2 rectangle. This decreases the contact

area by a factor of 20. To maintain the vertical geometry and prevent tipping of the

toroids relative to each other, we inserted an equally thick, metal spacer across from

the electrode, as in Figure D.8a. The signal from this electrode is shown in Figure

D.8b; it slightly larger than that from the full electrode.

These data reproduce the two copper electrode curves from Figure D.7 to em-

phasize the effects of varying the thickness of the electrode. Copper is convenient in

this case for we possess a variety of thicknesses, but our stocks of the other materials

are limited. In this case, a sign change is observed between the signals from the two

copper electrodes, and the signal from the thinner electrode is slightly larger. These

differences are frequently observed, yet we lack a sufficient explanation for them.
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D.2.4 Dielectrics

To test whether the symmetric signals depend on electrical contact with the YIG,

we inserted a small piece of paper on either side of the 0.002” copper electrode.

Surprisingly, the signal is barely affected, as Figure D.9 shows. We next tried inserting

two sheets of 0.001” mylar above and below the 0.02” copper electrode, for a total of

four sheets. The resultant signal is an order of magnitude larger, and of opposite sign,

than the signal from the electrode alone. We also tried single sheets of mylar and

thick, 0.02” teflon, and observed the largest signals to that point; the single mylar

sheet produced a symmetric signal of roughly 120 mV peak-to-peak. These signals

are arrestingly large and required complete reconsideration of our models

D.2.5 Brace Pressure Variation

When the pressure applied to the YIG toroids by the brace is decreased, the sizes of

the symmetric signals from metal electrodes dramatically increase. The results for

a round of these experiments are shown in Figure D.10. We note increases in the
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Figure D.10: Signals from a 0.02” copper electrode under varying amounts of brace
pressure. Numbers of turns indicate the amount that the two nuts on the top of
the brace are loosened; 2.5 turns is the point of no pressure. The amplitudes of the
signals vary by over two orders of magnitude.

magnitude of the signal throughout the loosening; when the brace is fully loosened,

it increases by over two orders of magnitude.

We find these results to be significant because there is no obvious connection

between the pressure applied by the brace and a potential (of any symmetry) on

the electrode. However, decreasing brace pressure obviously allows the samples to

move more, which suggests a motional EMF source. We had suspected for some time

that flipping the magnetization of the GdIG sample might lead to torques and small

oscillations, but had not expected significant motion in the model system.

It is worth noting that microphonic noise in the model system is particularly

notable with this brace. Simply tapping the outer coil with a finger induces oscillations

with amplitudes of several millivolts, and harsher excitations have proportionally

greater effects.
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D.2.6 Time-Varying Pressure

The most reliable increases in the symmetric signals from the metal electrodes oc-

curred when we progressively loosened the brace. However, each step required unsol-

dering the electrode wire from the input of the detector, pulling out the inner coil,

loosening the brace, and reassembling the whole system. We did our best to limit any

other changes that might occur during this reassembly, but one can never be sure. It

therefore seemed prudent to develop a system of varying the brace pressure while the

system was running.

Professor Hunter suggested hanging a weight on a spring from the top of the brace,

and we modified the model system accordingly. A brass plate is placed on top of the

toroid brace, with brass bars extending down through the bottom plate of the outer

coil. We attach a rod between these bars from which is hung a 4.5 lb weight on a

spring; this assembly is shown in Figure D.11. The weight oscillates with a frequency

of approximately 2 Hz.

This system produces extremely large, sinusoidal signals on the electrode, as shown

in Figure D.12a. Manually pulling the weight produces an immediate negative bump

in the signal, which slowly decays to zero with the RC time of the circuit. We also

find that large signals are produced if we remove the YIG entirely and replace it with

another insulator, such as plastic. One such assembly involves two plastic spacers

with pieces of glass, indium-bonded to a 0.002” copper electrode, between them. Dan

Krause Jr. bonded the copper to the glass as preliminary work for the indium bonding

described in chapter 5, and we borrowed the samples for this test. A photograph of

the setup is shown in Figure D.12b. The signal is smaller than that from the YIG,

for unknown reasons.
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Figure D.11: A hanging weight beneath the model system applies pressure to the top
of the brace via brass bars that extend through holes in the bottom plate. The entire
system is electrically grounded.
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Figure D.12: Time-varying pressure applied by a weight hanging on a spring. (a) Sig-
nals from the electrodes; there is no intended phase relationship between the curves.
(b) Photograph of the brace with plastic spacers and a copper electrode indium-
bonded to glass.



D.3. NICKEL-ZINC FERRITES 165

V
ol

ta
ge

 to
 I

np
ut

 (
m

V
)

Applied Field (G)

Pb

Cu 0.02’’

-0.1

0

0.1

0.2

0.3

-500 -250 0 250 500
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0.02” Cu, (b) 0.008” Pb.

D.3 Nickel-Zinc Ferrites

The first brace used to hold the Ni-Zn ferrites is the one designed for the long, YIG

cylinder. We first used a mismatched pair of samples, one 3” long and the other 2”.

The YIG cylinder is 7” long, so we added plastic spacers at either end to account for

the shorter overall length. We then repeated some of the tests performed with the

YIG toroids, before moving to the entirely new brace designs described in chapter 5.

D.3.1 Electrode Signals

Symmetric signals are observed from metal electrodes compressed between the ferrites,

without adhesive. These results are shown in Figure D.13. Their magnitudes are

smaller than those observed in previous tests, and the signals tend to decay quickly;

both of these observations agree with a decreased RC time of the circuit. The lead

signal has a familiar shape, but the copper signal is unusual.
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Figure D.14: Signals from ferrites under variable brace pressure. (a) 0.02” Cu; the
signal increases by two orders of magnitude. (b) 0.008” Pb

D.3.2 Brace Pressure Variation

Reducing brace pressure increases the sizes of the symmetric signals from the ferrites,

as shown in Figure D.14. The signal from a 0.02” copper electrode increases by two

orders of magnitude when the brace is fully loosened, and the lead signal increases

by a factor of five. We have since examined the behavior of different electrodes under

varying amounts of pressure, and these results are discussed in chapter 5.

D.4 YIG Cylinders

D.4.1 Size and Thickness

To test the dependence of the symmetric signals on electrode size and thickness, we

repeated the tests described in §D.2.3 with the YIG cylinders. The data for these tests

are shown in Figure D.15a. We note that the signal sizes and shapes are essentially

independent of the electrode size and thickness. Loosening the brace on the small

electrode produces large, symmetric signals with unusual shapes, as shown in Figure
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Figure D.15: (a) Signals from copper electrodes of various dimensions. (b) Varying
brace pressure on the small, 0.02” Cu electrode.

D.15b. They are almost an order of magnitude smaller than those from full, 0.02”

copper electrodes (Figure 5.6a).

D.5 Force Sensors

In addition to the electrode tests described above, we also measured the forces of

attraction between various samples during magnetization. To do so, we employed

FlexiForce Force Sensors manufactured by Tekscan, Inc. They are long, thin circuits

with piezoresistors in a pad on which pressure is applied. The conductance (inverse

resistance) is linear in the applied force, which allows us to construct a relatively

simple circuit to output a voltage linearly proportional to the applied force. A picture

of these sensors is shown in Figure D.16.

D.5.1 Sensor and Circuit

The circuit we designed is a modified version of that recommended in [46], and in-

cludes a differential amplifier as a second stage to subtract an arbitrary amount of
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Figure D.16: FlexiForce sensors, shown isolated and mounted between ferrites.
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Figure D.17: The circuit built to read the force sensors.

force. Regarding our applications, we may subtract the constant force applied by the

brace and see only the change in force due to the changing sample magnetizations.

The circuit diagram is shown in Figure D.17. The piezoresistor Rs connects to the

circuit via a jack, and the voltage regulator and op-amp maintain a constant voltage

drop Vc = −5 V across it. Each op-amp acts as an inverting, differential amplifier; the

input voltage to the first op-amp is negative, so the output of the second is similarly

negative. The offset voltage Voff is set by a potentiometer and is subtracted in the

final stage. Two capacitors are added as low-pass filters to reduce noise.

To calculate the relationship between the applied force and the output, we analyze

the circuit directly. (Relevant variables are labeled in the circuit diagram). Analysis

of the currents through Rs and R1 show that V2 is related to Vc, the constant voltage

applied by the voltage regulator, by

V2 = −R1

Rs

Vc. (D.1)

The next stage is similar, although the positive input of the second op-amp will not
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in general be grounded. Applying Ohm’s law to R2 and R3, we find that Vout is given

by

Vout =

(
1 +

R3

R2

)
Voff −

R3

R2

V2 (D.2)

Combining this result with Equation D.1, we find Vout in terms of Vc, as

Vout =

(
1 +

R3

R2

)
Voff +

R1R3

R2Rs

Vc. (D.3)

R1, R2, and R3 all equal 10 kΩ, so the relationship simplifies further. As previously

mentioned, the force sensors are designed such that the conductance of the piezore-

sistors is linear in the applied force, which we express as

1

Rs

= kF, (D.4)

where k ≈ 3.1 × 10−5 N-1kΩ−1 is calculated from manufacturer specifications. After

some rearrangement, Equation D.3 therefore simplifies to

F =
1

kR1Vc

(
Vout − 2Voff

)
(D.5)

and Vout is obviously linear in the applied force.

For convenience, we express F as the sum of two forces: a constant force Fb due

to the brace, and a changing force ∆F due to the magnetization. When Voff is tuned

to exactly cancel the potential due to Fb, Vout will depend only on ∆F and will vanish

when the applied field is off. As the field flips, the force signal that we read is therefore

due entirely to the magnetic attraction between the samples. In this case, Fb depends

only on Voff , and ∆F depends only on Vout. We therefore split Equation D.5 into its
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two contributions and find expressions for the two contributions to the overall force:

Fb = − 2

kR1Vc

Voff , (D.6)

∆F =
1

kR1Vc

Vout. (D.7)

Data collected using the force sensors are analyzed using the above two equations.

The force of magnetic attraction is shown in the figures, and Fb is typically given in

the captions.

D.5.2 Results from the YIG toroids

We first mounted force sensors between the YIG toroids in their plastic brace. Voff

was tuned to subtract the static, brace pressure, and its value was recorded. We then

measured the force of attraction of the materials as a function of both applied field

strength and brace pressure.

Results from the YIG toroids are presented in this section; pertinent data from

the YIG cylinders and ferrites can be found in chapter 5. Because the toroids have

holes down their vertical axes, we mounted the force sensor to one side and placed a

brass spacer of equal thickness to the sensor (0.007”) on the opposite side. This is

shown in Figure D.18a. Data from the sensor for two different brace pressures are

shown in Figure D.18b. The changing force is shown here; we assume that the force

of attraction does not change the brace pressure.

The samples attract each other with roughly 20N = 4.5 lbs of force close to

saturation. We find that the samples display essentially no hysteresis, and so the

force of attraction at a given value of the applied field is largely independent of its

amplitude. We also note that the amplitude of the attractive force increases as the

brace is loosened. The signals begin to plateau at higher field strengths, which we

interpret as evidence that the samples nearly saturate in the applied field.
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Figure D.18: Force sensor data from the YIG toroids mounted in their plastic brace.
(a) Placement of the sensor. (b) Force of attraction as a function of applied field.
The tightened brace provided 1,500 N of pressure, and the loosened brace 350 N.

The data also show that the force of attraction between the samples increases as

the pressure from the brace decreases. This is currently not understood; data from

the ferrites (Figure 5.11) indicate the opposite trend.
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