Name: \qquad SOLUTIONS III, IV, and V

SAMPLE EXAM 2 FALL 2012 SOLUTIONS

Chemistry 11, Fall 2007

Exam II
November 15, 2007
7:30 PM - 9:30 PM
As always, full credit will not be given unless you have written down the reasoning or calculations you used to obtain the correct answer. Work on the back of pages will not be graded! Pay attention to significant figures. Please check now that your exam has thirteen pages (including this one). A periodic table and a list of formulas are attached at the back of the exam. If you finish early, just leave your completed exam on the front desk. If you have a question, we will be in an out during the exam. You have two hours to complete this exam.

It is against the honor code at Amherst College to either give or receive help on this exam. The work you turn in must be yours and yours alone.

Extra Credit (circle the correct answer)
What was Schrodinger's First name?
a) Kitty
b) Richmond
c) Erwin
d) Zeynep

Question	Points	Score
XC	02	
I	25	
II	25	
III	20	
IV	20	
V	10	
Total	102	

I. IE, Lewis Structures, VSEPR, dipoles (25 points)

1. Arrange the following elements in order of increasing size (atomic or ionic radii). Explain your arrangement. (5 pts) $\mathrm{Al}, \quad \mathrm{Ar}, \mathrm{Cl}, \quad \mathrm{Mg}, \quad \mathrm{Na}, \quad \mathrm{P}, \quad \mathrm{S}, \quad \mathrm{Si}, \quad \mathrm{Cl}^{-}, \quad \mathrm{K}^{+}$.
2. The first ionization energies of the first 20 elements are shown in this graph. (5 pts)

First ionisation energies from hydrogen to calcium (kJ per mole)

Explain the trend in ionization energy from sodium to argon. Make sure your answer includes the special cases in the trends (i.e. magnesium $>$ aluminum, phosphorus $>$ sulfur.; argon $>$ potassium.)
3. For each of the following molecules/molecular ions, draw the Lewis diagram, indicating the formal charge on each atom, the geometry (shape) of the molecule, the bond angles, the direction of polarity in each bond and where applicable, the direction of the molecular dipole. Sulfur is always the central atom, and the electronegativity values of sulfur, fluorine and oxygen are 2.6, $4.0 \& 3.4$ respectively. (15 pts)

SO	SO_{2}
SO_{3}	$\left[\mathrm{SO}_{3}\right]^{-2}$
$\left[\mathrm{SO}_{4}\right]^{-2}$	

II. PE effect, Ionization Energy (25 points 5 pts each)

Light can knock electrons off of a metallic surface, causing the surface to be positively charged; this process is called the photoelectric effect. For a metallic spacecraft orbiting in sunlight, the photoelectric effect could result in the spacecraft's surface becoming positively charged. Surface charging of a spacecraft might then cause electrical discharges that could damage its surface or delicate electronic components.

Assuming the energy of sunlight to be 4.26 eV , suppose you were to build a spacecraft using one of the following metals; magnesium, aluminum or titanium. The work functions for these metals are $3.68 \mathrm{eV}, 4.28 \mathrm{eV}$ and 4.33 eV , respectively. $\left(1 \mathrm{eV}=1.602177 \times 10^{-19} \mathrm{~J}\right)$
a) What is the meaning of work function? Which of these metals would you prefer to avoid surface charging of your spacecraft? Explain.
b) If all three metals were used in the building of the spacecraft, would any electrons be knocked off? If so with what kinetic energy?
c) Use the information in the table below to draw the relative energy level diagrams for the valence orbitals (i.e. 3 s and 3 p) for Na, Mg and Al metals.

	$1^{\text {st }}$ Ionization P. (eV)	$2^{\text {nd }}$ Ionization $\mathrm{P} .(\mathrm{eV})$	$3^{\text {rd }}$ Ionization P. (eV)
Na	5.139	47.286	71.641
Mg	7.646	15.035	80.143
Al	5.986	18.828	28.447

d) Why is the 2 nd ionization potential of Na so much higher than the $2^{\text {nd }}$ ionization potential of Mg ?
e) Which of the three metals would have higher $4^{\text {th }}$ ionization energy? Why?

III (Early Quantum Ideas) 20 points (4 points each)

1. The figure below shows a portion of the emission spectrum of a one-electron atom in the gas phase. All of the lines shown result from transitions from excited states to a final state of $\mathrm{n}=4$.

a. What transition corresponds to line A (i.e., what are the initial and final states of this transition)?
Line A represents the lowest energy (longest wavelength) transition of all possible transitions from excited states to a final state of $n=4$. Because Line A corresponds to the lowest energy transition, it must be due to the transition from $n=5$ to $n=4$.
b. The wavelength at which line B occurs is 216 nm . What is the energy of a single photon of light with this wavelength?

$$
E=h v=\frac{h c}{\lambda}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)}{216 \times 10^{-9} \mathrm{~m}}=9.20 \times 10^{-19} \mathrm{~J}
$$

c. Line B in the figure corresponds to the transition from $n=8$ to $n=4$. Based on this information and the energy determined in part (b), what is the identity of this one-electron atom (or ion)? Show all of your work.
In order to identify the ion, the Z must be calculated. Also, because the transition involves emission of a photon $\Delta \mathrm{E}$ in the Bohr equation is negative.

$$
\begin{gathered}
\Delta \mathrm{E}=\left(-2.178 \times 10^{-18} \mathrm{~J}\right)\left(\mathrm{Z}^{2}\right)\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right) \\
9.20 \times 10^{-19} J=\left(-2.178 \times 10^{-18} \mathrm{~J}\right)\left(Z^{2}\right)\left(\frac{1}{4^{2}}-\frac{1}{5^{2}}\right)
\end{gathered}
$$

$\mathrm{Z}=3$, which is the atomic number of the element, or the number of protons the element possesses, so $\mathrm{Z}=3$ indicates that the identity of the element is lithium. For the Bohr model to be applicable, the element can only have one electron. Therefore the identity of the ion, including the charge, is Li^{+2}.
d. The atom (ion) will not remain in the state $\mathrm{n}=4$, as this is an excited state. When the atom (ion) undergoes a transition from $\mathrm{n}=4$ to $\mathrm{n}=1$, what wavelength of light will be emitted?

$$
\begin{aligned}
\Delta E=\left(2.178 \times 10^{-18} \mathrm{~J}\right)\left(Z^{2}\right)\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)=\left(2.178 \times 10^{-18}\right)(9)\left(\frac{1}{1_{f}^{2}}-\frac{1}{4_{i}^{2}}\right)=\left(2.178 \times 10^{-18}\right)(9)\left(\frac{15}{16}\right) \\
\Delta E=1.654 \times 10^{-17} \mathrm{~J} \\
E=\frac{h c}{\lambda} \text { rearranging...... } \lambda=\frac{h c}{E}=1.202 \times 10^{-8} \mathrm{~m}=12.02 \mathrm{~nm} \begin{array}{l}
\text { This light } \\
\text { will be in } \\
\text { the UV }
\end{array} \\
\hline
\end{aligned}
$$

2. Nothing can move at a speed greater than the speed of light. This fact suggests that the maximum uncertainty in the speed of any particle or object is the speed of light. Using this information and the uncertainty principle, show that an electron cannot be confined to the nucleus of an atom. Assume that the radius of the nucleus is approximately $1 \times 10^{-15} \mathrm{~m}$.

Using the maximum uncertainty in the velocity of an object, the minimum uncertainty in its position can be found. For an electron in an atom, if this minimum uncertainty is greater than the radius of the nucleus, it is valid to say that the electron cannot be confined to the nucleus. The minimum uncertainty in the position of the electron is found using Heisenberg's uncertainty principle, with $\Delta \mathrm{v}=\mathrm{c}$, the speed of light.
$\Delta x \cdot \Delta p=\Delta x \cdot m \Delta v=\frac{h}{4 \pi}$
$\Delta x=\frac{h}{4 \pi \cdot m_{e} \cdot \Delta v}=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{4 \pi \cdot 9.10939 \times 10^{-31} \mathrm{~kg} \cdot 3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}}=1.93 \times 10^{-13} \mathrm{~m}$
Because the minimum uncertainty in the position of the electron exceeds the radius of the nucleus, the electron cannot be confined to the nucleus.

IV. Quantum Mechanics (20 points; questions 1 and 2 each 10 pts)

1. Orbitals; some have smooth curves while others are very curvy and full of radial nodes. Orbitals vary in size, shape, phases, and energies. ANSWER ANY TEN OF THE FOLLOWING TWELVE.

There are __25_ orbitals with $\mathrm{n}=5$. As n increases, the energy increases Every orbital with $\mathrm{n}=$ \qquad has 4 nodes. Every orbital with $\ell=$ \qquad 1 has 1 nodal plane.

There are \qquad 50 different electrons that can have $\mathrm{n}=5$. If $\ell=1 ; \mathrm{m}_{\ell}=0$ the orbital is oriented along the \qquad z axis. Orbitals with $\ell=0$ can only have _radial nodes (answer is not a number) Electrons can occupy the same orbital ONLY if they have opposite \qquad spin _.

Electrons in the same orbital have the same $\underline{\mathbf{n}}, \boldsymbol{\ell}, \mathbf{m}_{\underline{\ell}}, \mathrm{m}_{\mathrm{s}}($ circle whichever are correct $)$. For multi-electron atoms, the energy depends on $\underline{\mathbf{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}(\text { circle whichever are correct) }}$

Orbitals with $\ell>0$ always have _planar_nodes but may also have _radial_nodes. (answers are not numbers).
2. We have shown how our quantum numbers determine the shape of the periodic table, with its s block, p block, and d block elements. If the quantum number rules were different, our periodic table would have a different shape, and groups (i.e. alkali or noble gases) would have different identities.
a) Draw below the periodic table if the quantum number rules were as follows (Pauli, Aufbau, Hund's rules still apply):
$\mathrm{n}=1,2,3,4, \ell=0,1, \quad \mathrm{~m}_{\ell}=0,1, \mathrm{~m}_{\mathrm{s}}= \pm 1 / 2$
With the quantum rules above, we would NOT have the same restrictions on ℓ and m_{ℓ}
And the periodic table that would result would have an s block (filling in of $\ell=0$) that is 4 elements wide, and a p block (filling in of $\ell=1$) that is also 4 elements wide. Shown below is the periodic table with the s block shown in turquoise and the p block in yellow, with the quantum number shown of the last electron to be put in

$1001 / 2$	$100-1 / 2$	$101+1 / 2$	$101-1 / 2$	$110+1 / 2$	$110-1 / 2$	$111+1 / 2$	$111-1 / 2$
$\mathbf{2 0 0} 1 / 2$	$200-1 / 2$	$201+1 / 2$	$201+1 / 2$	$210+1 / 2$	$210-1 / 2$	$211+1 / 2$	$\mathbf{2 1 1 - 1 / 2}$
$300^{1 / 2}$	$300-1 / 2$	$301+1 / 2$	$301+1 / 2$	$310+1 / 2$	$310-1 / 2$	$311+1 / 2$	$311-1 / 2$
$400^{1 / 2}$	$400-1 / 2$	$401+1 / 2$	$401+1 / 2$	$410+1 / 2$	$410-1 / 2$	$411+1 / 2$	$411-1 / 2$

b) Give the electron configurations for the element that is the $2^{\text {nd }}$ noble gas and also the element that is the $2^{\text {nd }}$ alkali element.

Electron configuration of the $2^{\text {nd }}$ noble gas in this new periodic table: noble gases have their outer shells full, so the second noble gas is the element at the end of the second row, and has the electron configuration: $1 s^{4} 1 p^{4} 2 s^{4} 2 p^{4}$ shown above with its last electron $211+1 / 2$

Electron configuration of the $2^{\text {nd }}$ alkali element: alkali elements have only one electron in their outer shell, so the second alkali element would be the first element in the second row, with an electron configuration of $1 \mathrm{~s}^{4} 1 \mathrm{p}^{4} 2 \mathrm{~s}^{1}$

V Lab (10 points) Save the Yellow Fish

Alas, the water in Nemo's fish tank has suddenly turned cloudy, and we suspect foul play! We know that Jess-c's room mate doesn't really like the fish, and is bothered by the bubbling sound of the filter. She finds next to her room mate's desk, an opened box of baking soda $\left(\mathrm{NaHCO}_{3}\right)$, a box of chalk with one piece suspiciously missing $\left(\mathrm{CaCO}_{3}\right)$, a half filled bottle of balsamic vinegar (acetic acid - $\mathrm{CH}_{3} \mathrm{COOH}$), a bottle of windex with ammonia $\left(\mathrm{NH}_{3}\right)$, and a salt shaker (NaCl). Did her room mate add one of these chemicals to the tank in an act of ultimate evil? Jess remembers back to the Baker's Street Dozen Lab, and remembers that these compounds react in a predictable way with some other chemicals, and have characteristic odors and pHs when dissolved in water. She creates a grid which might help her to discover which (if any) of these poisons was added to the aquarium. Help Jess fill in the grid of what she might EXPECT to happen if she tests the chemicals in the prescribed manner or mixes the reagents in the top row with the suspected poisons in the first column.

	$\mathbf{p H}$ paper	$+\mathbf{\text { AgNO}} \mathbf{3}$	$+\mathbf{H C l}$	$+\mathbf{N a O H}$	Odor
NaHCO_{3}	basic	Slight ppt	Bubbles, warm	NR	none
CaCO_{3}	Very basic	ppt	Bubbles, heat	NR	none
$\mathrm{CH}_{3} \mathrm{COOH}$	acidic	NR	NR	Heat-neutralizes	vinegar
NH_{3}	basic	ppt	Heat, neutralize	NR	Ammonia- Window cleaner
NaCl	neutral	ppt	NR	NR	none

Jess brings a 100 mL sample of potentially "poisoned" water to the chem. lab, and Professors Dey and Amp-Bon help her to do the actual experiment. Here is what they discovered:

The aquarium water has a $\mathrm{pH} 10-12$, makes a cloudy white precipitate with AgNO_{3}, bubbles when a hydrochloric acid is added, and the solution gets a bit hot. They see no reaction with NaOH and don't smell anything "fishy" from the aquarium water.

What "poison" can they deduce might have been added to the water? Explain your reasoning. CaCO_{3} is the best choice because it forms a ppt (AgOH and AgO_{2}) with AgCl , is quite basic (more basic than NaHCO_{3}, and forms CO_{2} bubbles when HCl is added. It also has no odor.

Assorted Equations, Constants, and Conversion Factors

Wavelength, frequency, speed relation for waves: $\quad \lambda \nu=\mathrm{c}$
Photon energy: $\quad E_{\text {photon }}=h v=\frac{h c}{\lambda}$
Photoelectric effect: $\quad E_{\text {photon }}=E_{\mathrm{o}}+E_{\text {kinetic }}$
Kinetic energy: $\quad \mathrm{E}_{\text {kinetic }}=\frac{1}{2} \mathrm{mv}^{2}$
deBroglie wavelength: $\quad \lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\mathrm{mv}}$
Heisenberg's uncertainty principle: $\quad \Delta p \times \Delta x \geq \frac{h}{4 \pi} \quad$ or $\quad m \Delta v \times \Delta x \geq \frac{h}{4 \pi}$
Energy levels of a one-electron atom: $\quad E_{n}=\left(-2.178 \times 10^{-18} \mathrm{~J}\right)\left(\frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}\right)$

$$
\Delta \mathrm{E}=\left(-2.178 \times 10^{-18} \mathrm{~J}\right)\left(\mathrm{Z}^{2}\right)\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right)
$$

Avogadro's number: $\quad \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Speed of light: $\quad c=2.9979 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant: $\quad \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Fundamental charge: $\quad \mathrm{e}=1.60218 \times 10^{-19} \mathrm{C}$
Proton mass: $\quad m_{p}=1.673 \times 10^{-27} \mathrm{~kg}$
Neutron mass: $\quad \mathrm{m}_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
Electron mass: $\quad \mathrm{m}_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}$
$1 \mathrm{~kg}=10^{3} \mathrm{~g}$
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
$1 \mathrm{~J}=1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
$1 \mathrm{~kJ}=10^{3} \mathrm{~J}$

