Math 211, Multivariable Calculus, Fall 2011 Midterm III Solutions

1. Use the Lagrange multiplier method to find the absolute maximum and absolute minimum of the function

$$
f(x, y)=x+y
$$

subject to the constraint

$$
x^{2}+2 y^{2}=1
$$

(You must use the Lagrange multiplier method to get credit for this question.)
The region satisfying the constraint is closed and bounded, and the function f is continuous, so the Extreme Value Theorem implies that there is an absolute maximum and minimum.
We apply the Lagrange multiplier method with $g(x, y)=x^{2}+2 y^{2}$. Since f and g are differentiable everywhere, we just need to check for points where $\nabla f=\lambda \nabla g$ or $\nabla g=\mathbf{0}$, where

$$
\nabla f=\langle 1,1\rangle, \quad \nabla g=\langle 2 x, 4 y\rangle
$$

The only point where $\nabla g=\mathbf{0}$ is $(0,0)$ which does not satisfy the constraint.
The equation $\nabla f=\lambda \nabla g$ gives

$$
1=2 x \lambda, \quad 1=4 y \lambda
$$

This tells us that

$$
2 y=4 x y \lambda=x
$$

Substituting into the constraint we have

$$
(2 y)^{2}+2 y^{2}=1
$$

so

$$
6 y^{2}=1
$$

and hence

$$
y= \pm 1 / \sqrt{6}
$$

Since $x=2 y$, the two constrained critical points are

$$
\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), \quad\left(\frac{-2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right) .
$$

We now evaluate f at each of these:

$$
f\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)=\frac{3}{\sqrt{6}}
$$

which is the absolute maximum, and

$$
f\left(\frac{-2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)=\frac{-3}{\sqrt{6}}
$$

which is the absolute minimum.
2. A function $f(x, y)$ has

$$
\nabla f=\left\langle 2 x e^{y}, x^{2} e^{y}+y^{2}-4\right\rangle
$$

Find the critical points of f and classify them as local maxima, local minima, or saddle points.
The critical points satisfy $\nabla f=\mathbf{0}$ so

$$
2 x e^{y}=0, \quad x^{2} e^{y}+y^{2}-4=0 .
$$

Since e^{y} cannot be zero, the first equation implies that $x=0$. The second equation then tells us that $y^{2}=4$ so $y= \pm 2$. Therefore the two critical points are

$$
(0,2), \quad(0,-2)
$$

To classify these, we use the Second Derivative Test. Since $f_{x}=2 x e^{y}$ and $f_{y}=x^{2} e^{y}+$ $y^{2}-4$, we have

$$
f_{x x}=2 e^{y}, f_{x y}=f_{y x}=2 x e^{y}, f_{y y}=x^{2} e^{y}+2 y .
$$

At $(0,2)$ we have

$$
f_{x x}(0,2)=2 e^{2}, f_{x y}(0,2)=0, f_{y y}(0,2)=4
$$

so

$$
D(0,2)=\left(2 e^{2}\right)(4)-(0)^{2}=8 e^{2}>0 .
$$

Therefore, since $f_{x x}(0,2)>0,(0,2)$ is a local minimum.
Also

$$
f_{x x}(0,-2)=2 e^{-2}, \quad f_{x y}(0,-2)=0, f_{y y}(0,-2)=-4
$$

so

$$
D(0,-2)=\left(2 e^{-2}\right)(-4)-(0)^{2}=-8 e^{-2}<0
$$

so $(0,-2)$ is a saddle point.
3. Let R be the quarter-disc given by $x^{2}+y^{2} \leq 4, x \geq 0$ and $y \geq 0$. Find

$$
\iint_{R} x+y d A
$$

In polar coordinates, this region can be described as

$$
0 \leq r \leq 2, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

and so the integral is

$$
\begin{aligned}
\int_{r=0}^{r=2} \int_{\theta=0}^{\theta=\pi / 2}(r \cos \theta+r \sin \theta) r d \theta d r & =\int_{r=0}^{r=2} r^{2}[\sin \theta-\cos \theta]_{\theta=0}^{\theta=\pi / 2} d r \\
& =\int_{r=0}^{r=2} 2 r^{2} d r \\
& =\left[2 r^{3} / 3\right]_{r=0}^{r=2} \\
& =\frac{16}{3}
\end{aligned}
$$

4. Use a triple integral to find the volume of the region D inside the paraboloid $z=x^{2}+y^{2}$ and between the planes $z=1$ and $z=4$.

If we draw a cross-section through the region we are interested in, it looks like this:

It's easiest to describe this region using cylindrical coordinates. In this case it is given by

$$
\begin{aligned}
& 0 \leq \theta \leq 2 \pi \\
& 1 \leq z \leq 4 \\
& 0 \leq r \leq \sqrt{z}
\end{aligned}
$$

The key part here is the range of values for r given a fixed z. The minimum value for r is 0 and the maximum is on the surface $z=x^{y}+y^{2}=r^{2}$ so $r=\sqrt{z}$.
(There are other possibilities: for example, one can work out the volume of the whole paraboloid from $z=0$ to $z=4$ and then subtract the part from $z=0$ to $z=1$.)
The volume is given by integrating the constant function 1 over the solid region. This gives

$$
\begin{aligned}
\iiint_{D} 1 d V & =\int_{\theta=0}^{\theta=2 \pi} \int_{z=1}^{z=4} \int_{r=0}^{r=\sqrt{z}} r d r d z d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{z=1}^{z=4}\left[r^{2} / 2\right]_{r=0}^{r=\sqrt{z}} d z d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{z=1}^{z=4} \frac{z}{2} d z d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi}\left[z^{2} / 4\right]_{z=1}^{z=4} d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \frac{15}{4} d \theta \\
& =\frac{15 \pi}{2}
\end{aligned}
$$

5. (a) Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ related to the change of variables

$$
u=e^{x+y}, \quad v=e^{x-y}
$$

(b) Calculate the integral

$$
\iint_{R} e^{2 x} d A
$$

where R is the region bounded by the straight lines

$$
y=x, \quad y=-x, \quad x=\frac{\ln 2}{2} .
$$

(a) We need to find x and y in terms of u and v. The two equations give

$$
\begin{aligned}
& x+y=\ln (u) \\
& x-y=\ln (v)
\end{aligned}
$$

so

$$
x=\frac{\ln (u)+\ln (v)}{2}, \quad y=\frac{\ln (u)-\ln (v)}{2} .
$$

We therefore have

$$
\frac{\partial x}{\partial u}=\frac{1}{2 u}, \frac{\partial x}{\partial v}=\frac{1}{2 v}, \frac{\partial y}{\partial u}=\frac{1}{2 u}, \frac{\partial y}{\partial v}=\frac{-1}{2 v}
$$

and so

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \\
& =\frac{1}{2 u} \frac{-1}{2 v}-\frac{1}{2 u} \frac{1}{2 v} \\
& =\frac{-1}{4 u v}-\frac{1}{4 u v} \\
& =\frac{-1}{2 u v}
\end{aligned}
$$

(b) The line $y=x$ is given by $x-y=0$ and so $v=e^{0}=1$. The line $y=-x$ is given by $x+y=0$ and so $u=e^{0}=1$. The line $x=(\ln 2) / 2$ is

$$
\frac{\ln (u)+\ln (v)}{2}=\frac{\ln 2}{2}
$$

so

$$
\ln (u v)=\ln 2
$$

so

$$
u v=2
$$

or

$$
v=\frac{2}{u} .
$$

Therefore the region corresponding to R in the $u v$-plane looks like

This is described by

$$
1 \leq u \leq 21 \leq v \leq \frac{2}{u}
$$

We also have

$$
e^{2 x}=\exp (\ln (u)+\ln (v))=u v
$$

and so the integral becomes

$$
\begin{aligned}
\int_{u=1}^{u=2} \int_{v=1}^{v=2 / u} u v\left|\frac{-1}{2 u v}\right| d v d u & =\int_{u=1}^{u=2} \int_{v=1}^{2 / u} \frac{1}{2} d v d u \\
& =\int_{u=1}^{u=2} \frac{1}{u}-\frac{1}{2} d u \\
& =\left[\ln (u)-\frac{u}{2}\right]_{u=1}^{u=2} \\
& =\ln (2)-\frac{1}{2}
\end{aligned}
$$

