Math 211, Multivariable Calculus, Fall 2011
Midterm III Solutions

1. Use the Lagrange multiplier method to find the absolute mazimum and absolute minimum
of the function
flz,y) =z +y

subject to the constraint
2+ 27 = 1.

(You must use the Lagrange multiplier method to get credit for this question.)

The region satisfying the constraint is closed and bounded, and the function f is con-
tinuous, so the Extreme Value Theorem implies that there is an absolute maximum and
minimum.

We apply the Lagrange multiplier method with g(z,y) = 22 + 2y*. Since f and g are
differentiable everywhere, we just need to check for points where Vf = AVg or Vg = 0,
where

Vi=(,1), Vg=(2x,4y).
The only point where Vg = 0 is (0,0) which does not satisfy the constraint.
The equation V f = AVyg gives
1=2zA, 1=A4y\.

This tells us that
2y = 4oy = x.

Substituting into the constraint we have
(2y)° +2y =1

SO
6y? =1

and hence

y = +1/6.

Since x = 2y, the two constrained critical points are

() B3

We now evaluate f at each of these:

which is the absolute minimum.



2. A function f(x,y) has
Vf= <2xey, e + y? — 4> )
Find the critical points of f and classify them as local mazima, local minima, or saddle

points.

The critical points satisfy Vf = 0 so
20eY =0, 2%’ +y?—4=0.

Since e¥ cannot be zero, the first equation implies that x = 0. The second equation then
tells us that y? = 4 so y = £2. Therefore the two critical points are

(0,2), (0,-2).

To classify these, we use the Second Derivative Test. Since f, = 2ze? and f, = x%e¥ +
y? — 4, we have
fzz = 2€y7 fzy = fyx = 2x€y7 fyy = a%eY + 2y-

At (0,2) we have

f:ca:(ov 2) = 2627 fxy(oa 2) = 07 fyy(oa 2) = 4
SO

D(0,2) = (2¢*)(4) — (0)* = 8¢* > 0.
Therefore, since f,.(0,2) >0, (0,2) is a local minimum.
Also
fzx(o’ _2> - 26_27 fa:y(07 _2) = 07 fyy(ou _2) =—4

SO

D(0,—2) = (2¢7%)(—4) — (0)* = -8 2 <0
so (0, —2) is a saddle point.

3. Let R be the quarter-disc given by x*> +vy*> <4, x>0 and y > 0. Find

//:L’-I—ydA.
R

In polar coordinates, this region can be described as
0<r<2, ogegg

and so the integral is

r=2 pl=m/2 r=2
/ (rcosf + rsinf)r df dr = / r? [sin @ — cos 9]223/2 dr
r=0 6=0 r

=0

r=2
= / 2r2 dr
r=0

= [2r*/3]";
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3



4. Use a triple integral to find the volume of the region D inside the paraboloid z = x* + 1>
and between the planes z =1 and z = 4.

If we draw a cross-section through the region we are interested in, it looks like this:

\ /

-2 -1 1 2

It’s easiest to describe this region using cylindrical coordinates. In this case it is given by
0<6<2mr
1<z2<4
0<r<+vz
The key part here is the range of values for r given a fixed z. The minimum value for r
is 0 and the maximum is on the surface z = 2% + y*> = r? so r = /2.

(There are other possibilities: for example, one can work out the volume of the whole
paraboloid from z = 0 to z = 4 and then subtract the part from z =0 to z = 1.)

The volume is given by integrating the constant function 1 over the solid region. This

gives
=21 pz= r=vz
///1dV:/ / / rdr dz do
D 6=0 z=1 r=0

4
0=21 pz=4
| s as

=0 z=1

5. (a) Find the Jacobian % related to the change of variables
U, v



(b) Calculate the integral

// e dA
R

where R s the region bounded by the straight lines

In2
y==z, y=-z, T=—.

(a) We need to find z and y in terms of u and v. The two equations give

z+y=In(u)
r —1y = In(v)
o ) ) )

2 2

We therefore have

Ox 1 Ox 1 oy 1 oy —1

Au  2u v 2w ou 2w dv 2
and so

d(x,y) Oxdy 0x0dy

O(u,v)  Oudv v du

1 -1 11
T 2u v 2u 2v
-1 1
 duv 4w
!

C Quw

(b) The line y = x is given by x —y = 0 and so v = €® = 1. The line y = —x is given by
z+y=0andsou=e’=1. Theline z = (In2)/2 is

In(u) + In(v) _In2

2 2
SO
In(uv) =1n2
SO
uv = 2
or
v=—.
u

Therefore the region corresponding to R in the uv-plane looks like



L3 i 1

1.0

This is described by
1<u<21<v<

SN

We also have

e* = exp(In(u) + In(v)) = uv

u=2 2/u 1

dv du = / / — dv du
u=1 v=1 2
= 1

u=2
1
[T
u=1 U 2

and so the integral becomes

u=2 rv=2/u
/ / uv
u=1 v=1

1
2uv




