
Math 211, Multivariable Calculus, Fall 2011
Midterm III Solutions

1. Use the Lagrange multiplier method to find the absolute maximum and absolute minimum
of the function

f(x, y) = x+ y

subject to the constraint
x2 + 2y2 = 1.

(You must use the Lagrange multiplier method to get credit for this question.)

The region satisfying the constraint is closed and bounded, and the function f is con-
tinuous, so the Extreme Value Theorem implies that there is an absolute maximum and
minimum.

We apply the Lagrange multiplier method with g(x, y) = x2 + 2y2. Since f and g are
differentiable everywhere, we just need to check for points where ∇f = λ∇g or ∇g = 0,
where

∇f = 〈1, 1〉 , ∇g = 〈2x, 4y〉 .
The only point where ∇g = 0 is (0, 0) which does not satisfy the constraint.

The equation ∇f = λ∇g gives

1 = 2xλ, 1 = 4yλ.

This tells us that
2y = 4xyλ = x.

Substituting into the constraint we have

(2y)2 + 2y2 = 1

so
6y2 = 1

and hence
y = ±1/

√
6.

Since x = 2y, the two constrained critical points are(
2√
6
,

1√
6

)
,

(
−2√

6
,
−1√

6

)
.

We now evaluate f at each of these:

f

(
2√
6
,

1√
6

)
=

3√
6

which is the absolute maximum, and

f

(
−2√

6
,
−1√

6

)
=
−3√

6

which is the absolute minimum.



2. A function f(x, y) has
∇f =

〈
2xey, x2ey + y2 − 4

〉
.

Find the critical points of f and classify them as local maxima, local minima, or saddle
points.

The critical points satisfy ∇f = 0 so

2xey = 0, x2ey + y2 − 4 = 0.

Since ey cannot be zero, the first equation implies that x = 0. The second equation then
tells us that y2 = 4 so y = ±2. Therefore the two critical points are

(0, 2), (0,−2).

To classify these, we use the Second Derivative Test. Since fx = 2xey and fy = x2ey +
y2 − 4, we have

fxx = 2ey, fxy = fyx = 2xey, fyy = x2ey + 2y.

At (0, 2) we have
fxx(0, 2) = 2e2, fxy(0, 2) = 0, fyy(0, 2) = 4

so
D(0, 2) = (2e2)(4)− (0)2 = 8e2 > 0.

Therefore, since fxx(0, 2) > 0, (0, 2) is a local minimum.

Also
fxx(0,−2) = 2e−2, fxy(0,−2) = 0, fyy(0,−2) = −4

so
D(0,−2) = (2e−2)(−4)− (0)2 = −8e−2 < 0

so (0,−2) is a saddle point.

3. Let R be the quarter-disc given by x2 + y2 ≤ 4, x ≥ 0 and y ≥ 0. Find∫∫
R

x+ y dA.

In polar coordinates, this region can be described as

0 ≤ r ≤ 2, 0 ≤ θ ≤ π

2

and so the integral is∫ r=2

r=0

∫ θ=π/2

θ=0

(r cos θ + r sin θ)r dθ dr =

∫ r=2

r=0

r2 [sin θ − cos θ]
θ=π/2
θ=0 dr

=

∫ r=2

r=0

2r2 dr

=
[
2r3/3

]r=2

r=0

=
16

3



4. Use a triple integral to find the volume of the region D inside the paraboloid z = x2 + y2

and between the planes z = 1 and z = 4.

If we draw a cross-section through the region we are interested in, it looks like this:

It’s easiest to describe this region using cylindrical coordinates. In this case it is given by

0 ≤ θ ≤ 2π

1 ≤ z ≤ 4

0 ≤ r ≤
√
z

The key part here is the range of values for r given a fixed z. The minimum value for r
is 0 and the maximum is on the surface z = xy + y2 = r2 so r =

√
z.

(There are other possibilities: for example, one can work out the volume of the whole
paraboloid from z = 0 to z = 4 and then subtract the part from z = 0 to z = 1.)

The volume is given by integrating the constant function 1 over the solid region. This
gives ∫∫∫

D

1 dV =

∫ θ=2π

θ=0

∫ z=4

z=1

∫ r=
√
z

r=0

r dr dz dθ

=

∫ θ=2π

θ=0

∫ z=4

z=1

[
r2/2

]r=√z
r=0

dz dθ

=

∫ θ=2π

θ=0

∫ z=4

z=1

z

2
dz dθ

=

∫ θ=2π

θ=0

[
z2/4

]z=4

z=1
dθ

=

∫ θ=2π

θ=0

15

4
dθ

=
15π

2

5. (a) Find the Jacobian
∂(x, y)

∂(u, v)
related to the change of variables

u = ex+y, v = ex−y.



(b) Calculate the integral ∫∫
R

e2x dA

where R is the region bounded by the straight lines

y = x, y = −x, x =
ln 2

2
.

(a) We need to find x and y in terms of u and v. The two equations give

x+ y = ln(u)

x− y = ln(v)

so

x =
ln(u) + ln(v)

2
, y =

ln(u)− ln(v)

2
.

We therefore have

∂x

∂u
=

1

2u
,
∂x

∂v
=

1

2v
,
∂y

∂u
=

1

2u
,
∂y

∂v
=
−1

2v

and so

∂(x, y)

∂(u, v)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

=
1

2u

−1

2v
− 1

2u

1

2v

=
−1

4uv
− 1

4uv

=
−1

2uv

(b) The line y = x is given by x− y = 0 and so v = e0 = 1. The line y = −x is given by
x+ y = 0 and so u = e0 = 1. The line x = (ln 2)/2 is

ln(u) + ln(v)

2
=

ln 2

2

so
ln(uv) = ln 2

so
uv = 2

or

v =
2

u
.

Therefore the region corresponding to R in the uv-plane looks like



This is described by

1 ≤ u ≤ 2 1 ≤ v ≤ 2

u
.

We also have
e2x = exp(ln(u) + ln(v)) = uv

and so the integral becomes∫ u=2

u=1

∫ v=2/u

v=1

uv

∣∣∣∣ −1

2uv

∣∣∣∣ dv du =

∫ u=2

u=1

∫ 2/u

v=1

1

2
dv du

=

∫ u=2

u=1

1

u
− 1

2
du

=
[
ln(u)− u

2

]u=2

u=1

= ln(2)− 1

2


