Physics 16 - Spring 2010 - Problem Set 2

Y\&F questions

2.90. Identify: Both objects are in free-fall. Apply the constant acceleration equations to the motion of each person.
SET UP: Let $+y$ be downward, so $a_{y}=+9.80 \mathrm{~m} / \mathrm{s}^{2}$ for each object.
ExECUTE: (a) Find the time it takes the student to reach the ground: $y-y_{0}=180 \mathrm{~m}, v_{0 y}=0$, $a_{y}=9.80 \mathrm{~m} / \mathrm{s}^{2} . y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}$ gives $t=\sqrt{\frac{2\left(y-y_{0}\right)}{a_{y}}}=\sqrt{\frac{2(180 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=6.06 \mathrm{~s}$. Superman must reach the ground in $6.06 \mathrm{~s}-5.00 \mathrm{~s}=1.06 \mathrm{~s}: t=1.06 \mathrm{~s}, y-y_{0}=180 \mathrm{~m}, a_{y}=+9.80 \mathrm{~m} / \mathrm{s}^{2}$.
$y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}$ gives $v_{0 y}=\frac{y-y_{0}}{t}-\frac{1}{2} a_{y} t=\frac{180 \mathrm{~m}}{1.06 \mathrm{~s}}-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.06 \mathrm{~s})=165 \mathrm{~m} / \mathrm{s}$. Superman must have initial speed $v_{0}=165 \mathrm{~m} / \mathrm{s}$.
(b) The graphs of y - t for Superman and for the student are sketched in Figure 2.90.
(c) The minimum height of the building is the height for which the student reaches the ground in 5.00 s , before Superman jumps. $y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}=\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~s})^{2}=122 \mathrm{~m}$. The skyscraper must be at least 122 m high.
Evaluate: $165 \mathrm{~m} / \mathrm{s}=369 \mathrm{mi} / \mathrm{h}$, so only Superman could jump downward with this initial speed.

Figure 2.90
3.4. Identify: $\overrightarrow{\boldsymbol{v}}=d \overrightarrow{\boldsymbol{r}} / d t$. This vector will make a 45°-angle with both axes when its x - and y components are equal.
SET UP: $\quad \frac{d\left(t^{n}\right)}{d t}=n t^{n-1}$.
EXECUTE: $\quad \overrightarrow{\boldsymbol{v}}=2 b t \hat{\boldsymbol{i}}+3 c t^{2} \hat{\boldsymbol{j}} . v_{x}=v_{y}$ gives $t=2 b / 3 c$.
Evaluate: Both components of $\overrightarrow{\boldsymbol{v}}$ change with t.
3.53. Identify: The cannister moves in projectile motion. Its initial velocity is horizontal. Apply constant acceleration equations for the x and y components of motion.

Set Up:

Figure 3.53

Take the origin of coordinates at the point where the canister is released. Take $+y$ to be upward. The initial velocity of the canister is the velocity of the plane, $64.0 \mathrm{~m} / \mathrm{s}$ in the $+x$-direction.

Use the vertical motion to find the time of fall:
$t=?, \quad v_{0 y}=0, a_{y}=-9.80 \mathrm{~m} / \mathrm{s}^{2}, \quad y-y_{0}=-90.0 \mathrm{~m}$ (When the canister reaches the ground it is 90.0 m below the origin.)

$$
y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}
$$

EXECUTE: Since $v_{0 y}=0, t=\sqrt{\frac{2\left(y-y_{0}\right)}{a_{y}}}=\sqrt{\frac{2(-90.0 \mathrm{~m})}{-9.80 \mathrm{~m} / \mathrm{s}^{2}}}=4.286 \mathrm{~s}$.
SET UP: Then use the horizontal component of the motion to calculate how far the canister falls in this time:
$x-x_{0}=?, \quad a_{x}-0, v_{0 x}=64.0 \mathrm{~m} / \mathrm{s}$,
EXECUTE: $\quad x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}=(64.0 \mathrm{~m} / \mathrm{s})(4.286 \mathrm{~s})+0=274 \mathrm{~m}$.
Evaluate: The time it takes the cannister to fall 90.0 m , starting from rest, is the time it travels horizontally at constant speed.
3.54. Identify: The equipment moves in projectile motion. The distance D is the horizontal range of the equipment plus the distance the ship moves while the equipment is in the air.
SET UP: For the motion of the equipment take $+x$ to be to the right and $+y$ to be upwards. Then $a_{x}=0, a_{y}=-9.80 \mathrm{~m} / \mathrm{s}^{2}, v_{0 x}=v_{0} \cos \alpha_{0}=7.50 \mathrm{~m} / \mathrm{s}$ and $v_{0 y}=v_{0} \sin \alpha_{0}=13.0 \mathrm{~m} / \mathrm{s}$. When the equipment lands in the front of the ship, $y-y_{0}=-8.75 \mathrm{~m}$.
ExECUTE: Use the vertical motion of the equipment to find its time in the air: $y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}$ gives $t=\frac{1}{9.80}\left(13.0 \pm \sqrt{(-13.0)^{2}+4(4.90)(8.75)}\right) \mathrm{s}$. The positive root is $t=3.21 \mathrm{~s}$. The horizontal range of the equipment is $x-x_{0}=v_{0 x} t+\frac{1}{2} a_{x} t^{2}=(7.50 \mathrm{~m} / \mathrm{s})(3.21 \mathrm{~s})=24.1 \mathrm{~m}$. In 3.21 s the ship moves a horizontal distance $(0.450 \mathrm{~m} / \mathrm{s})(3.21 \mathrm{~s})=1.44 \mathrm{~m}$, so $D=24.1 \mathrm{~m}+1.44 \mathrm{~m}=25.5 \mathrm{~m}$.
Evaluate: The equation $R=\frac{\nu_{0}^{2} \sin 2 \alpha_{0}}{g}$ from Example 3.8 can't be used because the starting and ending points of the projectile motion are at different heights.
3.56. Identify: The water moves in projectile motion.

SET UP: Let $x_{0}=y_{0}=0$ and take $+y$ to be positive. $a_{x}=0, a_{y}=-g$.
EXECUTE: The equations of motions are $y *\left(v_{0} \operatorname{sgg}\right)-\frac{1}{2}{ }^{2}$ and $x *\left(v_{0} \cos \right)$. When the water goes in the tank for the minimum velocity, $y=2 D$ and $x=6 D$. When the water goes in the tank for the maximum velocity, $y=2 D$ and $x=7 D$. In both cases, $\sin \alpha=\cos \alpha=\sqrt{2} / 2$.

To reach the minimum distance: $6 D=\frac{\sqrt{2}}{2} v_{0} t$, and $2 D=\frac{\sqrt{2}}{2} v_{0} t-\frac{1}{2} g t^{2}$. Solving the first equation for t gives $t=\frac{6 D \sqrt{2}}{v_{0}}$. Substituting this into the second equation gives $2 D=6 D-\frac{1}{2} g\left(\frac{6 D \sqrt{2}}{v_{0}}\right)^{2}$. Solving this for v_{0} gives $v_{0}=3 \sqrt{g D}$.
To reach the maximum distance: $7 D=\frac{\sqrt{2}}{2} v_{0} t$, and $2 D=\frac{\sqrt{2}}{2} v_{0} t-\frac{1}{2} g t^{2}$. Solving the first equation for t gives $t=\frac{7 D \sqrt{2}}{v_{0}}$. Substituting this into the second equation gives $2 D=7 D-\frac{1}{2} g\left(\frac{7 D \sqrt{2}}{v_{0}}\right)^{2}$. Solving this for v_{0} gives $v_{0}=\sqrt{49 g D / 5}=3.13 \sqrt{g D}$, which, as expected, is larger than the previous result.
Evaluate: A launch speed of $v_{0}=\sqrt{6} \sqrt{g D}=2.45 \sqrt{g D}$ is required for a horizontal range of $6 D$. The minimum speed required is greater than this, because the water must be at a height of at least $2 D$ when it reaches the front of the tank.

Accelerometer question

(a) The graph of acceleration vs time looks like:

Integrating once gives:

(notice l've changed the units from m / s to mph)

Integrating again gives:

(b) According to this data, I got up to about 53 mph ; by my speedometer it was a little over 50 mph . Note that the final speed is, according to the integral, about 0.2 mph , while I told you that I braked to a stop. This makes me think that the accuracy of the speed data is not much better than $+/-0.2 \mathrm{mph}(0.1 \mathrm{~m} / \mathrm{s})$ by the time we've integrated for a while.
(c) According to this data, I went about 170 m .

Velociraptor $\quad V_{\text {max }}=25 \mathrm{~m} / \mathrm{s}$

The velociraptor is accelerating uniformly (from rest), at least until it reaches its to p speed of $25 \mathrm{~m} / \mathrm{s}$. You move at a constant $6 \mathrm{~m} / \mathrm{s}$. Sketching:

When $x_{\text {you }}=x_{\text {vel }}$ you die; this occurs at $t_{\text {death }}$. but at this point we don't know whether it occurs before or after the switchover at to. During the constant acceleration phase, $v_{v e l}=a t$, so switchover happens when

$$
v_{\text {max }}=a t_{0} \rightarrow \quad t_{0}=\frac{v_{\text {max }}}{a}=\frac{25 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~m} / \mathrm{s}^{2}}=6.25 \mathrm{~s} .=t_{0}
$$

At to, $\quad x_{y o u}=x_{0}+v_{0} t_{0}=40 \mathrm{~m}+6 \frac{\mathrm{~m}}{\mathrm{~s}} \times 6.25 \mathrm{~s}=77.5 \mathrm{~m}$

$$
x_{\text {vel }}=\frac{1}{2} a t_{0}^{2}=\frac{1}{2}\left(4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(6.25 \mathrm{~s})^{2}=78.125 \mathrm{~m}
$$

You are already dead: ie $t_{\text {death }}<t_{0}$ and the whole process occurs before the velociraptor peaches $V_{\text {max }}$.

We only need to solve $x_{\text {you }}=x_{\text {vel }}$ for $t_{\text {death }}$:

$$
\begin{gathered}
x_{0}+v_{0} t_{\text {death }}=\frac{1}{2} a t_{\text {death }}^{2} \\
0=\frac{1}{2} a t^{2}-v_{0} t-x_{0}: \text { quadratic a/ sol } \\
t=\frac{v_{0} \pm \sqrt{v_{0}^{2}-4\left(\frac{1}{2} a\right)\left(-x_{0}\right)}}{2\left(\frac{1}{2} a\right)}=\frac{v_{0} \pm \sqrt{v_{0}^{2}+2 a x_{0}}}{a}
\end{gathered}
$$

Only the t is physical, so

$$
t_{\text {death }}=\frac{6 \frac{\mathrm{~m}}{\mathrm{~s}}+\sqrt{\left(6 \frac{\mathrm{~m}}{3}\right)^{2}+2\left(4 \mathrm{~m} / \mathrm{s}^{2}\right)(40 \mathrm{~m})}}{4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=6.22 \mathrm{~s}
$$

During your last 6.225 if life you ran $v_{0} t_{\text {death }}$ distance:

$$
6 \frac{\mathrm{~m}}{\mathrm{~s}} \times 6.22 \mathrm{~s}=37.3 \mathrm{~m}
$$

