Evo-Devo

Developmental Mechanisms of Evolutionary Change

Modern Phylogenetic Tree

- Lines of evidence
 - total DNA sequences
 - regulatory genes
 - new morphology
- Computer programs to analyze

Modern Phylogenetic Tree

- Kingdoms
 - Porifera
 - Cniderians and Ctenophores
 - Bilateria
- 0, 2 and 3 tissue layers respectively

Bilateria

- Deuterstomes
 - chordates (e.g. vertebrates)
 - echinoderms and hemichordates
- Protostomes
 - ecdysozoa
 - exoskeletons, molt (e.g. nematodes and arthropods)
 - lophotrochozoa
 - soft (e.g. molluscs, flatworms, segmented worms)

What Have We Learned?

- Behind developmental change there are
 - transcription factors
 - differential gene expression patterns for differentiation
 - and gross changes in pattern
 - signaling pathways
 - integration of changes
 - physiological
 - morphological
 - transcriptional
 - intercellular and extracellular
 - = classical morphogens and inducers

Historical Overview

- New insights from
 - developmental genetics (gene regulation)
 - cell biology of signaling pathways
- Idea
 - interacting networks
 - changes in a few things give major changes in pattern
 - in lab sometimes lethal
 - in nature?

Common Regulatory Genes

 Urbilaterian ancestor should have had genes still found in deuterostomes and protostomes

- Pax6 in vertebrates and eyeless in fruit flies
 - eye formation
- Nkx 2-5 in mouse and tinman in fruit flies
 - heart formation
- Otx, Emx in frogs and mice, otd, emx in fruit flies
 - anterior head and nerve structures

Mouse Pax 6 expressed in *Drosophila* leg

TABLE 23.1 Developmental regulatory genes conserved between protostomes and deuterostomes (*Part 2*)

Gene	Function	Distribution
Otx-1, Otx-2/Otd, Emx-1, Emx-2/ems	Anterior patterning, cephalization	Drosophila, vertebrates
Pax6/eyeless; Eyes absent/eya	Anterior CNS/eye regulation	Drosophila, vertebrates
Polycomb group	Controls Hox expression/ cell differentiation	Drosophila, vertebrates
Netrins, Split proteins, and their receptors	Axon guidance	Drosophila, vertebrates
RAS	Signal transduction	Drosophila, vertebrates
sine occulus/Six3	Anterior CNS/eye pattern formation	Drosophila, vertebrates
sog/chordin, dpp/BMP4	Dorsal-ventral patterning, neurogenesis	Drosophila, Xenopus
tinman/Nkx 2-5	Heart/blood vascular system	Drosophila, mouse
vnd, msh	Neural tube patterning	Drosophila, vertebrates

Source: After Erwin 1999.

Homologies and Deep Homologies

Homology and Analogy

- Homology
 - similarity derives from common ancestry
 - vertebrate limb bones
- Analogy
 - similarity from performing similar function
 - butterfly and bird wings
- Genes or processes can also be either

Deep Homology of *Hox* Genes

- Anterior-posterior specification
- Homologs
 - all animals
 - same order on chromosomes
 - same order of expression 3' = anterior
 - human HOXB4 can substitute in flies for deformed

A-P: Comparison of Regulatory Transcription Factors

How Differ Between Phyla?

- Transcription factors
 - gene could change
 - could have different targets downstream
 - could be expressed in different pattern
 - within or
 - between body portions
 - could change in number

Changing Regulatory Circuits

- Genes have many inputs and outputs
 - Genes have cis-regulatory elements which bind various transcription factors
 - Genes encode proteins (transcription factors)
- These are arranged in large, interacting networks
- Mutations
 - in cis elements potentially put the gene under new types of control by upstream regulators
 - in coding regions potentially allow the gene product to control new genes downstream

How Can Hox Gene Changes Affect Morphology?

- (A) Changes in Hox gene number
- (B) Broad changes of Hox expression
- (C) Subtle changes within Hox domains
- (D) Changes in regulation or function of downstream genes

Downstream Responses (D)

- Fruit fly
 - 2 wings, 2 halteres
- Butterfly
 - 4 wings

- Hox (Ubx) same expression pattern (in T3)
 - some genes down-regulated in *Drosophila* are not regulated by Ubx in butterflies
 - therefore escape (or acquire) (altered)regulation

Changes Within a Body Portion (C)

- *Distal-less* controls P-D axis of appendages
 - legs from each thoracic segment
 - not expressed in abdomen (AbdA and Ubx block)
- But in butterfly and moth larvae (caterpillars), *dll* is expressed in prolegs along abdomen
 - Down-regulation of *Ubx* and *abdA* in regions where *dll* then gets expressed

Distal-less Expression

Dll (blue) in butterfly larva

Dll (red)
Ubx/AbdA (green)

Change in Gene Sequence

- Crustaceans (multiple legs)
 - all thoracic segments
 look the same
 - all express Antp, Ubx,
 abdA which don't
 repress dll in
 crustaceans
- Different in insects (6 legs)
 - Ubx gained a region that can repress *dll*

Result

Changes Between Body Segments (B)

- If both *Ubx* and *abdA* are expressed in thorax segment, crustacean makes "legs"
- If neither, makes maxilliped (feeding appendage)
 - e.g. brine shrimp have no maxillipeds
 - lobsters have maxillipeds in T1 and T2

Ubx and AbdA in Crustaceans

green=Ubx/abdA

Vertebral Patterns Controlled by Hox Genes

- Hox pattern
 determines type of
 vertebrae
 - cervical-thoracic(ribbed) -lumbarsacral-caudal
- KO *Hoxc-8* in mouse
 - L1 forms rib like T12

Hox Patterns Shifted in Chick and Mouse

Loss of Forelimb in Snakes

- Evolve from lizards, lose legs
 - forelimb forms anterior
 to most anterior
 expression of *Hoxc-6*
 - then *Hoxc-6* and *Hoxc-*8 determine T (rib)segments
 - in snakes no segment has only *Hoxc-6*, all ribs

Changes in *Hox* Number (A)

- Sponges have only a few *Hox* genes
- More complex invertebrates have a single cluster of ~ 7
- Invertebrate deuterostomes have one similar cluster
- Two duplications in vertebrates →4 clusters
 - accompanied by neural crest, new cell types and spinal cord and brain
 - affect segmentation of nervous system and somite derivatives (bone and muscle)
 - hypothesis: divergence allows more functions

