## Titration Problem

1. 37.2 ml of $0.325 \mathrm{M} \mathrm{HNO}_{3}$ are titrated with 47.0 ml of $0.115 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$.
a. Has the equivalence point been reached?
b. What is the concentration of $\mathrm{H}^{+}$ions in excess after the reaction goes to completion?
c. What is the pH ?
d. How much more $\mathrm{Ba}(\mathrm{OH})_{2}$ must be added to reach the equivalence point?

## Oxidation Numbers

Rules for Assigning Oxidation Numbers
(see also Zumdahl, Table 4.3 for these rules in a different format)

1. The oxidation number of an atom in pure elemental form (e.g., $\mathrm{Zn}, \mathrm{Cu}, \mathrm{H}_{2}, \mathrm{O}_{2}$ ) is 0 .
2. The sum of the oxidation numbers of the atoms in any uncharged molecule or compound is 0 . The sum of the oxidation numbers of the atoms in a charged species (such as a polyatomic ion) is equal to the charge of the species.
3. a. Within compounds, alkali metals have oxidation number +1 (e.g., NaCl ).
b. Within compounds, alkaline earth metals have oxidation number +2 (e.g., $\mathrm{BaCl}_{2}$ ).
c. Within compounds, hydrogen $(\mathrm{H})$ has oxidation number +1 , except in compounds with alkali metals or alkaline earth metals.
d. Within compounds, fluorine ( F ) has oxidation number -1 .
e. Within compounds, oxygen $(\mathrm{O})$ has oxidation number -2 , except in compounds with fluorine.
f. Within compounds, the other halogens have oxidation number -1 , except in compounds with fluorine or oxygen.

http://chemlab.pc.maricopa.edu/periodic/printable.gif
4. Assign the oxidation state of each atom within the following compounds:
a. $\mathrm{Li}_{3} \mathrm{~N}$
b. $\mathrm{NH}_{3}$
c. $\mathrm{N}_{2} \mathrm{H}_{4}$
d. $\mathrm{NO}_{2}$
e. $\mathrm{KNO}_{3}$
f. $\mathrm{BrF}_{3}$
g. HOBr
h. NaH
5. Identify whether the following balanced reactions are oxidation-reduction reactions. If so, identify which element is oxidized and which is reduced. Write the oxidation and reduction half reactions.
a. $2 \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
b. $\mathrm{CuSO}_{4 \text { (aq) }}+\mathrm{Na}_{2} \mathrm{CO}_{3 \text { (aq) }} \rightarrow \mathrm{CuCO}_{3(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{SO}_{4 \text { (aq) }}$
c. $2 \mathrm{CuCl}_{(\mathrm{aq})} \rightarrow \mathrm{CuCl}_{2(\mathrm{aq})}+\mathrm{Cu}_{\text {(s) }}$
