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Abstract

When we measure the circumference and radius of a rapidly rotating disk in the inertial frame

in which it is undergoing no translational motion, we find the ordinary relation C = 2πR.

But in this frame the edge of the disk is moving in a direction parallel to itself, so this

measurement must be of a length-contracted distance. The circumference in the rotating

frame must therefore be greater than 2π times the radius, giving us a noneuclidean geometry

in that frame. This is called Ehrenfest’s paradox, and has troubled relativity almost since

its inception.

The goal of my work is to illuminate the difficulties of relativistic rotating reference

frames. I will analyze the system with general relativity and also develop a computer-aided

numeric method to visualize a set of points from the point of view of a rotating observer.

4



Chapter 1

An Introduction to Relativistic

Rotating Reference Frames

1.1 Overview

Consider a flat, circular disk floating in euclidean space. In a particular inertial reference

frame, which we shall call the lab frame, the center point of the disk has zero velocity, but

the disk itself is rotating around an axis through and perpendicular to this center point with

a constant angular velocity ω. It is somewhat like a merry-go-round floating in deep space,

far away from gravitating bodies.

Now, imagine standing on that merry-go-round at a distance R0 from the center and

rotating with it. We wish to know what the disk—and the rest of the universe—looks like

from this perspective. What coordinate system should we use to define distance and time,

and what is the shape of the disk? These seem like simple questions to answer, but a

preliminary analysis shows them to be deeper and more difficult than we might expect. The

edge of the disk, at radius R0, has a velocity v = R0ω in the inertial reference frame. This

means that the entire edge has undergone Lorentz contraction in this frame, shortening it by
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a factor of
√

1− v2/c2. When we step into the rotating frame, the edge is no longer moving,

so the circumference we measured in the inertial frame is smaller than the circumference

in the rotating frame. The radius, however, does not change, as it is moving in a direction

perpendicular to the motion. The circumference of the disk in the rotating frame is greater

than 2π times the radius, implying noneuclidean spatial geometry. Moreover, clocks on the

disk are moving in the inertial frame and by virtue of time dilation are running slow.

This makes for a strange set of coordinates in the rotating frame, but general relativity

often deals with strange coordinate systems. This set of coordinates also raises worries

about general relativity, however. Einstein’s theory says that the curvature of spacetime is

absolute; that is, in any reference frame the Riemann curvature tensor should be the same.1

Unfortunately, the geometry of the rotating frame is noneuclidean while the geometry of

the inertial frame is euclidean, so different curvature tensors have been obtained in different

reference frames. It seems as though we should be able to build up the geometry from a set

of reasonable coordinates in the rotating frame, so this disagreement with general relativity

must be resolved.

The aim of this work is to analyze carefully the relativistic rotating disk and to clarify

its problems and properties to the satisfaction of both general relativists and those new to

the field. We begin with an overview of the system and the problems it presents.

1.2 History

Ehrenfest was the first to consider the rotating disk from the point of view of Einstein’s

special relativity, and he wrote a paper pointing out the apparent paradox in the ratio

between radius and circumference in 1909 [2]. Einstein read the paper and realized that it

1The components of the tensor may vary from coordinate system to coordinate system, but the tensor
itself is an invariant object. A tensor is often defined as a set of values that satisfy specific transformation
rules under changes in coordinates (reference [1] has a thorough development of tensor algebra). If all
components of a tensor are zero in one coordinate system, however, they are zero in all coordinate systems.
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implied a geometric cause for gravitation; he used this idea to create the general theory of

relativity. He never explicitly solved the relativistic rotating disk problem, however. It was

only used as a motivation for the new theory [3], and in its finished form general relativity

declares that geometry is invariant. According to Einstein, the curvature tensor in the disk

frame should be the same as that in the lab frame, and as we will see in sections 1.4 and 2.4,

this is not the implication of Ehrenfest’s paper.

When Arzeliès wrote his book on relativistic kinematics [4], general relativity was still

in the process of being accepted by the physics community. Arzeliès was a supporter of the

theory in name, although perhaps not in practice. He claimed to follow Einstein’s theory

in approaching the disk problem, but contradicted the general relativistic idea of invariant

geometry. A variety of diverse thoughts on the subject of the relativistic rotating disk

had sprung up by this point. Some considered it a proof of the invalidity of the theory.

Others disagreed on how to resolve the apparent paradoxes: some (Arzeliès among them) by

geometric calculation, others by hypothesizing relativistic warping of the disk material [5, 6],

and still others by playing with the definitions of angular velocity, angle, radius, and so

on [7, 8, 9, 10]. None of the methods at the time were entirely satisfactory, and so the

controversy continued.

In the present day, general relativity and the curvature of spacetime is almost universally

accepted as the non-quantum theory of gravity. Most general relativists use the generalized

coordinate approach developed by Einstein, saying simply “write down some coordinate

system for the disk that obeys the following constraints.” Regularly, though, newcomers

to the field take “Ehrenfest’s paradox” to show general relativity to be incorrect. The

relativists generally ignore these claims, stating (quite rightly from their point of view) that

the approach is flawed. And yet, there is no clear explanation of Ehrenfest’s paradox or a

description of the disk that is universally regarded as correct [11, 12, 13]. The present work

is intended to help ameliorate this situation.
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Recently, some work has also been done on the practice of electrodynamics on the ro-

tating disk [11, 14, 15]. Like the geometry thereof, many results in this area are apparently

paradoxical, and no consensus has been reached on how to resolve them. My work does not

touch on electrodynamics directly. It does have consequences for electrodynamics on the

disk, though; the problems in electrodynamics stem from the geometry and especially the

definitions of time and simultaneity on the disk.

1.3 The Metric

The spatial geometry of any surface may be found by constructing the metric of that surface.

The disk has rotational symmetry around its axis of rotation, so cylindrical coordinates are

the easiest ones to use. We must find expressions for a length element ds in terms of dr,

dθ, and dz (see Figure 1.1). Take a point with coordinates (r, θ, z) and a nearby point with

coordinates (r + dr, θ + dθ, z + dz). The distance between them is ds. The distance along

the z-axis between the two points is trivially dz, and that along the r-axis is dr (the same

Figure 1.1: Construction of ds
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as an inertial frame, since they are perpendicular to the motion). The distance between the

points along the θ-axis, however, is contracted by a factor of
√

1− v2/c2 in the inertial frame

(which is euclidean), so in the rotating frame we must re-extend it to rdθ/
√

1− v2/c2. ds

is then given by the expression

ds2 = dr2 +
r2dθ2

1− r2ω2

c2

+ dz2 (1.1)

This gives us the metric tensor2, which looks like

[gij] =


1 0 0

0 r2

1− r2ω2

c2

0

0 0 1

 (1.2)

1.4 The Curvature Tensor

Once we have the metric tensor, it is a simple matter of calculation to find the Riemann

curvature tensor. Noting that

[gij][g
jk] = I =


1 0 0

0 1 0

0 0 1

 (1.3)

2I am using the notational conventions of Foster and Nightingale’s A Short Course in General Relativity [1]
for my calculations of the curvature tensor and related quantities. Indices i, j, k, and so on run from 1 to
3, while Greek indices run from 0 to 3, with x0 = ct, x1 = r, x2 = θ, and x3 = z. Superscripted indices
are contravariant suffixes, while subscripted indices are covariant suffixes. When an expression appears with
the same suffix once as a superscript and once as a subscript, Einstein’s summation convention is employed.
There is one significant difference between my notation and theirs, and that is that I am using η00 = −1 and
η11 = η22 = η33 = 1 rather than the opposite.
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and using the definition of the connection coefficients Γi
jk:

Γl
ki ≡

1

2
glj (∂kgij + ∂igjk − ∂jgki) (1.4)

we can write the components of the curvature tensor as

Rl
ijk ≡ ∂jΓ

l
ik − ∂kΓ

l
ij + Γm

ikΓ
l
mj − Γm

ij Γ
l
mk (1.5)

The nonzero connection coefficients are

Γ1
22 = − r(

1− r2ω2

c2

)2
Γ2

12 = Γ2
21 =

1

r
(
1− r2ω2

c2

) (1.6)

A routine calculation shows that the nonzero components of Rl
ijk are

R1
212 = −R1

221 = ∂1Γ
1
22 − Γ2

21Γ
1
22 = − 3r2ω2

c2
(
1− r2ω2

c2

)3 (1.7)

and

R2
112 = −R2

121 = ∂1Γ
2
12 + Γ2

12Γ
2
21 =

3ω2

c2
(
1− r2ω2

c2

)2 (1.8)

The existence of nonzero components of [Rl
ijk] indicates that the geometry is noneuclid-

ean. In section 1.1, however, we assumed euclidean geometry in the lab frame. The spatial

geometry is thus dependent on reference frame, according to Arzeliès.
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1.5 Spatial Geodesics

From section 1.4, we know that the spatial geometry of the disk is not euclidean. Using the

geodesic equation,

d2ui

ds2
+ Γi

jk

duj

ds

duk

ds
= 0 (1.9)

finding the geodesic equations is fairly straightforward. From equations 1.6 and 1.9 we obtain

three equations.

d2z

ds2
= 0 (1.10)

d2r

ds2
=

r(
1− r2ω2

c2

)2 (dθ

ds

)
(1.11)

d2θ

ds2
+

2

r
(
1− r2ω2

c2

) (dr

ds

)(
dθ

ds

)
= 0 (1.12)

From equation 1.1, we obtain a constraint equation:

(
dr

ds

)2

+
r2

1− r2ω2

c2

(
dθ

ds

)2

+

(
dz

ds

)2

= 1 (1.13)

Observe that

d

ds

(
r2

1− r2ω2

c2

dθ

ds

)
=

(
r2

1− r2ω2

c2

)(
d2θ

ds2
+

2

r
(
1− r2ω2

c2

) dr

ds

dθ

ds

)
= 0 (1.14)

From this we determine that

r2

1− r2ω2

c2

dθ

ds
= A (1.15)

for some constant A. Similarly, from equation 1.10 we obtain dz
ds

= B for some constant B.

Now we substitute into equation 1.13 for dθ
ds

and dz
ds

, giving

(
dr

ds

)2

= 1− A2

r2
+

A2ω2

c2
−B2 (1.16)
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Since dr
dθ

= dr
ds

ds
dθ

, we can write

dr

dθ
= ± r2

A
(
1− r2ω2

c2

)√K − A2

r2
(1.17)

with the constants condensed into K ≡ 1 + A2ω2

c2
−B2. This is the equation for geodesics on

the disk. Note that it does not include geodesics that pass through the center; it blows up

when r = 0. For those geodesics that do pass through the center, we make use of equation

1.15. At some point, r = 0, so A must also be 0. However, r is not 0 everywhere along the

geodesic. Therefore, dθ
ds

= 0 in these cases. Equation 1.11 becomes d2r
ds2 = 0, and dr

ds
is thus

constant. The radii are geodesics, as are the lines formed by “tilting” radial lines away from

being parallel with the rθ-axis.

For geodesics that do not pass through the center of the disk, some further examination

of equation 1.17 is in order. First we rearrange it into

A

r2

√
K − A2

r2

dr

dθ
= ± 1

1− r2ω2

c2

(1.18)

Then we observe from equation 1.17 that

dr

dθ
= ±

(
r2ω2

c2

1− r2ω2

c2

)
√

K − A2

r2

Aω2

c2

 = ±

(
1

1− r2ω2

c2

− 1

)
√

K − A2

r2

Aω2

c2

 (1.19)

and therefore that

± 1

1− r2ω2

c2

= ±1 +
Aω2

c2

√
K − A2

r2

dr

dθ
(1.20)

We now rewrite equation 1.18 as

A

r2

√
K − A2

r2

dr

dθ
= ±1 +

Aω2

c2

√
K − A2

r2

dr

dθ
(1.21)
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Multiply through by dθ and integrate:

A

∫
dr

r
√

Kr2 − A2
= ±

∫
dθ +

Aω2

c2

∫
dr√

K − A2

r2

(1.22)

This gives us

cos−1

(
A

r
√

K

)
= ±θ +

Aω2

Kc2

√
Kr2 − A2 (1.23)

or, as a function for θ with respect to r:

θ = ± cos−1

(
A

r
√

K

)
∓ Aω2

Kc2

√
Kr2 − A2 (1.24)

Equation 1.24 tells us that
∣∣∣ A
r
√

K

∣∣∣ ≤ 1, which sets a lower bound on r (r ≥ A√
K

) at which

dr
dθ

= 0. It already has an upper bound (r ≤ c
ω
), at which point equation 1.17 shows that

dr
dθ
→ ∞. At the limiting edge of the disk the geodesics are tangential to the radii, and

they curve away from the center point, eventually reaching their closest approach and then

moving on (see Figure 1.2). Curves that rise steadily in the z-direction while tracing such a

Figure 1.2: Some representative geodesics in the rθ plane
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path in r and θ are also geodesics.

The curves of constant radius, interestingly, are not geodesics. At points where dr
dθ

= 0,

d2r
ds2 =

√
K

1−A2ω2

Kc2

, and B2 ≤ 1 (by equation 1.13), so K 6= 0. The radius is at a minimum, but

will not remain constant. Curves with constant radius and constant θ are the only exception;

they are geodesics and correspond to curves solely in the z-direction.

1.6 Light Paths

The path taken by a light ray in the lab frame is a straight line. Described in cylindrical

coordinates, the general equation is3

r cos θ = a z = b sin θ + z0 (1.25)

To examine this in the rotating frame, we make the coordinate substitutions r → r, θ →

θ ± ωt,4 and z → z. The new equation is

r cos (θ ± ωt) = a z = b sin (θ ± ωt) + z0 (1.26)

For the case of a light ray, we can eliminate t by means of the equation ct =
√

r2 − a2 − z2,

giving

θ = ± cos−1 a

r
± ω

c

√
r2 − a2 − z2 = ± sin−1 z − z0

b
± ω

c

√
r2 − a2 − z2 (1.27)

Note that unlike in equation 1.24, all four combinations of sign are permitted. Figure 1.3

shows a pair of typical light paths in the rθ plane, with arrows indicating the direction the

3Assuming that a is the closest approach of the line to r = 0 and choosing axes such that θ = 0 at that
point. This is technically not a general equation for a given set of axes, but it describes a typical line, so we
will use it to illustrate our point.

4t is the central time. See section 2.1.
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light is travelling. The disk is spinning counterclockwise.

Figure 1.3: Typical light paths in the rθ plane

Comparing figure 1.2 with figure 1.3, we see that even if a = A√
K

, light does not generally

follow the spatial geodesics in the disk frame. Equations 1.24 and 1.27 confirm that this is

the case. In general relativity, light always follows the geodesics, so this is a definite problem

for the theory.

1.7 Summary

We have examined the spatial geometry of the rotating disk, and found a number of wor-

risome properties. It appears to be noneuclidean, implying a nonzero Riemann curvature

tensor. This contradicts Einstein’s interpretation of general relativity, which states that if

the curvature tensor is zero in one frame (in this case, the euclidean lab frame), then it

should be zero in all other frames. Furthermore, we’ve found that light does not generally

follow the geodesics of the disk as general relativity says it should.

There is one thing we have not included in our analysis so far, though, and that is time.
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General relativity deals with four-dimensional spacetime, and depending on how we define

time in our coordinate system, the problems in the spatial analysis of the disk may go away.

The nonzero components of the curvature tensor may become zero with the addition of the

time dimension, and the light paths may actually trace out four-dimensional geodesics even

if their three-dimensional projections are not spatial geodesics. We will add time to the mix

in the next chapter.
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Chapter 2

Time on the Disk

2.1 Central Time

According to the theory of special relativity, moving clocks run slow. From the inertial

reference frame, clocks sitting on the rotating disk are moving with a velocity proportional

to their distance from the axis of rotation. Thus, they are seen to slow down by a factor of

(1 − v2/c2)−1/2. An observer on the disk will see his own clock ticking normally, but after

one full rotation of the disk his clock will have advanced more than identical clocks farther

from the axis of rotation, and less than clocks closer to the axis. This is a serious problem

for anyone who wants to time events that take place over a nonlocalized area of the disk; for

example, timing a particle’s journey from a point on the disk to the axis and back. Observers

at the two endpoints can synchronize their clocks at the start of the experiment and will still

measure different ending times. We would like a consistent way to define time on the disk

so that we can use it concretely.

In fact, there are several such ways, each with its own advantages and disadvantages.

Perhaps the simplest is what Arzeliès [4] calls “central time”. It is, as the name implies,

what one would read on the clock at the axis of rotation. That clock can be set to send out
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a light signal every time it ticks, and every other clock on the disk can be synchronized to it.

Time on the disk is thus measured precisely as time in the inertial frame. The advantages to

this definition are that (a) clocks do not get “ahead” of each other (if one observer compares

his time with another and finds that their clocks read times offset a certain amount from each

other, then at any later time if he tries the same experiment he will get the same offset) and

(b) it is easy to calculate, since we can just transfer the problem in question to the inertial

frame and find the time there. The principal disadvantages to the definition are (a) the lack

of synchronization between clocks (we will return to this) and (b) the fact that clocks at

different radii must be constructed differently, such that if we move a clock from one radius

to another, it will tick at a different rate from the one native to that radius.1 This lack of

portability makes it difficult to define the proper time of a particle travelling along a path

in terms of the central time.

The lack of synchronization in central time is easy to prove. Suppose we have two clocks

near each other on the disk, one at some point A = (r, θ) and the other at B = (r, θ + ∆θ)

(assume ∆θ is small). We will synchronize B to A using the methods of special relativity,

by sending a light pulse from A to B at time t = 0 and measuring the distance between

them with a meterstick. Since light moves at a constant velocity c, we can use the distance

to figure out how much time has elapsed on the clock at A during the journey, and set the

clock at B to that value. The distance between the two points on the disk is r∆θ√
1−r2ω2/c2

(from equation 1.1), so A should display a time

∆tA =
r∆θ√

c2 − r2ω2
(2.1)

when the signal reaches B.

1It is possible to remedy this by some mechanism within the clocks that senses the strength of the rotation
and adjusts the clock’s rate accordingly, but this makes the clocks into complex machines, not the delightfully
simple light-clocks imagined by Einstein.
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Now, from the lab frame we see the light emitted at A moving toward B, but B moving

away from A with speed rω as the disk rotates. The time it takes for the journey (as

measured by B, as well as the rest of the clocks) is

∆tB =
r∆θ

c− rω
(2.2)

B will read ∆tB when the signal reaches it, but to synchronize with A it must be adjusted

to ∆tA. The offset is

∆tA −∆tB =
r∆θ

c2 − r2ω2

(√
c2 − r2ω2 − c− rω

)
(2.3)

Thus, while both A and B are synchronized to the clock at the center, they are not synchro-

nized to each other. If we relax one of our assumptions—that the speed of light is constant

in the disk frame when we use central time—we can allow clocks on the disk reading central

time to be synchronized to each other as well as to the central clock, but we would no longer

be doing relativity if we permit that.

2.2 Local Time

Perhaps we have decided that we really want portable clocks instead of these clumsy central

time clocks that behave differently at different radii. The thing to do then is just to place

ordinary clocks from our inertial frame on the disk and let them rotate. Sure, they’ll see

each other ticking at different rates, but we know what those rates are, so we can adjust

our calculations accordingly. Plus, we can synchronize them to their neighbors, which we

couldn’t do with central time. We will again follow Arzeliès and call this “local time”.

The problem with local time becomes apparent when one begins synchronizing neighbor-

ing clocks around a circumference. As with central time, we will synchronize a clock at the
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same radius r and some small angle dθ away. The time displayed on this new clock at the

moment of synchronization is

d̄t = dtlab

√
1− r2ω2

c2
=

rdθ

c− rω

√
1− r2ω2

c2
(2.4)

Now we’ll take another clock another dθ along the circumference and synchronize it to this

one, using the same procedure. As we continue synchronizing clocks around the circumfer-

ence of the disk, the synchronization times d̄t add up.

t̄ =

∫ θ

0

rdθ′

c− rω

√
1− r2ω2

c2
=

rθ

c− rω

√
1− r2ω2

c2
(2.5)

To cover the whole circumference 2πr/
√

1− r2ω2/c2, we need θ = 2π, so the synchronization

time is

t̄1 =
2πr

c− rω

√
1− r2ω2

c2
(2.6)

Now, let’s try the same procedure, but send our light signal in the opposite direction

around the circumference. In this case, equation 2.4 becomes

d̄t = dtlab

√
1− r2ω2

c2
=

rdθ

c + rω

√
1− r2ω2

c2
(2.7)

and the synchronization time becomes

t̄2 =
2πr

c + rω

√
1− r2ω2

c2
(2.8)

Comparing with equation 2.6, we can see that the original clock is not synchronized with
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itself!2 The difference between the clockwise and counterclockwise synchronizations is

∆t̄ = t̄1 − t̄2 = 2πr

√
1− r2ω2

c2

(
1

c− rω
− 1

c + rω

)
=

4πr2ω

c
√

c2 − r2ω2
(2.9)

This is clearly a problem for local time, since if a clock isn’t synchronized with itself then

it’s fairly useless3.

Moreover, suppose we synchronize a clock at some radius R1 with one at a different radius

R2. These clocks tick at different rates, so if we wait some finite amount of time (measured

by either clock) and then check the synchronization, they will no longer be synchronized;

the longer we wait, the larger the discrepancy. In local time, synchronization between two

points is in general only an instantaneous thing.

2.3 Natural Time

We can patch up local time somewhat by employing an arbitrary convention. Since the

synchronization problem doesn’t appear unless we fully circumnavigate the disk, we can

draw a ray from the axis of rotation outwards, and say that there is a time difference

between clocks on opposite sides of the ray that just cancels out the circumnavigation effect.

Arzeliès calls this the “natural time”, and while I think it is a misnomer I will stick to his

nomenclature. The natural time is defined by

dτ =

√
1− r2ω2

c2

(
dtlab −

r2ωdθ

c2 − r2ω2

)
(2.10)

Apparently, if dθ = 0 this simplifies to local time, which means that clocks sitting still in the

disk frame behave just as special relativity says they should. We would also like to know the

2This is called the Sagnac effect and is discussed in references [16], [17], and [18].
3Note that we can still use local time provided that we limit the area over which it is valid so that a full

circuit of the disk cannot be made. The problem with radial discrepancies won’t go away so easily, though.
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indications of the various natural clocks at a single time as measured in the lab frame; to

do this we select an arbitrary point in the rotating frame that indicates τ0 at time tlab = 0

and look at paths from it to other points. In particular, we will examine the case in which

the path is at a constant radius. To find the indication of any other clock on the path, we

simply integrate equation 2.10 over the angle θ between the two clocks.

τ(θ) = τ0 ±
r2ω

c
√

c2 − r2ω2

∫ θ

0

dθ′ = τ0 ±
r2ωθ

c
√

c2 − r2ω2
(2.11)

A problem clearly arises from this: what happens when you go all the way around the

disk and come back to the original clock? According to equation 2.11, the clock reads

τ0± 2πr2ω
c
√

c2−r2ω2 , but we originally assumed that it reads τ0. It cannot read both, so we introduce

the convention mentioned at the beginning of this section. Whenever we pass through

the “cut” formed by the ray at our arbitrarily-chosen θ, we adjust the time by the period

T = 2πr2ω
c
√

c2−r2ω2 . When passing clockwise we subtract T , and when passing counterclockwise

we add T . This also solves the problem of synchronizing a clock with itself that we saw with

local time. Equation 2.9 becomes

∆τ = τ1 − τ2 =
4πr2ω

c
√

c2 − r2ω2
− 2T = 0 (2.12)

The cut convention of natural time adds just the right value to allow clocks to be synchronized

with themselves. The final problem of local time also goes away; clocks at a larger radius

tick more slowly, but are also adjusted by a larger T , so a clock at one radius will always

read something close to one at a different radius even though they are ticking at different

rates. This preserves time translation invariance, at least on a long time scale. The price

of all of these benefits is breaking the disk’s symmetry. There are clocks right next to each

other that are not synchronized, and if we want to use natural time we just have to accept

that.
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2.4 Spacetime Metrics

Now that we have definitions of time, we can write down complete metric tensors for space-

time on the disk instead of just the spatial metric in equation 1.2. We do this by means of

the invariant spacetime interval, which in the lab frame is4

dr2
0 + r2

0dθ2
0 + dz2

0 − c2dt20 = constant (2.13)

We then use the relations between the lab and disk coordinates (dr0 = dr, dθ0 = dθ + ωdt0,

dz0 = dz) to write this in terms of the latter.

dr2 + r2dθ2 + 2r2ωdθdt0 + r2ω2dt20 + dz2 − c2dt20 = constant (2.14)

Central time is defined by dt = dt0, so plugging this into equation 2.14 gives us the

following metric tensor:

[gαβ] =



−
√

1− r2ω2

c2
0 r2ω 0

0 1 0 0

r2ω 0 r2 0

0 0 0 1


(2.15)

Note that the spatial portion of this metric looks nothing like equation 1.2, and moreover

that there are a pair of cross terms in g20 and g02. The metric produced by central time does

not allow for complete separation between space and time.

4In this section, subscripted zeros indicate lab frame coordinates, while a lack of subscripts indicates disk
frame coordinates.
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Equation 2.4 defines local time, so equation 2.14 becomes

dr2 + r2dθ2 +
2r2ωdθd̄t√

1− r2ω2

c2

+ dz2 − c2d̄t
2

= constant (2.16)

The metric tensor is then

[gαβ] =



−1 0 r2ωq
1− r2ω2

c2

0

0 1 0 0

r2ωq
1− r2ω2

c2

0 r2 0

0 0 0 1


(2.17)

Once again, the spatial portion of this metric does not look like equation 1.2, and two cross

terms appear. Local time does not produce an easily separable metric either.

Natural time is defined by equation 2.10. When this is plugged into equation 2.14 it

makes a bit of a mess, but after simplification it becomes

dr2 +
r2dθ2

1− r2ω2

c2

+ dz2 − c2dτ 2 = constant (2.18)

The metric tensor is thus

[gαβ] =



−1 0 0 0

0 1 0 0

0 0 r2

1− r2ω2

c2

0

0 0 0 1


(2.19)

Unlike the metrics for central and local time, this metric has no cross terms and separates

neatly into spatial and temporal pieces. The spatial piece matches perfectly equation 1.2.

Natural time provides the metric we expect for the rotating disk coordinates.

The spacetime curvature of these three metrics may also be found, though it is a long
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procedure by hand. The computer program Maxima5 handles tensors nicely, and provides a

list of nonzero components of the curvature tensor for a given metric tensor.6 For the central

time metric (equation 2.15) it obtains nonzero values for two components, for the local time

metric (equation 2.17) it obtains nonzero values for four components, and for the natural

time metric (equation 2.19) it finds one nonzero component.

2.5 Summary

We examined three promising definitions of time, all of which have flaws. Central time does

not allow us to synchronize clocks with each other and requires them to function differently

at different radii. Clocks measuring local time cannot be synchronized with themselves due

to the Sagnac effect, and they don’t have time translation invariance. Natural time requires

us to make an arbitrary cut along the disk in order to define it properly, breaking rotational

symmetry. Moreover, none of the three results in a Riemann curvature tensor with all

components zero, so we have not solved the problems mentioned in section 1.7.

It may not be possible to define a general time coordinate on the rotating disk. Einstein

certainly takes this view, stating “... it is not possible to obtain a reasonable definition of

time with the aid of clocks which are arranged at rest with respect to the [rotating disk].” [3]

Without a well-defined time coordinate, a spatial metric is not very useful. It is, however,

possible to define time at one point on the disk and to examine the disk as an observer from

that single point. It is this that we attempt next.

5Maxima is an open-source implementation of the computer algebra program Macsyma. It is available
under the GNU Public License at http://maxima.sourceforge.net.

6Transcripts of my Maxima sessions may be found in appendix B.
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Chapter 3

The Numeric Method

3.1 Introduction

One of the problems with analyzing the rotating disk geometrically is that the steps are

somewhat ambiguous. When we talk about “length elements” and “natural time”, it is not

instantly clear what is being described. It would be useful to analyze the rotating disk using a

method that is clear and unambiguous at every step, and special relativity gives us a limited

way of doing that. Instead of examining the rotating frame as a whole, we will consider only

a single inertial frame at one moment of time. The equations involved are transcendental,

unfortunately, so no analytic result is possible, but they may be solved numerically, and thus

I will refer to this technique as the “numeric method”. It was originally explored by Kannan

Jagannathan and David Griffiths in the spring of 2002 [19], and I have used their work as a

starting point for my own.
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3.2 A Ring of Points

We begin by dispensing with the physical disk. Instead, we will consider a collection of n

points, distributed evenly around a circle of radius R0 centered at the origin (figure 3.1).

They each bear a unique label: 0 through n − 1. Now we will suppose that each of these

points is moving at a constant angular velocity ω around the origin. (We must stipulate that

R0ω < c.) Each point j is given by two coordinates in the lab frame, xj and yj, and they

are given by the equations

xj = R0 sin(ωt +
2πj

n
) (3.1)

Figure 3.1: A ring of labelled points in the lab frame
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yj = −R0 cos(ωt +
2πj

n
) (3.2)

where t is the time in the lab frame. At time t = 0, the j = 0 point is at (0,−R0), and is

moving in the x direction with velocity v = R0ω.

We will now consider the reference frame in which the zeroth point is instantaneously at

rest. The Lorentz transformations are given by

x′ = γ (x− vt) x = γ (x′ + vt′)

y′ = y y = y′

z′ = z z = z′

t′ = γ
(
t− vx

c2

)
t = γ

(
t′ + vx′

c2

)
(3.3)

γ is 1r
1−

ω2R2
0

c2

, and we may use the variable β = v/c. At the zeroth point, t = 0 implies that

t′ = 0 as well, so we solve the equations for t′ = 0. This leads us to the following equations

for x′ and y′:

x′j =
R0

γ
sin

(
γ

R0

β2x′j +
2πj

n

)
(3.4)

y′j = −R0 cos

(
γ

R0

β2x′j +
2πj

n

)
(3.5)

These equations are transcendental and cannot be solved analytically, but they may be solved

numerically. Mathematica produces graphs that look like those in figure 3.2.1

The “clustering” of points on the far side of the stationary point is due to the difference

in simultaneity between the lab frame and the instantaneous rest frame. Equation 3.3 gives

t = γ
(
t′ + vx′

c2

)
, so when t′ = 0 we are left with t = γ

(
vx′

c2

)
. When x′ > 0, t > 0, and when

x′ < 0, t < 0. This means that although all points are in their locations simultaneously in the

instantaneous rest frame, in the lab frame those with positive x values reach those locations

after time t = 0, while those with negative x values reach their locations before t = 0. In the

1The Mathematica code used to generate this image may be found in appendix A.1.
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instantaneous rest frame this means that the points with positive x have advanced farther

along their rotation, and thus are farther away from the stationary point, while the points

with negative x have not advanced as far along their rotation, and thus are also farther away

from the stationary point. This effect, combined with the contraction along the direction of

motion that we expect from a Lorentz transformation, gives the point distribution seen in

figure 3.2.

3.3 The Whole Disk

The previous section describes a procedure for plotting the locations of a ring of points as

viewed from the zeroth point. However, we want to know what the entire disk looks like from

that point. To do this, we must modify our original equations slightly to include variations

Figure 3.2: The ring in the comoving frame. R0 = 1
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in the radius. Equations 3.1 and 3.2 then become

xj(R) = R sin(ωt +
2πj

n
) (3.6)

yj(R) = −R cos(ωt +
2πj

n
) (3.7)

where R is the distance from the origin of the point in question. γ, v, and β still depend on

R0, not R. Once again using the Lorentz transformations, we obtain the equations

x′j(R) =
R

γ
sin

(
γ

R0

β2x′j(R) +
2πj

n

)
(3.8)

y′j(R) = −R cos

(
γ

R0

β2x′j(R) +
2πj

n

)
(3.9)

Again, Mathematica allows us to plot the disk to arbitrary accuracy, as shown in figure 3.3.2

The same influences that were seen on the ring of points are seen here. We can also see

that it is only the speed of the stationary point and not the speed of the observed point that

affects the latter’s placement. However, the distance of a given point from the origin still

alters the effect upon its coordinates, as we can see from the fact that radial lines are now

curved. Griffiths also showed [19] that the surface area of the disk is given by A = πR2

γ
for

a disk of radius R, but the calculation will not be shown here.

3.4 Time Evolution

The numeric method is all well and good, but all it has done so far is provide a snapshot of

the rotating disk. The snapshot is not even necessarily from the point of view of an observer

on the disk; it is from the point of view of an observer moving past the disk who happens

2The Mathematica code generating this image is in appendix A.2.
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Figure 3.3: The disk from the comoving frame. The instantaneous rest point is marked.

to see one point of the disk standing still at a given moment. Thus, what we’ve actually

examined is not the rotating frame itself, but rather what (for example) a stationary observer

would see watching a wheel rolling past him.

We would like to know whether we can describe the rotating frame in terms of a sequence

of instantaneous inertial frames. One thing we do know about the rotating frame is that the

disk should look the same in it at any point during the rotation.3 We can evolve the disk in

time in the “snapshot” inertial frame, and then perform another Lorentz transformation into

3If this were not the case, then the rotating frame would not be invariant under time translation, and we
would lose the ability to choose an arbitrary zero for time on the disk.
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the frame where the zeroth point is once again instantaneously at rest. Taking a snapshot

of this will give us two pictures of the disk at different times, both of which from reference

frames in which the zeroth point is at rest. If they are not the same, then there is a problem

with the numeric method’s ability to describe the disk at any time other than t = 0, and

it is only useful for taking pictures from outside the frame. Deriving a frame for a rotating

observer with the numeric method would be impossible.

To get the new snapshot of the disk, we must first rederive the equations for x′ and y′

with arbitrary t′. This is not difficult, and leaves us with two equations quite similar to the

originals (equations 3.8 and 3.9):

x′j(R, t′) =
R

γ
sin

(
γ

R0

β2x′j(R, t′) +
2πj

n
+ ωγt′

)
− vt′ (3.10)

y′j(R, t′) = −R cos

(
γ

R0

β2x′j(R, t′) +
2πj

n
+ ωγt′

)
(3.11)

These are equivalent to equations 3.4 and 3.5 except for the addition of two terms. Both

equations 3.10 and 3.11 have an additional ωγt′ in the angle expression, which corresponds to

the angle the disk has turned through in the time elapsed since t′ = 0. In addition, equation

3.10 has an extra distance −vt′ tacked on, which comes from the linear motion of the disk

in this frame.

Now we need to know the velocity of this new reference frame with respect to the old

one. To obtain it we use the velocity of the zeroth point in the first comoving frame, which

are given by the derivatives of equations 3.10 and 3.11. Implicit derivation is necessary here.

For the case of 3.10, we rewrite the equation as

x′j(R, t′) =
R

γ
sin θ′j(R, t′)− vt′ (3.12)
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where θ′j(R, t′) is simply a placeholder for the longer expression shown below:

θ′j(R, t′) =
γ

R0

β2x′j(R, t′) +
2πj

n
+ ωγt′ (3.13)

It will be useful to know the time derivative (with respect to t′, of course; dot notation will

imply this) of θ′j(R, t′) as well.

θ̇′j(R, t′) =
γ

R0

β2ẋ′j(R, t′) + ωγ (3.14)

Knowing this, we can easily write ẋ′j(R, t′) using the chain rule:

ẋ′j(R, t′) =
R

γ
cos θ′j(R, t′)θ̇′j(R, t′)− v =

R

γ
cos θ′j(R, t′)

(
γ

R0

β2ẋ′j(R, t′) + ωγ

)
− v (3.15)

Then we solve for ẋ′j(t
′) and simplify to get

ẋ′j(R, t′) = ωR0

(
R cos θ′j(R, t′)−R0

R0 −Rβ2 cos θ′j(R, t′)

)
(3.16)

Since we only need the velocity of the reference point, we set R = R0 and j = 0 to get

v′x0(t
′) = ẋ′0(t

′) =
ωR0 (cos θ′0(t

′)− 1)

1− β2 cos θ′0(t
′)

(3.17)

(where θ′0(t
′) ≡ γ

R0
β2x′0 + ωγt′). A similar procedure for equation 3.11 yields

ẏ′j(R, t′) =
ωRR0

γ

sin θ′j(R, t′)

R0 −Rβ2 cos θ′j(t
′)

(3.18)

v′y0(t
′) = ẏ′0(t

′) =
ωR0

γ

sin θ′0(t
′)

1− β2 cos θ′0(t
′)

(3.19)
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The total velocity is the sum of vx0 and vy0 in quadrature:

v′0(t
′)2 = ω2R2

0

2− 2 cos θ′0(t
′)− β2 sin2 θ′0(t

′)

(1− β2 cos θ′0(t
′))2 (3.20)

The Lorentz transformations for a general boost in the xy plane are given by

x̄ = γ̄
(

vx(xvx+yvy)

v2 − vxt
)
− vy

v2 (yvx − xvy)

ȳ = γ̄
(

vy(xvx+yvy)

v2 − vyt
)

+ vx

v2 (yvx − xvy)

t̄ = γ̄
(
t− xvx+yvy

c2

) (3.21)

In the new frame, we will need the events simultaneous in that frame; that is, t′′ = t̄

is constant, while t′ may vary. What value t′′ takes as a function of time elapsed before

switching to the new comoving frame (that is, t′) is found by solving the last equation of

3.21 at the reference point. First, though, we need to know what γ̄ is. Using the definition

of γ in special relativity and equation 3.20, we find that

γ̄ ≡ 1√
1− v′2

0

c2

= γ2
(
1− β2 cos θ′0(t

′)
)

(3.22)

Now we use equations 3.17, 3.19, 3.10, and 3.11 in conjunction with equation 3.22 to find a

simplified expression for t′′.

t′′ = t′0 +
γβ2

ω
sin θ′0(t

′
0) (3.23)

t′0 is the time elapsed in the old comoving frame before shifting to the new frame; t′′ gives

the corresponding time in the new comoving frame. While equation 3.23 still relies on θ′0(t
′
0),

we can adapt the methods of section 3.2 to obtain a numeric value of θ′0(t
′
0) (and therefore

of t′′) for any given t′0.

Likewise, we can obtain numeric values for γ̄, v′x0(t
′
0), v′y0(t

′
0), and v′20 (t′0). These may

be treated as constants when working with the Lorentz transformation, and as such we will
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drop the function notation when using them in the future. The time in the first comoving

frame is not constant from point to point, however. The general boost equations 3.21 yield

t′ =
t′′

γ̄
+

v′x0

(
R
γ

sin θ′j(R, t′)− ωR0t
′
)
− v′y0R cos θ′j(R, t′)

c2
(3.24)

Again, θ′j(R, t′) is a placeholder for a longer expression, γ
R0

β2x′j(R, t′)+ 2πj
n

+ωγt′, so equation

3.24 must be solved numerically for every point with a unique R and j. This gives us a time

to plug into the x and y equations of the transformation, which are

x′′j (R, t′) = γ̄

(
v′2x0x

′
j(R, t′) + v′x0v

′
y0y

′
j(R, t′)

v′20
− vx0t

′
)
−

v′y0

v′20

(
v′x0y

′
j(R, t′)− v′y0x

′
j(R, t′)

)
(3.25)

y′′j (R, t′) = γ̄

(
v′x0v

′
y0x

′
j(R, t′) + v′2y0y

′
j(R, t′)

v′20
− vy0t

′
)

+
v′x0

v′20

(
v′x0y

′
j(R, t′)− v′y0x

′
j(R, t′)

)
(3.26)

x′j(R, t′) and y′j(R, t′) are given by equations 3.10 and 3.11, which are solved numerically

with the value of t′ found with equation 3.24.4 The end result is a collection of ordered pairs

of points in the new comoving frame, which may be graphed to examine the disk from this

frame. Figure 3.4 shows the disk at a number of times from the instantaneous comoving

frame of the reference point.

Apparently, shifting from one comoving frame to another does not change the shape of

the disk.5 It does move both the center and the orientation of the disk, but that has to do

with the rotation and lateral movement of the disk before shifting into the second comoving

frame and could be corrected for if one desired to do so. These results were expected, and

they are a strong confirmation of the feasibility of the numeric method.

4The Mathematica code for this is in appendix A.3.
5There are slight imperfections in figure 3.4, but they are due to our use of a numeric algorithm rather

than an analytic solution. Much higher values of t′ result in the same shape of the disk, so the artifact does
not increase with time.
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Figure 3.4: Time evolution of the disk as seen from a single reference point. β = 0.75
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3.5 Taylor Expansion of Time Evolution

The results of section 3.4 do not precisely describe the disk as seen by an observer on it,

however. They confirm that the disk appears the same in consecutive comoving frames of

a given reference point, but we have not yet found a description of the disk that follows

the disk observer continuously. We can approximate one with the methods of section 3.4 by

allowing time to advance a small amount in one comoving frame and then transform to the

new comoving frame of the reference point, then repeating ad infinitum. This results in a

rather choppy frame, however, jumping from inertial frame to inertial frame.

One way to smooth out the curve is to take the limit as the time elapsed between Lorentz

transformations goes to zero. If we integrate the infinitesimal transformations obtained over

some finite time, we should get some continuous transformation that allows us to describe

the disk at any moment from the point of view of a single observer on it.

To obtain the infinitesimal transformations, we must evaluate equations 3.10 and 3.11

at some small time dt′. The change in those equations between t′ = 0 and t′ = dt′ is very

small, though, so we must examine them by way of Taylor approximations around t′ = 0.

The first derivative of equation 3.10 is given by equation 3.16, and the second derivative is

also obtained by implicit differentiation:

ẍ′j(R, t′) =
RR3

0ω
2 sin θ′j(R, t′)

γ3
(
Rβ2 cos θ′j(R, t′)−R0

)3 (3.27)

The third time derivative and higher derivatives have negligible effects in the Taylor expan-

sion near t′ = 0, so they are not shown here.

Equation 3.18 gives the first derivative of equation 3.11. The second derivative of equation

3.11 is then

ÿ′j(R, t′) =
RR0ω

(
Rβ2 −R0 cos θ′j(R, t′)

)
γ2
(
Rβ2 cos θ′j(R, t′)−R0

)3 (3.28)
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We may now write out the Taylor expansions for equations 3.10 and 3.11, to second order:

x′j(R, t′) ≈ R

γ
sin θ′j(R, 0) + ωR0

(
R cos θ′j(R, 0)−R0

R0 −Rβ2 cos θ′j(R, 0)

)
t′

+
RR3

0ω
2 sin θ′j(R, 0)t′2

2γ3
(
Rβ2 cos θ′j(R, 0)−R0

)3 (3.29)

y′j(R, t′) ≈ −R cos θ′j(R, 0) +
ωRR0

γ

sin θ′j(R, 0)t′

R0 −Rβ2 cos θ′j(R, 0)

+
RR0ω

(
Rβ2 −R0 cos θ′j(R, 0)

)
t′2

2γ2
(
Rβ2 cos θ′j(R, 0)−R0

)3 (3.30)

When we graph this and compare it to the graph generated with equations 3.10 and 3.11,

we can see how good the approximation is.6 Apparently, it is very good. There is virtually

no detectable difference between the two on visual inspection. The Taylor approximation is

only good for small values of t′ (in this case, 0.1), so if we were to take a larger value such as

1 the two graphs would differ substantially, but close to zero the approximation is excellent.

For some time dt′ very close to 0, the points on the disk are given by coordinates

x′j(R, dt′) = x′j(R, 0) + ẋ′j(R, 0)dt′ +
ẍ′j(R, 0)

2
dt′2 (3.31)

y′j(R, dt′) = y′j(R, 0) + ẏ′j(R, 0)dt′ +
ÿ′j(R, 0)

2
dt′2 (3.32)

for the various derivatives of x and y. The x and y velocities of the particles are given by

the time derivatives of 3.31 and 3.32:

v′xj(R, dt′) = ẋ′j(R, 0) + ẍ′j(R, 0)dt′ (3.33)

6The exact graph was produced with the code found in appendix A.4, and the approximation was produced
with the code in appendix A.5.
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Figure 3.5: Comparison of exact and second-order approximation of time evolution of the
disk from the comoving frame. β = 0.75 and t′ = 0.1

v′yj(R, dt′) = ẏ′j(R, 0) + ÿ′j(R, 0)dt′ (3.34)

We want to find the Lorentz transformation into the frame in which our reference point is

stationary. The velocity of this frame has components v′x0(dt′) − v′x0(0) = ẍ′0(0)dt′ in the

x-direction and v′y0(dt′)− v′y0(0) = ÿ′0(0)dt′ in the y-direction. These evaluate to

vx = 0 vy = ωdt′ (3.35)
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The Lorentz transformations for a boost in the y′-direction are

x̄ = x′

ȳ = γ̄ (y′ − ωt′dt′)

t̄ = γ̄
(
t′ − y′ωdt′

c2

) (3.36)

where γ̄ = 1√
1−ω2dt′2/c2

. To second order in dt′,

γ̄ ≈ 1 +
ω2dt′2

2c2
(3.37)

Using equation 3.37 and a small value of t′ (such that t′ = dt′), the Lorentz transforma-

tions look like

x̄ = x′

ȳ =
(
1 + ω2dt′2

2c2

)
(y′ − ωdt′2) ≈ y′ − ωdt′2 + y′ω2dt′2

2c2

d̄t =
(
1 + ω2dt′2

2c2

)(
t′ − y′ωdt′

c2

)
≈ dt′

(
1− y′ω

c2

) (3.38)

to second order. Using equation 3.32, the Lorentz transformations are

ȳj(R, t′) = y′j(R, 0) + ẏ′j(R, 0)dt′ +
ÿ′j(R, 0)

2
dt′2 − ωdt′2 +

y′j(R, 0)ω2dt′2

2c2
(3.39)

d̄tj(R) = dt′ −
y′j(R, 0)ωdt′

c2
−

ẏ′j(R, 0)ωdt′2

c2
(3.40)

Equation 3.40 may be integrated up to some finite time to obtain an expression for the

disk time.

t̄j(R) =

(
1−

y′j(R, 0)ω

c2

)
t′ −

ẏ′j(R, 0)ω

c2
t′dt′

=

(
1−

y′j(R, 0)ω

c2

)
t′

(3.41)

Note that t̄ is not equivalent to t′. The clocks in our comoving frames apparently don’t
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behave quite like clocks on the rotating disk; they tick more quickly. This is a problem if

we are trying to build up the rotating frame by moving from instantaneous comoving frame

to instantaneous comoving frame as the reference point moves. It shows that second-order

adjustments in the reference point’s motion have an effect on time measurement at that

point, making it less likely that comoving frames can describe the disk frame.

3.6 Summary

We have examined a numeric method of picturing the rotating frame, first by studying

instantaneous comoving inertial frames at the moment they are comoving with a given ref-

erence point, and then by looking at the time evolution of the disk from the vantage point

of those inertial frames. From the latter, we attempted to construct a conglomerate frame

made by switching quickly from comoving frame to comoving frame, and to describe the disk

in that way. Unfortunately, there is some doubt that the conglomerate frame will accurately

describe the disk. We found that clocks run more slowly in our constructed disk frame than

in comoving frames with the same value of β. This is a second-order effect of the equations

describing the points of the disk, and its existence suggests that frames with rotation or

acceleration are more difficult to build up from inertial frames than we had hoped.

The numeric method does allow us insight into a related problem, however. It provides

a way to study the shape of a rotating disk that is undergoing translational motion past

an inertial observer, such as a wheel rolling by at a relativistic speed. We have seen the

bending of the wheel’s spokes away from the point of contact with the ground (the point

with velocity 0), and observed that the disk’s shape changes in this frame as it travels past

the observation point.
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3.7 Conclusions and Directions for Future Research

Arzeliès’ approach to the relativistic rotating disk shows the disadvantages of starting one’s

examination of the system with clocks and rods. The spacetime geometry becomes variable

and time is especially difficult to define. One could attempt in the future to find a definition

of time for which the spacetime geometry is flat, but most of the options have been examined

already and found unsatisfactory.

The numeric method shows some promise as an approach to describing the disk. It

neatly avoids the problems with Arzeliès’ approach, and in return asks only that we not try

to define time over the entire disk at once. Modern general relativists tend to agree that

time is generally only well-defined locally. Moreover, the numeric method is clear and precise

every step of the way. There is no ambiguity about what definition of time to use, since

the Lorentz transformation clearly defines the relationship between time in different inertial

frames. Also, as shown in section 3.4, the disk has the same appearance in all comoving

frames of a given reference point.

Something tricky happens when we try to make the switch from comoving frames to a

continuous frame, though, and the present work only touches on this briefly. Because two

“neighboring” comoving frames are moving with respect to each other, transforming from

one to the other causes a clock slowdown. This seems to indicate that the time on the

disk is different from the time in the comoving frames. Future research on the numeric

method should examine this. There are a few possibilities that I can think of with which to

begin. First, a calculation of the shape of the disk via the Taylor expansion and integration

techniques of section 3.5, to second order and then to higher orders in dt′, would be potentially

illuminating. This will be a difficult calculation because any effect will be overshadowed

by the changes of the disk’s orientation in space and translational motion that we saw in

figure 3.4, and those effects will be difficult to filter out of the calculations. If successful,

42



however, one can look for any warping of the disk caused by continuous infinitesimal Lorentz

transformations. For the model to hold up, warping cannot occur.

One can also do a higher-order calculation of the disk time, expanding equations 3.33

and 3.34 to second order or even higher. This will enhance our understanding of the time

problem described above. It is possible that one might simply ignore the effects on time; in

that case, the numeric method could be used as-is to describe the rotating disk. There is

some question about the legitimacy of such a move, unfortunately, and it brings us closer to

problems with time definitions.

After successfully describing the disk from one reference point by use of the numeric

method, one might wish to generalize to any observer travelling on the disk. This problem

may or may not be feasible. The most direct approach to it is to perform two infinitesimal

Lorentz transformations instead of the one in section 3.5, and to integrate that over the

path taken by the observer. This might not work, however, and I am unsure how one would

proceed from there.

There is still much to be learned about the relativistic rotating disk. In this work we have

looked at it from two very different perspectives, each with advantages and disadvantages,

and there are other perspectives that we did not examine. My goal is to have clarified some

problems typical of the system for those who are familiar with it, and made it accessible to

those who are not. I hope you have found it illuminating.
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Appendix A

Mathematica Code

A.1 A Ring of Points

n = 50; (* Number of points *)
\[Beta] = 0.8; (* (Angular) velocity of the reference point (the radius and \
speed of light have both been set to 1) *)
Array[x, n, 0];
Array[y, n, 0];
R = 1;
w[j_] := w /.

FindRoot[w/R == Sin[\[Beta]^2 w + 2 Pi*j/n], {w, 0.5},
MaxIterations -> 1000];

x[j_] := Sqrt[1 - \[Beta]^2]*w[j];
y[j_] := -R*Cos[\[Beta]^2*w[j] + 2 Pi*j/n];
pairs2 = Table[{x[j], y[j]}, {j, 0, n - 1}];
ListPlot[pairs2, AspectRatio -> Automatic]

A.2 The Whole Disk

n = 50; (* Circumferential resolution *)
\[Beta] = 0.5; (* (Angular) velocity of the reference point (the radius and \
speed of light have both been set to 1) *)
Rres = 10; (* Radial resolution *)
Rinc = 1/(\[Beta]*Rres);
Array[x, n, 0];
Array[y, n, 0];
R = 0;
pairs = Table[{0, -1}, {1}];
For[ i = 0, i < Rres, i++,

R = R + Rinc;
w[j_] :=
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w /. FindRoot[w/R == Sin[\[Beta]^2 w + 2 Pi*j/n], {w, 0.5},
MaxIterations -> 1000];

x[j_] := Sqrt[1 - \[Beta]^2]*w[j];
y[j_] := -R*Cos[\[Beta]^2*w[j] + 2 Pi*j/n];
pairs2 = Table[{x[j], y[j]}, {j, 0, n - 1}];
pairs = Join[pairs, pairs2];
]

ListPlot[pairs, AspectRatio -> Automatic,]

A.3 Time Evolution

n = 50; (* Circumferential resolution *)
\[Beta] =

0.75; (* (Angular) velocity of reference point (R_0 and c are set to 1) *)

Rres = 10; (* Radial resolution *)
t = 0; (* Time elapsed in first comoving frame before transformation *)

(* Assorted dependent constants below *)
Rinc = 1/(\[Beta]*Rres);
gamma = 1/Sqrt[1 - \[Beta]^2];
x0 = Sqrt[1 - \[Beta]^2]*w /.

FindRoot[w ==
Sin[\[Beta]^2 w + \[Beta]/Sqrt[1 - \[Beta]^2]*t] - \[Beta]*t, {w,
0.5}, MaxIterations -> 1000];

tpp = t + gamma*\[Beta]*Sin[gamma*\[Beta]^2*x0 + gamma*\[Beta]*t]; (*
Constant time in the second comoving frame *)

gamma2 = gamma^2*(1 - \[Beta]^2*Cos[gamma*\[Beta]^2*x0 + gamma*\[Beta]*t]);
vx0 = \[Beta]*(Cos[gamma*\[Beta]^2*x0 + gamma*\[Beta]*t] -

1)/(1 - \[Beta]^2*Cos[gamma*\[Beta]^2*x0 + gamma*\[Beta]*t]);
vy0 = \[Beta]*

Sin[gamma*\[Beta]^2*x0 +
gamma*\[Beta]*
t]/(gamma*(1 - \[Beta]^2*

Cos[gamma*\[Beta]^2*x0 + gamma*\[Beta]*t]));
v0 = Sqrt[vx0^2 + vy0^2];

(* And now, the meat of the program *)
R = 0;
pairs = Table[{0, -1}, {1}];
For[ i = 0, i < Rres, i++,

R = R + Rinc;
t1[j_] :=
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t1 /. FindRoot[{t1 ==
tpp/gamma2 + vx0*x1 -
vy0*R*Cos[gamma*\[Beta]^2*x1 + 2*\[Pi]*j/n + \[Beta]*gamma*t1],

x1 == (R/gamma)*
Sin[gamma*\[Beta]^2*x1 +

2*\[Pi]*j/n + \[Beta]*gamma*t1] - \[Beta]*t1}, {{t1,
t}, {x1, 0.5}}, MaxIterations -> 1000];

x1[j_] :=
x1 /. FindRoot[{t1 ==

tpp/gamma2 + vx0*x1 -
vy0*R*Cos[gamma*\[Beta]^2*x1 + 2*\[Pi]*j/n + \[Beta]*gamma*t1],

x1 == (R/gamma)*
Sin[gamma*\[Beta]^2*x1 +

2*\[Pi]*j/n + \[Beta]*gamma*t1] - \[Beta]*t1}, {{t1,
t}, {x1, 0.5}}, MaxIterations -> 1000];

y1[j_] := -R*Cos[gamma*\[Beta]^2*x1[j] + 2 Pi*j/n + \[Beta]*gamma*t1[j]];
x2[j_] :=

gamma2*((vx0^2*x1[j] + vx0*vy0*y1[j])/v0^2 - vx0*t1[j]) -
vy0/v0^2*(vx0*y1[j] - vy0*x1[j]);

y2[j_] :=
gamma2*((vy0^2*y1[j] + vx0*vy0*x1[j])/v0^2 - vy0*t1[j]) +

vx0/v0^2*(vx0*y1[j] - vy0*x1[j]);
pairs2 = Table[{x2[j], y2[j]}, {j, 0, n - 1}];
pairs = Join[pairs, pairs2];
]

ListPlot[pairs, AspectRatio -> Automatic, ImageSize -> 500]

A.4 Time Evolution in One Comoving Frame

n = 50; (* Circumferential resolution *)
\[Beta] = 0.75; (* Velocity of the comoving frame *)
Rres = 10; (* Radial resolution *)
t = 0.1; (* Time *)
Rinc = 1/(\[Beta]*Rres);
gamma = 1/Sqrt[1 - \[Beta]^2];
Array[x, n, 0];
Array[y, n, 0];
R = 0;
pairs = Table[{Null}, {0}];
For[ i = 0, i < Rres, i++,

R = R + Rinc;
w[j_] :=

w /. FindRoot[
w/R == Sin[\[Beta]^2 w +

48



2 Pi*j/n + \[Beta]/Sqrt[1 - \[Beta]^2]*t] - \[Beta]*gamma*
t/R, {w, 0.5}, MaxIterations -> 1000];

x[j_] := Sqrt[1 - \[Beta]^2]*w[j];
y[j_] := -R*Cos[\[Beta]^2*w[j] + 2 Pi*j/n + \[Beta]/Sqrt[1 - \[Beta]^2]*t];
pairs2 = Table[{x[j], y[j]}, {j, 0, n - 1}];
pairs = Join[pairs, pairs2];
]

ListPlot[pairs, AspectRatio -> Automatic, ImageSize -> 500]

A.5 Taylor Expansion of Time Evolution in One Co-

moving Frame

n = 50;(* Circumferential resolution *)
\[Beta] = 0.75; (* Velocity of the comoving frame *)
Rres = 10; (* Radial resolution *)
t = 0.1; (* Time *)
Rinc = 1/(\[Beta]*Rres);
gamma = 1/Sqrt[1 - \[Beta]^2];
Array[x, n, 0];
Array[y, n, 0];
R = 0;
pairs = Table[{Null}, {0}];
For[ i = 0, i < Rres, i++,

R = R + Rinc;
w[j_] :=

w /. FindRoot[w/R == Sin[\[Beta]^2 w + 2 Pi*j/n], {w, 0.5},
MaxIterations -> 1000];

x[j_] := Sqrt[1 - \[Beta]^2]*w[j];
y[j_] := -R*Cos[\[Beta]^2*w[j] + 2 Pi*j/n];
theta0[j_] := gamma*\[Beta]^2*x[j] + 2*Pi*j/n;
x2[j_] :=

R*Sin[theta0[j]]/
gamma + \[Beta]*(R*Cos[theta0[j]] - 1)/(1 -

R*\[Beta]^2*Cos[theta0[j]])*t +
R*\[Beta]^2*Sin[theta0[j]]*

t^2/(2*gamma^3*(R*\[Beta]^2*Cos[theta0[j]] - 1)^3);
y2[j_] := -R*Cos[theta0[j]] +

R*\[Beta]*Sin[theta0[j]]*t/(gamma*(1 - R*\[Beta]^2*Cos[theta0[j]])) +
R*\[Beta]*(R*\[Beta]^2 - Cos[theta0[j]])*

t^2/(2*gamma^2*(R*\[Beta]^2*Cos[theta0[j]] - 1)^3);
pairs2 = Table[{x2[j], y2[j]}, {j, 0, n - 1}];
pairs = Join[pairs, pairs2];
]

ListPlot[pairs, AspectRatio -> Automatic, ImageSize -> 500]
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Appendix B

Maxima Transcripts

B.1 Central Time

Maxima 5.9.1 http://maxima.sourceforge.net
Using Lisp Kyoto Common Lisp GCL 2.6.5 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) tsetup();
(%o1) TSETUP()
(%i2) load(ctensr);
(%o2) F:/PROGRA~1/MAXIMA~1.1/share/maxima/5.9.1/share/tensor/ctensr.mac
(%i3) tsetup();
Enter the dimension of the coordinate system:
4;Do you wish to change the coordinate names?
y;Enter a list containing the names of the coordinates in order
[t,r,p,z];Do you want to

1. Enter a new metric?

2. Enter a metric from a file?

3. Approximate a metric with a Taylor series?
1;
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4 :
2;Row 1 Column 1:
-sqrt(1-w^2*r^2/c^2);Row 1 Column 2:
0;Row 1 Column 3:
w*r^2;Row 1 Column 4:
0;Row 2 Column 2:
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1;Row 2 Column 3:
0;Row 2 Column 4:
0;Row 3 Column 3:
r^2;Row 3 Column 4:
0;Row 4 Column 4:
1;
Matrix entered.
Enter functional dependencies with the DEPENDS function or ’N’ if none
n;Do you wish to see the metric?
y; [ 2 2 ]

[ r w 2 ]
[ - SQRT(1 - -----) 0 r w 0 ]
[ 2 ]
[ c ]
[ ]
[ 0 1 0 0 ]
[ ]
[ 2 2 ]
[ r w 0 r 0 ]
[ ]
[ 0 0 0 1 ]

Do you wish to see the metric inverse?
n;(%o3) DONE
(%i4) riemann(true);

(%t4) R1,2,1,2 = large equation1

(%t5) R1,3,1,3 =
2 c2 r2 w2

√
c2 − r2 w2 − |c| r2 w2

2 c2
√

c2 − r2 w2

(%o5) DONE
(%i5)

B.2 Local Time

Maxima 5.9.1 http://maxima.sourceforge.net
Using Lisp Kyoto Common Lisp GCL 2.6.5 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()

1This term does not fit nicely on the page. Nevertheless, the code listed above will calculate it if given
enough time.
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provides bug reporting information.
(%i1) load(ctensr);
(%o1) F:/PROGRA~1/MAXIMA~1.1/share/maxima/5.9.1/share/tensor/ctensr.mac
(%i2) tsetup();
Enter the dimension of the coordinate system:
4;Do you wish to change the coordinate names?
y;Enter a list containing the names of the coordinates in order
[t,r,p,z];Do you want to

1. Enter a new metric?

2. Enter a metric from a file?

3. Approximate a metric with a Taylor series?
1;
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4 :
2;Row 1 Column 1:
-1;Row 1 Column 2:
0;Row 1 Column 3:
w*r^2/sqrt(1-r^2*w^2/c^2);Row 1 Column 4:
0;Row 2 Column 2:
1;Row 2 Column 3:
0;Row 2 Column 4:
0;Row 3 Column 3:
r^2;Row 3 Column 4:
0;Row 4 Column 4:
1;
Matrix entered.
Enter functional dependencies with the DEPENDS function or ’N’ if none
n;Do you wish to see the metric?
y; [ 2 ]

[ r w ]
[ - 1 0 --------------- 0 ]
[ 2 2 ]
[ r w ]
[ SQRT(1 - -----) ]
[ 2 ]
[ c ]
[ ]
[ 0 1 0 0 ]
[ ]
[ 2 ]
[ r w 2 ]
[ --------------- 0 r 0 ]
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[ 2 2 ]
[ r w ]
[ SQRT(1 - -----) ]
[ 2 ]
[ c ]
[ ]
[ 0 0 0 1 ]

Do you wish to see the metric inverse?
n;(%o2) DONE
(%i3) RIEMANN(TRUE);

(%t3) R1,2,1,2 = large equation

(%t4) R1,2,2,3 = large equation

(%t5) R1,3,1,3 = − c6 r6 w6 − 4 c8 r4 w4 + 4 c10 r2 w2

4 c4 r6 w6 − 12 c6 r4 w4 + 12 c8 r2 w2 − 4 c10

(%t6) R2,3,2,3 = large equation

(%o6) DONE
(%i6)

B.3 Natural Time

Maxima 5.9.1 http://maxima.sourceforge.net
Using Lisp Kyoto Common Lisp GCL 2.6.5 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) load(ctensr);
(%o1) F:/PROGRA~1/MAXIMA~1.1/share/maxima/5.9.1/share/tensor/ctensr.mac
(%i2) tsetup();
Enter the dimension of the coordinate system:
4;Do you wish to change the coordinate names?
y;Enter a list containing the names of the coordinates in order
[t,r,p,z];Do you want to

1. Enter a new metric?
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2. Enter a metric from a file?

3. Approximate a metric with a Taylor series?
1;
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4 :
1;Row 1 Column 1:
-1;Row 2 Column 2:
1;Row 3 Column 3:
r^2/(1-r^2*w^2/c^2);Row 4 Column 4:
1;
Matrix entered.
Enter functional dependencies with the DEPENDS function or ’N’ if none
n;Do you wish to see the metric?
y; [ - 1 0 0 0 ]

[ ]
[ 0 1 0 0 ]
[ ]
[ 2 ]
[ r ]
[ 0 0 --------- 0 ]
[ 2 2 ]
[ r w ]
[ 1 - ----- ]
[ 2 ]
[ c ]
[ ]
[ 0 0 0 1 ]

Do you wish to see the metric inverse?
n;(%o2) DONE
(%i3) RIEMANN(TRUE);

(%t3) R2,3,2,3 =
3 c4 r2 w2

r6 w6 − 3 c2 r4 w4 + 3 c4 r2 w2 − c6

(%o3) DONE
(%i4)
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