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Abstract

The recent construction of a cross-beam optical dipole trap has opened to our
laboratory the possibility of conducting experiments involving Bose-Einstein
condensates of 87Rb atoms in any of the quantum states of the ground state
F = 1 hyperfine manifold. At Amherst, the final phase of Bose-Einstein con-
densation is conducted in magnetic confinement, resulting in BECs composed
entirely of atoms in a magnetically trappable state. Using a Landau-Zener
transition, atoms can be transferred from this one state into any of three
states in the F = 1 hyperfine manifold.

Through a detailed characterization of the Landau-Zener process, we can
choose to create a BEC in a balanced superposition of all three states or to
transfer the entire population of atoms from the magnetically trappable state
to a magnetically untrappable one. Exercising the first option results in the
formation of a spinor condensate, a multiple-component condensate with the
orientation of the atomic spins as a degree of freedom. This has allowed us
to observe a spinor atom laser. We have also studied the spatial separation
of the condensates with the goal of diagnosing the presence of stray magnetic
field gradients that may adversely affect the performance of our apparatus.

Exercising the second option enables us to explore various Feshbach res-
onances, none of which are accessible from the magnetically trapped state.
We have extensively explored an interspecies Feshbach resonance at 9.1 G
between the |1, +1〉 and |2,−1〉 states. We have measured condensate loss
rates due to the Feshbach resonance and observed how the dynamical evolu-
tion of the binary system depends on variations in the interspecies scattering
length. We expect that these experiments constitute the first step in a con-
tinuing investigation into Feshbach resonance, and so we discuss what future
directions these preliminary findings suggest.
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Chapter 1

Introduction

The field of Bose-Einstein condensation in dilute gases has been extremely

active since its experimental inception in 1995. It has received such intense

attention in large part because Bose-Einstein condensates exhibit quantum

phenomena on a relatively macroscopic scale. In this state of matter, a

collection of bosonic particles can condense into a common ground state and

become a cohesive quantum-mechanical entity. Millions of atoms can be

described collectively by the same condensate wave function. This has led to

observations of a wide range of quantum phenomena, including vortices [1],

tunneling [2], and interference between massive particles [3].

Over the course of 2006, the construction of a crossed-beam optical dipole

trap opened to this lab a new realm of experimentation within this growing

field. Whereas before, we were limited to holding atoms in only three mag-

netic sublevels in the magnetic trap, we can now hold all eight magnetic
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sublevels of the ground state in the optical trap. In his thesis [4], Daniel

Guest conducted preliminary experiments on several topics that the optical

trap has made available. In this thesis, we expand upon his efforts in two

particular areas: spinor condensates and a Feshbach resonance.

We extensively study and refine the Landau-Zener process, by which we

can precisely populate all three magnetic sublevels of the F = 1 hyperfine

manifold. We find in Section 2.2.1 that sweeping the magnetic field reliably

transfers the entire condensate to the |1, +1〉 state in the slow-sweep limit but

is unreliable at intermediate sweep rates and cannot produce a precise pop-

ulation distribution among the three sublevels. Sweeping the RF radiation

frequency, in contrast, produces precise and reproducible population distri-

butions using any sweep rate that is allowed by our technical limitations, as

described in Section 2.2.2.

We implement the frequency sweep method and use it to create spinor

condensates, which have the atomic spin as a degree of freedom. This new

degree of freedom has enabled us to conduct a wide range of experiments.

We describe a spinor atom laser in Section 2.5 and we believe that we are the

first group to observe vortices in a spinor condensate [5]. Spinor condensates

also allow us to make a preliminary diagnosis in Section 2.4 of stray magnetic

field gradients in the apparatus. We allow these stray gradients to exert a

Stern-Gerlach forces on the spinor condensate, which affect each component

differently and lead to asymmetric spatial separation. Understanding and

correcting for these stray gradients will be crucial for the future observation
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of topological structures in spinor condensates.

We can also use the field sweep method along with a two-photon pulse to

populate the |1, +1〉 and |2,−1〉 sublevels equally. In a magnetic field of 9.1

G, a binary condensate composed of atoms in these two states experiences an

interspecies Feshbach resonance. This phenomenon occurs when the energy

of two unbound atoms becomes degenerate with the energy of a molecular

state. The two-atom system then tunnels between the unbound continuum

state and the quasi-bound molecular state.

While the atoms are in the quasi-bound state, they can either be lost

two- or three-body loss mechanisms, as described in Section 3.2.2. In Sec-

tion 3.5, we make a careful measurement of these Feshbach losses in order to

characterize the resonance. A Feshbach resonance also produces a dramatic

change in the scattering length, the parameter that characterizes the inter-

atomic interaction strength within the condensate. As a result, we can tune

the binary condensate from being miscible to immiscible simply by varying

the magnetic field around the Feshbach resonance. In Section 3.6, we take

advantage of this capability to observe how the non-equilibrium dynamics of

an evolving binary condensate depend on the scattering length. In order to

fully discuss these current investigations, we must first lay out a brief history

and theory of Bose-Einstein condensates and explain how they are produced

here at Amherst.
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1.1 History

The first contribution to the theory of Bose-Einstein condensation was made

in 1924 by Satyendra Nath Bose. In that year, he published a short paper

reconciling a logical flaw in the history of quantum physics, the fact that

Planck’s formula for black body radiation, the “starting point of the quan-

tum theory,” had not yet been derived without recourse to classical electro-

dynamics [6]. Bose successfully accomplished this through the application of

statistical analysis to electromagnetic radiation. This approach was revolu-

tionary, so much so that the paper was initially declined for publication, in

that it demanded that all photons of the same energy be indistinguishable.

Bose sent a copy of the paper to Albert Einstein, who agreed with the

analysis and arranged to have the paper published before extending the the-

ory with three papers of his own [7]. In these papers, he extended this

statistical analysis, which Bose had applied to massless photons, to describe

massive particles in gaseous form. These particles, which have an integer

spin, are known as bosons. At very low energies, they can be analyzed us-

ing the method Einstein developed in these papers, known as Bose-Einstein

statistics, which allows for multiple indistinguishable particles occupying the

same quantum state. This also implies that a bosonic gas can “condense”

into the lowest-energy quantum state when cooled below a critical temper-

ature. In contrast, particles with a half-integer spin are known as fermions,

in honor of Enrico Fermi. These particles can be analyzed using a method
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developed by Fermi and Paul Dirac during this same time period, known

as Fermi-Dirac statistics, which stipulates that each particle must occupy a

distinct quantum state.

Though superconductors, which can be described as Bose-Einstein con-

densates of Cooper pairs [8], were discovered in 1911 and superfluidity in 4He,

which is analogous to Bose-Einstein condensation [9], was discovered in 1937,

Bose-Einstein condensation in a dilute gas, as was Einstein’s original concept,

was not demonstrated until much later. Following the development of optical

cooling in 1985 [10], magneto-optical trapping in 1987 [11], and evaporative

cooling from a magnetic trap in 1994 [12], three independent groups were

able to achieve Bose-Einstein condensation in 1995. On the morning of July

5, a group at the Joint Institute for Laboratory Astrophysics led by Carl Wie-

man and Eric Cornell first achieved Bose-Einstein condensation in a dilute

gas by cooling a cloud of 87Rb atoms to 170 nK at a density of 1012 cm−3

[13]. Following closely in July, a group at Rice University led by Randall

Hulet obtained evidence of condensation in spin-polarized 7Li [14]. Finally,

a group at the Massachusetts Institute of Technology led Wolfgang Ketterle

was able to condense 5× 105 23Na atoms by cooling them to approximately

120nK at densities greater than 1014 cm−3 [15]. These groundbreaking and

nearly contemporaneous achievements marked the birth of an extremely ac-

tive branch of atomic physics and earned Wieman, Cornell, and Ketterle the

2001 Nobel Prize in Physics.
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1.2 Theory

1.2.1 A Statistical Interpretation

Bose-Einstein condensation is the consolidation of a population of parti-

cles into a single quantum state, a phenomenon predicted by Bose-Einstein

quantum-statistical mechanics. The applicability of this analysis is based

on the indistinguishability of particles. It can be demonstrated easily that

multiple bosons can exist in the same quantum state and multiple fermions

cannot, imposing the condition that particles be bosonic in order to be Bose-

Einstein condensed.

Consider a system composed of two particles and described by the wave

function Ψ(r1, r2). The exchange operator P̂12 acting on the wave function

has the effect of switching the particles and has an eigenvalue c:

P̂12Ψ(r1, r2) = Ψ(r2, r1) = cΨ(r1, r2). (1.1)

Applying the exchange operator twice results in the system returning to its

original state, and so

P̂ 2
12Ψ(r1, r2) = Ψ(r1, r2) = c2Ψ(r1, r2). (1.2)

From Eq. 1.2, it follows that c2 = 1, c = ±1, and

P̂12Ψ(r1, r2) = ±Ψ(r1, r2). (1.3)
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By definition, bosons are particles for which the wave function remains con-

stant under the exchange operator and fermions are particles for which the

wave function undergoes a sign change.

This condition allows us to construct a wave function for two indistin-

guishable particles at positions r1 and r2 and in internal states a and b:

Ψ±(r1, r2) = A [Ψa(r1)Ψb(r2)±Ψb(r1)Ψa(r2)] , (1.4)

where Ψ+ describes bosons, Ψ− describes fermions, and A is a normalization

constant. If the two particles are both in the same internal state a, then the

composite wave function for bosons is simply

Ψ+(r1, r2) = 2AΨa(r1)Ψa(r2) (1.5)

and the composite wave function for fermions must be zero. This result,

that no two fermions can occupy the same quantum state, is known as the

Pauli Exclusion Principle and forms the basis of the difference between the

Bose-Einstein and Fermi-Dirac systems of quantum-statistical mechanics.

The number of bosons expected to occupy a specific state is given by the

Bose-Einstein distribution:

fBE(εi) =
1

e(εi−µ)/kBT − 1
, (1.6)

where εi is the energy of the ith state, µ is the chemical potential, kB is

7



the Boltzmann constant, and T is the temperature [16]. The analogous

expression for fermions is the Fermi-Dirac distribution

fFD(εi) =
1

e(εi−µ)/kBT + 1
, (1.7)

which, as can be deduced from the Pauli Exclusion Principle, has an upper

bound of 1. Because the Bose-Einstein distribution goes to infinity at εi =

µ, we can infer that, although only one fermion can occupy any state, an

unlimited number bosons can occupy the ground state, a phenomenon known

as Bose-Einstein condensation.

1.2.2 A Quantum Mechanical Interpretation

We can also understand the phenomenon of Bose-Einstein condensation in a

dilute gas in terms of quantum mechanical overlap of the particles. We will

use the particles’ deBroglie wavelengths as a measure of the spatial extent

of their wave functions. At high temperatures, the deBroglie wavelengths of

the particles are small and the dilute gas behaves classically. As the system’s

energy is reduced, the particles move more slowly and their wavelengths

expand. At a critical temperature, the wavelengths of the particles overlap

to an extensive degree and Bose-Einstein condensation becomes energetically

favorable [16]. Here, we will provide a brief description of this interpretation

similar to the one given by Daniel Guest [4]. For a more detailed derivation,

we would recommend the work of Benjamin Samelson-Jones [17] or Elizabeth
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Petrik [5].

The thermal deBroglie wavelength of a particle is given by

λT =
h√

2πmkBT
, (1.8)

where h is Planck’s constant, m is the mass of the particle, kB is Boltzmann’s

constant, and T is the temperature of the system. As the system is cooled,

the particles slow and the quantum mechanical volume that each particle

occupies increases as λ3
T. We can define the phase space density D as a

measure of the overlap of the wave functions of adjacent particles:

D = nλ3
T, (1.9)

where n is the number density of the particles.

As D approaches 1, the wave functions begin to overlap and at D =

2.612, Bose-Einstein condensation becomes energetically favorable [16, 17].

These overlapping wave functions are phase-coherent over the extent of the

condensate [3], so the entire multi-particle condensate can be described by

a single order parameter, or macroscopic wave function. As we will discuss

in Section 3.1.2, this coherence allows the state of the condensate to be

described by the Gross-Pitaevskii equation, an analog to the Schrödinger

equation for a multi-particle system in which the interparticle interactions

can be integrated out.
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1.3 Properties of 87Rb

To be Bose-Einstein condensed, a particle must either be a boson, having

an integer intrinsic spin, or a composite boson, comprising an even number

of fermions of half-integer spin. Examples include the elementary bosons -

photons, gluons, gravitons, and the W± and Z0 bosons, to name some [18] -

and composite bosons such as certain atoms and Cooper pairs. Superconduc-

tivity can be considered a Bose-Einstein condensation of these Cooper pairs,

which are pairs of electrons that act like bosons [8]. In our experiment, we

condense 87Rb atoms, which have 37 protons, 37 electrons and 50 neutrons.

Although the only stable isotope of rubidium is 85Rb, 87Rb can be consid-

ered effectively stable since it decays to 87Sr via β− decay with a half-life

of 4.97(3) × 1010 years [19]. Within the nucleus, all of the neutrons and all

but one of the protons are paired, which cancels their contributions to the

nuclear spin. The unpaired proton occupies the 2p3/2 [20] nuclear orbital and

thus the total nuclear spin for 87Rb is I = 3/2.

Our selected atom, 87Rb also has the advantage of being an alkali metal.

The four inner electronic shells are completely filled in a krypton-like elec-

tronic configuration, and therefore are extremely stable and contribute no net

angular momentum to the atom. The electronic behavior of the atom then

is characterized entirely by the single valence electron, resulting in a ground

state configuration and series of electronic transitions that are far simpler

than those of atoms with more populated valence shells. With this simplic-

10



ity also comes an increase in laser-cooling efficiency, which explains why by

1997, BECs had only been realized in dilute gases of rubidium, sodium, and

lithium, all alkali metals [21].

Simplicity, however, is not a necessity. Since 1997, Bose-Einstein conden-

sation has been observed in, among others, 133Cs atoms [22] and diatomic

molecules of 6Li [23] and 40K [24], both of which are fermionic as individual

atoms. The last two achievements were accomplished by forming molecules

from ultra-cold Fermi gases via Feshbach resonance.

1.3.1 Hyperfine Structure

In its ground state, the single valence electron of 87Rb occupies the 52S1/2

subshell. The degeneracy of the ground state is broken by two perturbations

to the Hamiltonian. The first, hyperfine splitting, is a result of magnetic

dipole-dipole coupling between the nucleus and the valence electron. The

magnetic dipole created by the intrinsic spin and orbital angular momentum

of the electron interacts with the magnetic field created by the magnetic

dipole of the nucleus and results in a splitting of energy levels according to the

relative alignment of the two dipoles. These energy levels are characterized

by the total atomic angular momentum F = I + J, where I is the intrinsic

spin of the nucleus and J = L + S is the total electron angular momentum.

Because the ground state s-orbital is isotropic, the total angular momentum

of the atom depends only on the intrinsic spins of the nucleus and the valence

electron.
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The hyperfine energy splitting of the ground state is given by

∆EHF =
AHF

2

(
F (F + 1)− I(I + 1)− J(J + 1)

)
, (1.10)

where A is a constant that has been experimentally determined to be 3.417

GHz [25]. Substituting in I = 3/2 and J = 1/2, we find

∆EHF = AHF(−1/4± 1), (1.11)

for F = 3/2 ± 1/2. This results in the ground state of 87Rb being, to first

approximation, a two-level system with the higher-energy F = 2 hyperfine

manifold separated from the F = 1 hyperfine manifold by 6.835 GHz. Since

the ground state can, to the first order, be treated as a two-level system,

the top operator of all subsequent ± or ∓ dual operators in this chapter

will describe the F = 2 hyperfine manifold and the bottom will describe the

F = 1 hyperfine manifold.

Here, a quick note must be made on the conventions for units of en-

ergy that are used throughout this thesis. Differences in energy between

hyperfine manifolds or Zeeman levels (discussed below) are expressed by the

frequency of the resonant radiation for that transition (ν = E/h). Under

this convention, hyperfine splitting corresponds to microwave radiation and

Zeeman splitting corresponds to radio frequency radiation. Differences in

energy between fine structure sublevels, for which the resonant radiation is

in the visible portion of the spectrum, are given by the in vacuo wavelength
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of the radiation (λ = hc/E). Trapping potentials, such as that of the optical

trap, are given in microkelvins (T = E/kB).

1.3.2 Zeeman Structure

The second perturbation, Zeeman splitting, is a result of the interaction of the

atomic angular momentum with an external magnetic field. The atom has an

magnetic moment associated with its total angular momentum, so there is an

energy splitting associated with the alignment of this magnetic moment with

the external field. The different Zeeman energy levels are characterized by

the quantum number mF , which gives the projection of the atomic angular

momentum along the z-axis in units of h̄. Since mF ranges from −F to +F

in integer steps, the F = 1 hyperfine manifold is split into three energetically

distinct states at non-zero field and the F = 2 hyperfine manifold is split

into five.

If the Zeeman splitting is small in comparison to the fine-structure split-

ting, then the Hamiltonian describing the Zeeman energy shift is

HB =
µB

h̄
(gJJz − gIIz)Bz, (1.12)

where µB is the Bohr magneton, Jz and Iz are the z-components of the nuclear

and electron angular momenta, and gJ and gI are the g-factors associated

with those angular momenta. Although solving for the energy shift in the

general case must be done numerically, there are two pertinent special cases
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that can be solved analytically.

First, in the weak field limit, the Zeeman energy shift is linear with respect

to the field strength and is given by

∆EZeeman = mF gF µBB, (1.13)

where gF is the Landé g-factor. The Landé g-factor for atomic angular mo-

mentum is defined as

gF =
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
gJ−F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
gI ,

(1.14)

which reduces to

gF = −gI ± 1

4
(gJ + gI) (1.15)

for the ground state of 87Rb. Conveniently, for the experimentally determined

values of gJ and gI [25], we find gF = ±1/2 to better than 0.4%. This works

out to a simple expression

νZeeman = ±mF βB, (1.16)

where β = 0.70 MHz/G, for the Zeeman energy level shift of a given state.

As we usually operate with fields smaller than 10 G, this first-order approxi-

mation is accurate to better than 0.4% and has the virtue of being far simpler

than the precise expression.
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For calculating transition frequencies, however, we would like a more

precise expression for the Zeeman energy shift. Luckily, the second special

case involves states for which J = 1/2. In the ground state, then, the Zeeman

energy shift is given rigorously by the Breit-Rabi equation,

EBR =
∆EHF

2(2I + 1)
− gIµBmF B + (−1)F ∆EHF

2

√
1 +

4

2I + 1
mF γB + (γB)2,

(1.17)

with

γ = (gJ + gI)
µB

∆EHF

. (1.18)

Here, ∆EHF is defined as the energy splitting between the two hyperfine

manifolds, or ∆E
(+)
HF − ∆E

(−)
HF = 2AHF from Eq. 1.11. We can see that the

Breit-Rabi equation takes into account both hyperfine and Zeeman splitting,

providing a complete account of the energy perturbations of all quantum

states within the ground state (or any fine structure sublevel with J = 1/2,

for that matter).

To demonstrate that the Breit-Rabi equation accounts for both effects, we

can observe it in the weak field approximation (i.e. γB ¿ 1). The Breit-Rabi

equation, through some algebra and insertion of proper values, simplifies to

EBR = AHF(− 1/4 ± 1) + mF µBB
(−gI ± 1/4(gJ + gI)

)
, (1.19)

which, considering Eqs. 1.11, 1.13, and 1.15, is precisely the sum of the

hyperfine splitting and weak-field Zeeman splitting.
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There is a third regime for which the magnitude of the Zeeman energy

shift has been analytically solved. When the magnetic field is strong enough

to disrupt the spin-orbit coupling that is responsible for the fine structure

of the atom, Zeeman splitting is known as the Paschen-Back effect and its

energy spacings are also linear in the magnetic field magnitude. Since our

experiment does not approach this regime, however, it does not need to be

discussed further here. Zeeman splitting across all three field regimes is

shown in Fig. 1.1.

In summary, a complete diagram of the ground state structure is shown

in Fig. 1.2(a). The ground state consists of two hyperfine manifolds with

F = 1 and F = 2 that are separated by 6.835 GHz. Zeeman splitting divides

the two hyperfine manifolds into 2F + 1 non-degenerate quantum states at

non-zero field and is given, to first order, by ±mF βB, with β = 0.70 MHz/G,

for F = 3/2± 1/2.

1.3.3 Fine Structure

Even though experimentation in Bose-Einstein condensation is, by definition,

concerned primarily with the structure of the ground state, the structure of

excited electronic states in 87Rb must also be described. Fine structure arises

from spin-orbit coupling, the interaction of the magnetic moment associated

with the intrinsic spin of an electron with the magnetic field produced by the

orbit of the nucleus, constructed in the reference frame of the electron.

87Rb has a fine-structure doublet in the 5P sublevel, resulting in 52P1/2

16



1000 2000 3000 4000 5000
B HGL

-10

-5

5

10
Ν HGHzL

Figure 1.1: Plot of the Breit-Rabi equation over a wide range of magnetic
field magnitudes. The hyperfine spacing and linear Zeeman splitting are
evident at weak fields, the quadratic Zeeman effect is evident at intermediate
fields, and the linear Paschen-Back regime is evident at strong fields. From
the highest energy to the lowest, the states are |2, +2〉 through |2,−2〉 and
|1,−1〉 through |1, +1〉.

17



and 52P3/2 component sublevels. Essentially, the spin-1/2 system of the

valence electron’s intrinsic spin (S = ±1/2) is superimposed on its orbital

angular momentum (L = 1) to form a two-level system with total electron

angular momenta J = 1/2 and J = 3/2.

The 52P1/2 sublevel, because it has the same total electron angular mo-

mentum as the ground state, exhibits similar hyperfine and Zeeman struc-

tures. The number and degeneracies of the hyperfine manifolds are the same

but the magnitudes of the hyperfine and Zeeman splittings are reduced. The

hyperfine spacing is reduced because the constant AHF from Eqs. 1.10 and

1.11 has been found to be 408.3 MHz for this sublevel, roughly a factor of

eight smaller than that of the ground state [25]. The Zeeman spacing is re-

duced because gF is reduced to ±1/6. Just as gF is composed of gI and gJ ,

gJ is itself a Landé g-factor composed of the spin g-factor gS and the orbital

angular momentum g-factor gL. The definition of gJ is exactly analogous

to Eq. 1.14, so different values for I and L decrease the values of both gJ

and gF by a factor of three. Since, for the purposes of this experiment the

52P1/2 sublevel is only important for optical trapping, which does not involve

transitions to specific hyperfine or Zeeman levels but rather a sum over all

possibly transitions, its internal structure need not be calculated in further

detail.

The 52P3/2 sublevel, however, has a qualitatively different hyperfine struc-

ture than the ground or 52P1/2 states. Because J = 3/2, F ranges from 0 to 3

in integer steps and there are four hyperfine manifolds of degeneracy 2F +1.
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To calculate the hyperfine splitting, a second, more complicated term must

be added to Eq. 1.10. This term, which applies only to states for which

J 6= 1/2, results in the four hyperfine manifolds being unevenly spaced, as

shown in Fig. 1.2(b). As with the 52P1/2 sublevel, the different values of I

and J change the value of gF and the magnitude of the Zeeman splitting.

In the 52P3/2 sublevel, gF is equal to +2/3 for the three upper hyperfine

manifolds but is undefined for the F = 0 hyperfine manifold, which does not

exhibit Zeeman splitting. We are concerned with this sublevel primarily for

three specific transitions from the ground state, shown in Fig. 1.2(b), that

are important in the process of condensation.

Here, we establish a convention for referring to quantum states and tran-

sitions between them. In general, a specific quantum state will be de-

noted by |F, mF 〉. We will not be discussing specific transitions in the D1

(52S1/2 → 52P1/2) line, so a primed state indicates a state in the excited

52P3/2 level. Transitions that are part of the D2 line will either be de-

scribed using only the numbers of the hyperfine manifolds between which

the transition occurs or the standard |F,mF 〉 notation. For example, the

52S1/2, F = 2 → 52P3/2, F = 3 “cycling” transition that is used in opti-

cal molasses will be denoted 2 → 3′, while a more specific instance of this

transition which is important in magneto-optical trapping will be denoted

|2, 2〉 → |3, 3〉′. All other transitions, which occur between states within the

52S1/2 ground state, will be described using the standard |F, mF 〉 notation.
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(a) (b)

Figure 1.2: Illustrations of the electronic structure of 87Rb. Part (a) shows
the ground state structure of 87Rb, showing hyperfine and Zeeman split-
ting. Here, and throughout this thesis, red is used for magnetically trappable
(gF mF > 0) states, blue for magnetically untrappable (gF mF < 0) states,
and black for magnetically unaffected (gF mF = 0) states.
Part (b) shows the hyperfine structures of the ground and 52P3/2 excited
states and three important transitions between them. The scale of hyperfine
splitting is twenty times larger for the excited state than for the ground state
and Zeeman splitting is omitted for simplicity.
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1.4 BECs at Amherst

In this section, we will provide a brief overview of the experimental procedure

that produces the condensate with which we work. Our purpose here is to

provide a familiarity with the theory and techniques of atomic trapping and

cooling, as well as with the techniques’ specific implementation in our ap-

paratus, that will inform the discussion of our own experimental procedures

later. For a more comprehensive and detailed description of the underlying

theory or experimental implementation of any of these steps, we would en-

courage one to consult the theses of the past students who were instrumental

in the construction of the apparatus [4, 17, 26–28].

First, we will sketch out a concise narrative of the complex sequence of

events that is involved in preparing a Bose-Einstein condensate for our ex-

periment. Speaking in the broadest possible terms, the apparatus consists of

two Pyrex cells connected by a thin stainless steel manifold and maintained

under ultrahigh vacuum [17]. 87Rb atoms are evaporated by the getter dis-

pensers into the collection cell, where they are cooled and trapped by optical

molasses and a magneto-optical trap (MOT). The collection atoms, prior to

the point of Bose-Einstein condensation, is known as a thermal cloud. The

clouds of evaporated atoms being held in the collection cell are periodically

transferred through the manifold until the desired number of atoms has ac-

cumulated in the science cell.

Once this point has been reached, the atoms are cooled further in a second
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MOT and then transferred to a compressed magneto-optical trap (CMOT).

At this point, all lasers are turned off and the atoms are transferred into

a purely magnetic time-averaged orbiting potential (TOP) trap. The TOP,

aided by RF evaporation, evaporatively cools the atoms further until they

reach the critical phase space density for Bose-Einstein condensation. Once

the condensate has formed, we have the option of creating a rotating pertur-

bation of the magnetic field that imparts angular momentum to the conden-

sate and forms vortices. The atoms are then transferred from the TOP trap

to a far off-resonance optical dipole trap (FORT). At this point, we conduct

the experiments described in Chapters 2 and 3. At the end of this process,

the atoms are released from the optical trap and allowed to fall and undergo

ballistic expansion before being imaged.

1.4.1 Collection

Gaseous 87Rb atoms are supplied to the system by four rubidium getter dis-

pensers. One pair of getters is mounted directly into the glass of the collection

cell while the other is mounted in an adjacent cartridge and connected via a

conflat vacuum flange. This latter pair is theoretically replaceable, but doing

so would break the 10−9 Torr vacuum that has been maintained continuously

since the system was baked out in November of 2000. The getters are heated

by resistive heating and atoms sublimate into the collection cell. The cell

itself is a six-way cross with 1.5-inch diameter windows on all ends for the

MOT beams and a smaller window and port on the diagonal for transfer of
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the atoms to the science cell.

Optical Molasses

Upon vaporization into the collection cell, the slower atoms are initially

cooled in an optical molasses [10]. The atoms are subjected to a radiation

force from six mutually orthogonal directions by lasers that are slightly red-

detuned from the 2 → 3′ transition. This is accomplished by locking a master

laser via saturated absorption spectroscopy to the neighboring 2 → 2′, 2 → 3′

crossover peak [29] and modulating the beam with an acousto-optic modu-

lator to a frequency approximately 18.5 MHz, or about 3 natural linewidths,

below that of the 2 → 3′ “cycling” transition. The master beam is then used

to injection lock three amplifier beams which each illuminate one axis from

both directions.

As we will demonstrate analytically, as an atom moves toward the source

of a specific laser, that laser is Doppler-shifted into resonance with the atom.

Each absorbed photon imparts a small amount of momentum to the atom

in the direction of propagation of the laser while the subsequent re-emission

of the photon is isotropic and thus imparts no net momentum to the atom.

Therefore, in the following analysis, we will only be concerned with the mo-

mentum of the absorbed photons.

Consider an atom in one dimension, motionless at this point, with one

laser incident upon it from each direction. The lasers are each red-detuned

by ∆ from a specific transition with central frequency ν0, or ∆ ≡ ν0−ν. The
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spectral profile of the absorption peak is given by the Lorentzian distribution,

P (ν) =
1

π

Γ/2

(ν0 − ν)2 + (Γ/2)2
, (1.20)

where Γ is the natural linewidth of the transition [30]. Because the atom

is stationary until explicitly stated otherwise, this linewidth represents only

natural and not doppler broadening. Therefore, the probability of absorption

of a photon of a frequency between ν and ν + dν is given by P (ν)dν. Since

our aim here is not to calculate the magnitude of the force exerted on the

atom by the photons but merely its direction, we define the laser intensity I

so that

dn

dt
= IP (ν)dν (1.21)

represents the absorption rate of photons of frequency ν (meaning between ν

and ν+dν) emitted by one laser. Each photon absorbed imparts a momentum

pγ =
hν0

c
(1.22)

to the atom. Here, we assume that the radiation is sufficiently close to

absorption (i.e. ∆ ¿ ν0, or 18.5 MHz ¿ 384 THz for our apparatus) so that

the momenta of the photons can be calculated using the central frequency.

Therefore, the force exerted on the atom by the absorption of photons of
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frequency ν emitted by one laser is given by

|Fγ| = dn

dt
pγ =

Ihν0

c
P (ν)dν. (1.23)

Now, consider the atom to be moving with velocity v. We define laser A

to be propagating from the positive direction and laser B to be propagating

from the negative direction. Because of the atom’s velocity, the detuning

term (ν0 − ν) from Eq. 1.20 becomes the Doppler-shifted detuning

∆′ = ν0 − ν
(
1± v

c

)
= ∆∓ v

c
(ν0 −∆) ≈ ∆∓ v

c
ν0, (1.24)

where the top operators are read for laser A and the bottom for laser B.

We again claim that the laser frequency is sufficiently close to the transition

that we are able to neglect the second-order ∆(v/c) term. Photons emitted

from laser A have momentum −hν0/c so their absorption exerts a force in

the negative direction, and vice versa for laser B. With this in mind, we

substitute the Doppler-shifted detuning from Eq. 1.24 into Eq. 1.20 and

substitute the result into Eq. 1.23 to find

Fγ = ∓Ihν0

πc

Γ/2

(∆∓ vν0/c)2 + (Γ/2)2
dν. (1.25)

Next, we simply sum the contributions to the force from each laser and
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perform some algebraic manipulation to find the net force

Fγ,net = −2Ihν2
0∆Γ

πc2

v

g(v)
dν, (1.26)

with

g(v) = (ν0v/c)4 + 2(ν0v/c)2
[
(Γ/2)2 −∆2

]2
+

[
(Γ/2)2 + ∆2

]2
. (1.27)

It is important to notice that the first term is composed entirely of pos-

itive constants. Similarly, g(v) depends only on v2 and can be shown to be

positive for all real values of v. The one-dimensional result can be easily

generalized to three dimensions to demonstrate that a particle in optical mo-

lasses experiences a force that is always opposite in direction to its motion.

This has the effect of compressing the velocity distribution of the atoms and

thereby cooling the thermal cloud. The limiting factor in the cooling of the

atoms in optical molasses is the radiation pressure caused by the rescatter-

ing of photons, which places a lower limit on the temperature that can be

reached at this stage.

Magneto-Optical Trap

While optical molasses slows the atoms, it cannot provide spacial confine-

ment. Gravity would slowly pull the atoms downward until they escaped the

optical molasses or atoms would simply travel out of the optical molasses

slowly were it not for magneto-optical trapping. The magneto-optical trap is
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not so much an independent system as a refinement of the optical molasses.

A pair of coils in the anti-Helmholtz configuration creates a magnetic field

minimum in the center of the collection cell and the six lasers used in optical

molasses are circularly (σ±) polarized.

To illustrate how this configuration provides spatial confinement, consider

a simplified one-dimensional model [30]. Our theoretical atom contains only

two states, a ground state with zero angular momentum and F = 0 (mF = 0)

and an excited state with F = 1 (mF = −1, 0, +1). The projection of this

angular momentum onto the z-axis is mF h̄ and the magnetic field is given by

B(z) = B0z. The circular polarization of each laser is taken to be the same

as its direction of propagation, as determined by the right-hand rule, so the

laser incident from the +ẑ direction is left-polarized and the laser incident

from the −ẑ direction is right-polarized.

Right- or left-polarized light, when its direction of incidence is parallel to

the magnetic quantization axis, is σ±-polarized and can only drive transitions

with ∆mF = ±1. Therefore, the σ+-polarized laser incident from the −ẑ di-

rection can only drive the |0, 0〉 → |1, +1〉′ transition and the σ−-polarized

laser incident from the +ẑ direction can only drive the |0, 0〉 → |1,−1〉′ tran-

sition. At positive values of z, the mF = −1 state is lowered in energy relative

to the ground state and the mF = +1 state is raised. Because the incident

radiation is red-detuned from the transition frequency, the |0, 0〉 → |1,−1〉′

level spacing is tuned closer to the laser frequency and the |0, 0〉 → |1, +1〉′

level spacing is tuned further from it. Therefore, the atom preferentially ab-
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sorbs photons from the σ−-polarized laser and experiences a net radiation

force in the −z direction.

This simple analysis can be applied to 87Rb using any Zeeman state of

the F = 2 hyperfine manifold as the simplified F = 0 state. It can easily

be shown that for any state |2,mF 〉, the relative energy of the |3,mF + 1〉′

state increases and the relative energy of the |3,mF −1〉′ state decreases as B

increases in the positive direction. The magnitudes of the rises and falls in the

energies of the |3,mF±1〉′ states relative to the |2,mF 〉 state are dependent on

the specific value of mF . This Zeeman detuning in the transition frequency is

added to the Doppler detuning derived in the previous section, resulting in a

net force that both slows the atoms and confines them to the field minimum

in the center of the collection cell.

Additionally, the MOT lasers preferentially drive σ+ transitions, for which

∆mF = +1. This pumps atoms towards the “stretched” states |2, +2〉 and

|3, +3〉′, which have the maximum possible z-projections of their angular

momentum. Because selection rules for emission and absorption stipulate

that |∆mF | ≤ 1 for every allowed transition, atoms that are excited into the

|3, +3〉′ state can only decay to the |2, +2〉 state and thus remain trapped in

a stable 2 ↔ 3′ cycle.

The picture is complicated further when the multilevel ground and excited

states of 87Rb are considered. The MOT lasers are detuned approximately

18.5 MHz, or about three natural linewidths, below the cycling transition

frequency but they are also only detuned approximately 140 MHz, or about
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22 natural linewidths, above the 2 → 2′ “optical pumping” transition fre-

quency. Therefore, a σ± photon occasionally excites an atom to the F = 2′

level instead of the intended F = 3′ level. From the F = 2′ level, atoms decay

with equal probability to either the F = 2 or F = 1 ground state hyperfine

manifolds.

Since optical molasses and magneto-optical trapping drive the 2 → 3′

cycling transition, only atoms in the F = 2 hyperfine manifold can be trapped

in this manner. To prevent trap loss from the F = 1 atoms, an additional σ+-

polarized “repump” laser drives the |1,mF 〉 → |2,mF + 1〉′ transition. From

the excited state, the atoms again can either decay to the F = 1 hyperfine

manifold, from which they would be excited again by the repump beam, or

to the F = 2 hyperfine manifold, in which they would be trapped by the

MOT’s cycling beam. This serves to “pump” atoms towards F = 2 states

with higher values of mF and to depopulate the F = 1 manifold. Because of

the combined effects of the cycling and repump lasers, atoms accumulate in

the |2, +2〉 state.

Transfer

Our collection and science cells constitute a dual MOT, differentially pumped

system of the type developed by Myatt et al. [31]. Once several million atoms

have collected in the collection cell, they must be transferred to the science

cell. To accomplish this, the magnetic field and trapping beams are shut

off as the atoms are exposed to a “push” beam. The push beam is σ+-
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polarized and detuned 13 MHz, or about 2 natural linewidths, below the

cycling transition frequency, allowing it to impart momentum to the atoms

while pumping them into the magnetically trappable |2, +2〉 state. It is

aligned on the transfer axis of the apparatus, passing through the centers of

the collection cell, transfer tube, and science cell.

The two cells are connected by a stainless steel manifold 18 inches long

and with an approximate inner diameter of 1/2 inch [17]. The manifold

is encased by an array of permanent magnets in a hexapole configuration,

which serves to increase the efficiency of the transfer process. The length and

narrowness of the tube inhibit the flow of extraneous gas between the two

cells so that the science cell can be maintained at a pressure of ∼ 10−11 Torr

while the pressure inside the collection cell is ∼ 10−9 Torr. The collection

cell is held at a higher pressure because the increased 87Rb vapor pressure

results in higher occupancy and faster trap loading, whereas the science cell

is maintained at a lower pressure because the absence of extraneous room-

temperature atoms results in an increased trap lifetime.

Once the atoms reach the science cell, they are collected in a second MOT.

A photodiode mounted near the cell monitors the amount of light scattered

by the atom cloud to provide a relative measure of the number of trapped

atoms. This process is repeated every second until the voltage registered by

the photodiode reaches a threshold value, a preset “fill level.”
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Figure 1.3: Illustration of the science cell magnetic coil configuration and
definition of the laboratory reference frame. Here, we define our coordinates
so that the AF (audio frequency)/bias coils and Helmholtz quadrupole coils
create static fields in the +x̂, +ŷ, and +ẑ directions, respectively. High-
lighted are the North-South AF/bias coils in green, the East-West AF/bias
coils in blue, and the vertical quadrupole coils in red. The single large coil in
the green wire guide is the vertical bias coil. A matching vertical bias coil has
been added below the cell since this photograph was taken but a photograph
taken now would show the coil assembly partially obscured by the FORT
final mirrors. The smaller vertical and horizontal RF coils, not distinctly
shown, are situated within the upper quadrupole coil and northern AF/bias
coil, respectively. The East-West and North-South shim coils, which cancel
components of the Earth’s magnetic field, are not shown because they are
much larger and farther from the cell.
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1.4.2 Evaporation

The science cell, where the atoms are Bose-Einstein condensed and where

our experiment is conducted, is a 4×1×1-inch rectangular cell with vacuum

flanges on both ends. One flange couples the cell to the transfer manifold and

allows the entry of 87Rb atoms. The other flange couples the cell to an ion

pump and a titanium sublimation pump, which maintain ultra-high vacuum

in the cell [27].

Fig. 1.3 depicts the magnetic coil configuration of the science cell. The

quadrupole coils each consist of ten windings of square, hollow wire. Because

we routinely run over 400 amps of current through these coils, cool water is

pumped through the hollow center of the wire to dissipate the substantial

Joule heat created. When 580A, the maximum current our power supply can

provide, is run in the Helmholtz (parallel current) configuration, the coils can

produce a static field of up to 1200 G in the downward (+ẑ) direction [26].

This configuration is used primarily for providing a steady axial field once the

atoms are in the optical trap and for Landau-Zener transitions, as described

in Section 2.2. When the current in the bottom coil is reversed to run in the

anti-Helmholtz configuration, the quadrupole coils produce zero magnetic

field at the center of the pair and a field gradient of up to 248 G/cm in the

axial direction and 124 G/cm in the radial direction [26]. This configuration

is used primarily for all magnetic trapping and for Stern-Gerlach separation,

as described in Section 2.3. In our anti-Helmholtz configuration, current is

run such that ∂Bz/∂z < 0 and, by consequence of cylindrical symmetry of
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the coils and the conservation of magnetic flux (stated explicitly in Eq. 2.40),

∂Bρ/∂ρ = −1
2
(∂Bz/∂z) > 0 at the center of the pair.

The four AF (audio frequency)/bias coils each consist of thirty-three

windings of thinner 14 AWG wire [26]. Because of spatial considerations,

the North-South coils are smaller, with a mean radius of 2.6 inches, and are

nested inside of the larger East-West coils, which have a mean radius of 3.0

inches. Currently, these coils are run only in the Helmholtz configuration and

can either create steady independent bias fields in the East (+x̂) and South

(+ŷ) directions or, by sinusoidally modulating the currents in the two pairs

with a 90◦ phase shift, a bias field that rotates through the entire xy-plane

at 2 kHz. We are planning, however, to implement an upgrade to the coils’

current source that has recently been constructed by Melissa Moulton. Once

implemented, this upgrade will enable us to control the current in each coil

independently in the steady-field configuration. This will allow us to create

a steady bias field in any arbitrary orientation in the xy-plane, instead of

only those lying in the North-East quadrant. We will also be able to cre-

ate superpositions of Helmholtz and anti-Helmholtz currents in each pair of

coils, resulting in a field that has both a non-zero magnitude and non-zero

gradients at the center of the pair.

Compressed MOT

Once the desired number of atoms have been transferred into the science

MOT, they are transferred into a compressed magneto-optical trap (CMOT)
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[32]. In the MOT, the density of the atoms is limited by the scattering of

photons from the atoms, which creates a reradiation force that supports the

thermal cloud against the compressing force of the trap. By removing the

repump beam and detuning the MOT cycling beams even further to the red,

the reradiation force is drastically reduced and the cloud collapses. The in-

crease in density coincides with an increase in temperature, but the increases

are such that the overall phase space density remains roughly constant.

Once the cloud has been allowed to rethermalize in the CMOT, the

quadrupole coils are ramped off and the cloud expands in the optical mo-

lasses, cooling it even further. Since the MOT beams are further red-detuned,

the radiation pressure caused by photon scattering is lessened and the atoms

are cooled even beyond the limits of the collection and science MOTs. This

stage also results in the atoms being distributed among the various states of

the F = 2 hyperfine manifold.

Optical Pumping

In order to proceed with condensation, we must collect the atoms into either

the |2, +2〉 or the |1,−1〉 state. We prepare the atoms in these states because

they, along with the |2, +1〉 state, are magnetically weak field-seeking. Since

gF mF > 0 for each of these states, their energies are raised by Zeeman

splitting, as per Eq. 1.13, and atoms in these states are attracted to regions

of low field magnitude. The |2, +1〉 state is eliminated as a possibility for

direct condensation because of unacceptably high two-body loss rates. Two
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|2, +1〉 atoms can exchange angular momentum to become a |2, +2〉 atom and

a |2, 0〉 or |1, 0〉 atom [28, 33]. The latter interaction also releases 6.835 GHz

of energy per interaction, which ejects the pair of atoms from the condensate

and possibly heats other condensed atoms as well.

At this point, we can choose the state in which we want to make a con-

densate. We use |1,−1〉 condensates for the experiments outlined in this

thesis, but producing a condensate in the |2, +2〉 state has certain advan-

tages. The state’s primary advantage is its larger magnetic moment, which

allows its atoms to be trapped more tightly in the magnetic TOP trap. This

allows us to evaporate a |2, +2〉 thermal cloud to condensation more quickly

and reliably than a |1,−1〉 thermal cloud. This reliable high-speed condensa-

tion makes |2, 2〉 condensates ideal for straightforward experiments, such as

alignment of the optical trap, that involve producing a series of condensates

as rapidly as possible. The more robust production of |2, +2〉 condensates

is also less sensitive to various beam misalignments. There have been sev-

eral instances in which the production of |1,−1〉 condensates was severely

compromised but the reliable production of |2, +2〉 condensates allowed us

to narrow the range of possible problems.

In order to pump the atoms into the selected state, we apply 50 µs pulses

of circularly polarized light tuned to the 2 → 2′ optical pumping transition.

The polarization is defined by a magnetic quantization axis provided by a

rotating bias field, so these pulses must be emitted in phase with the field’s

rotation. To prepare a thermal cloud composed entirely of |2, +2〉 atoms, the

35



light is σ+-polarized and the pattern of transitions is similar to those that

occur in the MOT. At the beginning of this stage, the atoms are distributed

randomly within the F = 2 hyperfine manifold. The radiation excites atoms

from the |2,mF 〉 state to the |2,mF + 1〉′ state, from which they can decay

with equal probability to either ground state hyperfine manifold. As in the

MOT, atoms that decay to the F = 1 manifold are promptly excited by

the high-intensity repump beam. Through successive excitations and decays,

atoms are pumped by the two beams to the “dark” |2, +2〉 state. This state is

called “dark” because atoms in it cannot interact with the incident radiation;

the repump beam is tuned to the 1 → 2′ transition and the optical pumping

beam cannot excite a transition to the non-existent |2, +3〉′ state. As a result,

we are left with a thermal cloud composed entirely of |2, +2〉 atoms.

This mechanism can be used to prepare a thermal cloud of |1,−1〉 atoms

with two simple changes. First, by inserting a π phase shift between the

radiation pulses and the magnetic field rotation, the polarization of the op-

tical pumping beam is changed from σ+ to σ−. Second, the intensity of the

repump beam is drastically reduced. The σ−-polarized light pumps atoms

to 2′ states with lower values of mF , from which they can decay to either

ground state hyperfine manifold. The lowered intensity of the repump beam

reduces the frequency with which atoms are excited out of the F = 1 mani-

fold, allowing atoms to accumulate in the |1,−1〉 state. The |2,−2〉 state is

dark to the σ−-polarized beam but the polarization of the beam with respect

to the rotating magnetic field is imperfect. This imperfection makes linearly-
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or π-polarized transitions, for which ∆mF = 0, possible. Thus, atoms can be

excited from this dark state to the |2,−2〉′ state and then decay to accumulate

in the |1,−1〉 state.

Magnetic TOP Trap

The MOT, CMOT, and optical molasses function by using the momentum

imparted by resonant photons to slow the atoms, but this photon scattering

also places a lower limit on the temperature to which the condensate can be

cooled by optical means. To cool the condensate beyond this limit and to the

point of condensation, we must transfer the atoms into the purely magnetic

time-averaged, orbiting potential (TOP) trap [34]. The atoms have been

pumped entirely into either the |1,−1〉 or |2, +2〉 weak field-seeking magnetic

sublevels, so they are attracted to the field minimum in the center of the cell.

The anti-Helmholtz quadrupole by themselves actually create a point of

zero magnetic field in the center of the trap, which is known as the “hole of

death.” Were an atom to actually reach the hole of death, the orientation of

the atom with respect to the magnetic field would change more quickly than

the atom’s magnetic moment could precess around to follow it [35]. This

would cause the atom to undergo a Majorana transition to an untrapped

state and be expelled from the trap. To prevent this, we use the AF coils

to create a rotating bias field that displaces the “hole of death” horizontally

away from the center of the trap. As a result, the atoms collect in the time-

averaged field minimum in the center of the trap while the hole of death
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orbits around them at approximately 2kHz. This frequency is lower than

the Larmor frequency, the frequency at which the atoms’ magnetic moments

precess about the bias magnetic field, so that the precession can follow the

rotating field adiabatically [26]. The frequency is high enough, however, that

the majority of the atoms cannot move quickly enough to reach the hole of

death.

Conveniently, the atoms that can reach the hole of death are by necessity

the fastest and most energetic atoms in the thermal cloud. Thus, as the

most energetic atoms reach the hole of death and are expelled, the average

energy of the thermal cloud is lowered and the atoms cool. This process

is known as evaporative cooling and is analogous to how a hot cup of soup

cools as the most energetic water molecules boil off. We take advantage of

this self-selective removal from the trap by lowering the magnitude of the

rotating bias fields, which moves the “hole of death” closer to the center of

the trap. Here, we must balance the competing needs of evaporating atoms

quickly and allowing the remaining atoms to rethermalize. Decreasing the

bias field exponentially would be the most efficient method but we have

found that decreasing the field in two linear stages works sufficiently well

for evaporating both states [27]. This process cools the thermal cloud to a

temperature of a few microkelvin but this is still well above the threshold for

condensation. We could use evaporative cooling to cool the thermal cloud to

the point of condensation, but completing the process using RF evaporation

is far more efficient [4].
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RF Evaporation

The final step to Bose-Einstein condensation is RF evaporation. We bathe

the thermal cloud in radio-frequency radiation in order to excite transitions

between trapped and untrapped magnetic sublevels and expel certain atoms

from the trap. In describing this process, it is easiest to use the image a

surface of constant field magnitude surrounding the hole of death [4]. At

every point on this surface, which has the shape of an oblate spheroid, the

magnitude of the Zeeman splitting an atom experiences is necessarily also

constant. This surface is called the “RF knife” because RF radiation of

a given frequency will eject the atoms on this surface from the trap. The

atoms that are able to travel the farthest away from the field minimum in

the center of the trap and reach the highest magnetic fields are the most

energetic. By starting the RF frequency high, at 12 MHz, and gradually

lowering it, we slowly contract the RF knife around the thermal cloud. As

the most energetic atoms are cut away, the remaining atoms rethermalize via

inelastic collisions and cool. Eventually, this process lowers the temperature

and raises the phase space density enough so that Bose-Einstein condensation

is accomplished.

In the summer of 2005, the author of this thesis installed a significant

hardware upgrade to this system. The function generators we use to drive

current through the RF coils are incapable of a phase-continuous frequency

sweep, so we approximate a smoothly descending line with a series of descend-

ing steps. This concept is discussed later in greater detail in the context of
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the Landau-Zener magnetic field sweep. The function generator that was in

place prior to this upgrade was capable of switching frequencies in 70-100 ms,

resulting in a course stepwise approximation of a steady decline. Our task

was to install a recently purchased PTS 310 function generator that is capa-

ble of switching frequencies in 5 microseconds. To this end, we constructed

an electronically buffered interface box and, braving the vagaries of C, wrote

software to allow the function generator to be controlled electronically. As

a result, we can produce a far better approximation to a smooth frequency

ramp. We can also program in a brief abrupt frequency decline at the end of

the sweep, a technique that has been shown to produce larger condensates.

This upgrade increased our maximum condensate population by a factor of

2, from 5× 105 [28] atoms to more than 1× 106 atoms.

1.4.3 Manipulation and Imaging

Once we have produced a Bose-Einstein condensate in the TOP trap, we can

manipulate it in various ways before proceeding on to the experiments that

form the basis of this thesis.

Vortex Production

While the condensate is in the TOP trap, we can induce vortices in the con-

densate by imparting angular momentum to it. By varying the magnitudes

of the fields produced by the two pairs of AF coils, we elongate the orbit

of the hole of death into an ellipse. We then rotate the major axis of the
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elliptical orbit, which exerts a torque on the condensate. At present, we

are taking the first steps towards merging our vortex studies with several

major topics addressed in this thesis. We have already observed vortices in

optically trapped [4] and spinor [5] condensates and we plan to produce an

atom laser containing a single vortex core. Other future investigations could

possibly study the dynamics of a vortex-laden condensate around a Feshbach

resonance, observing how changing the scattering length affects vortex evolu-

tion. For a far more comprehensive and enlightening discussion of all things

vortex, we would recommend reading Elizabeth Petrik’s thesis [5].

Transfer to Optical Trap

Our investigations of spinor condensates and Feshbach resonance involve

atoms in magnetic sublevels that cannot be magnetically trapped, so we

must transfer the condensate from the magnetic trap to the optical far off-

resonance trap (FORT) [36]. For a detailed discussion of theory and design

of the FORT, we would recommend reading Daniel Guest’s thesis [4]. The

optical trap consists of two horizontal beams that cross at a right angle. The

lasers are tuned to 1064 nm, which is far detuned from the two optical transi-

tions in 87Rb at 795.0 nm and 780.4 nm. This detuning is necessary because

resonant radiation would reheat the atoms through photon scattering and

destroy the condensate. We ramp the anti-Helmholtz magnetic field down as

we ramp the optical trap power up, gently transferring the atoms from one

trap to the other. Appendix A contains a derivation of the optical trapping
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potential, which is simply proportional to the light intensity at any given

point. By bringing the two crossed beams to a focus at the center of the

trap, we create an optical potential well that overlaps the magnetic potential

well. As demonstrated by Fig. A.2, a series of contour plots of the calculated

optical trap potential, this potential well is approximately cylindrical close

to its center. This allows us to create vortices that circulate around a vertical

axis in the magnetic trap and then transfer them to the optical trap [5].

To perform the experiments described in this thesis, we need the conden-

sate to be optically trapped and in a steady field created by the AF/bias

coils and the quadrupole Helmholtz coils. To this end, we must switch the

AF/bias coils from their rotating field configuration to their steady field con-

figuration and switch the quadrupole coils from their anti-Helmholtz to their

Helmholtz configuration. For technical reasons, these current switches can

only be thrown with no current running through the coils. We cannot, how-

ever, allow the magnetic field to go to zero at any time because the atoms

would undergo Majorana transitions and distribute themselves among the

magnetic sublevels. Since the optical trap is independent of the atoms’ mag-

netic moments, these distributed atoms would not be expelled from the trap

but we would lose control of the spin degree of freedom.

In order to switch from a rotating field to a steady field with the mag-

netic quantization axis intact, we first bring the current running through the

quadrupole coils to zero. We then switch them to their Helmholtz configu-

ration and ramp the field linearly up to 10.0 G in the +ẑ direction over 3.0
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ms. Then, we ramp the current running through the AF/bias coils to zero

over 3.0 ms and flip the current switches from our audio-frequency oscillating

current source to our steady current source. Finally, we ramp the bias fields

up to the values calibrated to produce zero net magnetic field in the center of

the trap. At this point, we are left with the |1,−1〉 or |2, +2〉 atoms in a 10.0

G field supplied by the Helmholtz quadrupole coils and the ability to produce

any arbitrary bias field allowed by the technical limitations of our appara-

tus. This field configuration provides an ideal starting point from which we

can begin an experiment on spinor condensates, Feshbach resonance, or any

other topic involving optically trapped condensates.

Imaging

The majority of the data we collect about the condensate is taken by absorp-

tive imaging, which Jason Merrill and Theodore Reber describe at length in

their theses [27, 28]. We shine a resonant or near-resonant probe beam on

the condensate, which scatters some of the light and creates a shadow in the

beam. A charge-coupled device (CCD) camera measures this shadow, from

which we can infer the optical density and atomic density of the condensate.

Signal saturation occurs, however, because there exists a maximum rate at

which the atoms of the condensate can scatter photons. When an atom is

in an excited state, it requires a finite amount of time to decay back to the

ground state and cannot absorb another photon until it has done so. To

correct for saturation, we slightly detune the laser from resonance, which
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Figure 1.4: Condensates imaged using saturated on-resonance (left) and un-
saturated detuned (right) radiation.

decreases the optical depth of the condensate. The laser is locked via satu-

ration absorption spectroscopy to a peak approximately 120-130 MHz from

the 2 → 3′ cycling transition and shifted into resonance by an AOM. This

mechanism provides very precise control of the laser’s detuning from reso-

nance. Examples of condensates imaged using saturated on-resonance and

unsaturated detuned radiation are shown in Fig. 1.4.

Before imaging, we release the condensate from the optical or magnetic

trap. As the condensate falls, it undergoes ballistic expansion until we image

it. We can either shine the probe beam horizontally or vertically through

the cell. These two imaging methods, known as “side-view” and “top-view”

imaging, respectively generate images that present the perspectives of looking

at the condensate from the North and upward at the condensate from below.

The majority of images taken for this thesis were collected using side-view

imaging, but top-view imaging will play an important role in the continuing

study of a Feshbach resonance, as is discussed in Chapter 3.
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Chapter 2

Spinor Condensates

The primary advantage of the optical trap is that it allows manipulation

of our condensate’s spin degree of freedom. In the magnetic trap, we can

hold and manipulate only the three magnetically trappable states, |1,−1〉,
|2, +1〉, and |2, +2〉. Because the optical trapping potential is independent of

magnetic moment, though, the optical trap enables us to trap and experiment

on any of the eight magnetic sublevels of the ground state.

In particular, we are interested in the three magnetic sublevels of the

F = 1 hyperfine manifold for two reasons. First, the three-state Landau-

Zener problem presented by the F = 1 manifold is theoretically simpler than

the five-state problem presented by the F = 2 manifold. Second, to study

the interspecies Feshbach resonance that is described in Chapter 3, we need

to produce a binary condensate composed of atoms in the |1, +1〉 and |2,−1〉
states. We cannot transfer a condensate of |2, +2〉 atoms entirely to the
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|2,−1〉 state by a Landau-Zener sweep alone, so we would have to transfer

the entire population to the |2,−2〉 state via a Landau-Zener sweep and then

to the |2,−1〉 state via a radio-frequency pulse. We would then transfer

half the population to the |1, +1〉 state via a two-photon pulse. It is far

simpler, then, to transfer the entire population from the |1,−1〉 state to the

|1, +1〉 state and then transfer half of the population to the |2,−1〉 state via

a two-photon pulse, as we will describe in Chapter 3.

By producing a condensates in the |1,−1〉 state and then transferring

atoms to the other F = 1 states, we create a condensate that has atomic

spin as a degree of freedom. This is known as a spinor condensate and was

first produced in a condensate of sodium atoms by the Ketterle group in

1998 [37]. Because of this additional degree of freedom, spinor condensates

exhibit several quantum phenomena, briefly described below, that are absent

in scalar condensates [38].

First, the lowest-energy state of a spinor condensate depends critically on

the s-wave scattering length a. This parameter is central to our discussion

on Feshbach resonance and will be explained more carefully in Chapter 3,

but it suffices for now to say that a is a measure of the interaction strength

between atoms in the condensate. Interatomic interactions are attractive for

a < 0 and repulsive for a > 0. To find the lowest-energy state of a spinor

condensate of atoms with F = 1, we compare the scattering lengths of two

atoms whose total angular momenta are parallel (F = 2) or anti-parallel

(F = 0). If aF=0 > aF=2, then the repulsion between atoms with anti-
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parallel angular momenta is stronger than that between atoms with parallel

angular momentum, and the system minimizes its energy when atoms are

collected into the same state. Systems that meet this condition, such as

87Rb with aF=0 = 101.8(2)a0 and aF=2 = 100.4(1)a0 [39], where a0 is the

Bohr radius, are known as ferromagnetic spinor condensates. Conversely,

systems for which aF=0 < aF=2, such as the first spinor condensate created

in 23Na, are known as polar spinor condensates.

In ferromagnetic spinor condensates such as ours, it has been theoretically

shown [38] that single vortices with more than one unit of angular momen-

tum are topologically and energetically unstable. Ferromagnetic spinor con-

densates can, however, support metastable Skyrmion vortices. A Skyrmion

vortex is one in which atoms in one spin state circulate around a vortex

core composed of atoms in another spin state [40]. At present, our opti-

cal trap lacks the high degree of long-term stability necessary to conduct

a comprehensive investigation of vortices in a spinor condensate. Despite

this instability in the FORT beam, we have created spinor atom lasers via

outcoupling from the optical trap by gravity. We have also used the preferen-

tial spatial separation of the components of a spinor condensate to diagnose

stray magnetic field gradients in the apparatus. These experiments, and de-

tails of the Landau-Zener transitions we use to create spinor condensates, are

described in this chapter.
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(a) (b)

Figure 2.1: Diagrams of abstract two-state Landau-Zener crossings. These
diagrams show the energies of the (a) unperturbed and (b) perturbed states
as functions of a generic parameter q. The unperturbed states |1〉 and |2〉
are degenerate at qc, while the perturbed states |a〉 and |b〉, which are linear
superpositions of |1〉 and |2〉, undergo an avoided crossing with separation
E0 and width q0.

2.1 Landau-Zener Theory

2.1.1 Abstract Landau-Zener Theory

In this section, we will investigate in abstract the theoretical causes of avoided

crossings, the quantum mechanical phenomenon that makes Landau-Zener

transitions possible. Following the example of Rubbmark, et al. [25], we

imagine a system with two states, |1〉 and |2〉, whose energies are dependent

on a common parameter q and degenerate at a certain qc, as shown in Fig.
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2.1(a). We define the unperturbed Hamiltonian H0(q) such that

H0(q)|n〉 = E0
n(q)|n〉. (2.1)

An avoided crossing arises because a perturbation disturbs the degeneracy

of the system, so we define the total Hamiltonian as

H(q) = H0(q) + H ′, (2.2)

where the perturbation H ′ is assumed to be independent of q. This results

in the two states having energies

En(q) = E0
n(q) + 〈n|H ′|n〉. (2.3)

Next, we can construct a matrix representation of the Hamiltonian with

elements Wij = 〈i|H|j〉, finding

H(q) =



〈1|H0|1〉+ 〈1|H ′|1〉 〈1|H0|2〉+ 〈1|H ′|2〉
〈2|H0|1〉+ 〈2|H ′|1〉 〈2|H0|2〉+ 〈2|H ′|2〉


 . (2.4)

Since |1〉 and |2〉 are eigenstates of the unperturbed Hamiltonian, the terms

〈1|H0|2〉 and 〈2|H0|1〉 are equal to zero. We define the quantity

E0 ≡ 2〈1|H ′|2〉, (2.5)
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which is constant because H ′ is independent of q. Making these simplifica-

tions and substituting in Eq. 2.3, the Hamiltonian becomes

H(q) =




E1(q)
1
2
E0

1
2
E0 E2(q)


 . (2.6)

According to degenerate perturbation theory, the perturbed energy levels

are given by

E± =
1

2

(
H11 + H22 ±

√
(H11 −H22)2 + 4|H12|2

)
. (2.7)

Substituting in values from Eq. 2.6, Eq. 2.7 becomes

E± =
1

2

(
E1 + E2 ±

√
E(q)2 + E2

0

)
, (2.8)

where we define E(q) = E1(q)−E2(q) as the energy spacing between the two

levels as a function of q. Observing that E(qc) = 0 by definition (i.e. the

energy splitting between states |1〉 and |2〉 is zero at the point of degeneracy),

we can observe from Eq. 2.8 that E0 represents the separation of the avoided

crossing. We now define states |a〉 and |b〉, which are eigenstates of the total

Hamiltonian with energies Ea = E+ and Eb = E−. The avoided crossing,

with the perturbed and unperturbed states, is shown in Fig. 2.1(b).

We can now use |a〉 and |b〉 as our basis states to construct a time-varying

system state Ψ(t) = α(t)|a〉+β(t)|b〉. To simulate a sweep through the region
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of degeneracy, we let q vary from qi to qf over a time interval ranging from

ti to tf . If the system starts in |b〉 (i.e. β(ti) = 1), then the probability that

the system undergoes a diabatic transition to |a〉 is given by

Pb→a = |α(tf )|2 = |〈Ψ(tf )|a〉|2. (2.9)

The system undergoing a diabatic transition from |b〉 to |a〉 is equivalent to it

being swept from |1〉 to |1′〉. Conversely, the system remaining adiabatically

in |b〉 is equivalent to it undergoing a transition from |1〉 to |2′〉, which is

known as a Landau-Zener transition. Here, a primed state |n′〉 represents

that state |n〉 for q > qc. If E1 and E2 are linear in q and q is swept through

the avoided crossing at a steady rate, then Eq. 2.9 can be solved [25] in the

limit ti → −∞, tf → +∞ to find

P1→1′ = e−2πΓ (2.10)

where Γ, the Landau-Zener parameter, is given by

Γ =
|〈1|H ′|2〉|2

h̄(dE/dq)(dq/dt)
. (2.11)

A comparison can be made here between the two-state Landau-Zener tran-

sition and Rabi oscillations. In this theoretical setting, Rabi oscillations

typically occur when q is fixed at qc and the system is in a sinusoidally time-

dependent superposition of |a〉 and |b〉.
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Notice that Eqs. 2.10 and 2.11 behave as they should in the limiting

cases:

lim
dq/dt→0

P1→1′ = 0, (2.12)

lim
dq/dt→∞

P1→1′ = 1.

In the case of an infinitely slow sweep (dq/dt → 0), the system will adiabat-

ically remain in |b〉 and entirely undergo a transition from |1〉 to |2′〉. In the

case of an infinitely fast sweep (dq/dt →∞), the system will undergo a dia-

batic transition to |a〉 and proceed entirely from |1〉 to |1′〉. This result also

makes intuitive sense, insofar as anything quantum mechanical can, because

a parameter that passes infinitely quickly through some sort of resonance will

not excite any transitions from |1〉 to |2′〉 but it is possible for a parameter

that spends an infinite amount of time on resonance to cause the system to

undergo the transition.

For a three-state system, this calculation is more complicated. Instead of

two states, |1〉 and |2〉, whose energies are arbitrary linear functions of q, we

have three states, | + 1〉, |0〉, and | − 1〉. For these states, dE+1/dq = +kq,

dE0/dq = 0, and dE−1/dq = −kq. Such a system, albeit using a different

labeling convention (|+ 1〉 → |1,−1〉, |0〉 → |1, 0〉, and | − 1〉 → |1, +1〉) and

energy parameter than we use in this abstract derivation, is shown in Fig.

2.2(a). If this system is initially entirely in | + 1〉 and q is swept through

the region of degeneracy, the final coefficients for the three states can be
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calculated numerically [41] and are given to better than 0.1% by

|c|+1〉|2 = e−2πΓ (2.13)

|c|0〉|2 = 2e−πΓ(1− e−πΓ)

|c|−1〉|2 = (1− e−πΓ)2.

This expression is valid as long as q is swept completely through the region

of degeneracy, which can be characterized by q0, the width of the avoided

crossing. This characteristic width is defined as

q0 =
E0

(dE/dq)qc

(2.14)

or, again assuming that all unperturbed energies are linearly dependent on

or independent of q, q0 can be defined more simply by

E(qc ± q0) = ±E0. (2.15)

Because Eqs. 2.10 and 2.13 are given in terms of the dimensionless and ab-

stract parameter Γ, this description of the dynamical behavior of the abstract

two- and three-state systems holds for any physical system whose energy

states are linearly dependent on some parameter and degenerate at a specific

value of that parameter.
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(a) (b)

Figure 2.2: Diagrams of a three-level Landau-Zener system in the F = 1
hyperfine manifold. Part (a) shows the F = 1 hyperfine manifold, with
Zeeman splitting of magnitude 1

2
µBB. The dressed states |1,−1′〉 and |1, +1′〉

are coupled to |1,−1〉 and |1, +1〉 respectively by the stimulated emission and
absorption of a photon of angular frequency ω. As we hold ω constant and
vary B, the energies of the two dressed states and the |1, 0〉 state vary as
shown in part (b). These three states are degenerate at 2h̄ω/µB and so
constitute a three-state Landau-Zener system. As discussed in the text, this
degeneracy gives rise to avoided crossings that can be traversed by Landau-
Zener sweeps.

2.1.2 Landau-Zener Theory in 87Rb

Now let us apply this Landau-Zener theory to our physical system of interest,

the F = 1 hyperfine manifold of the ground state of 87Rb. First, we will

model the two-state system of |1,−1〉 and |1, +1〉 and then generalize to the

complete three-state system. The unperturbed Hamiltonian is that which

gives rise to linear Zeeman splitting. We choose to set our zero energy where
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the two states are degenerate at B = 0, so the unperturbed Hamiltonian is

given by

H0|1,±1〉 = ∓1

2
µBB|1,±1〉, (2.16)

where the magnetic field B takes the place of the general parameter q.

The system is perturbed by its interaction with incident radiation of

frequency ω. For |1,−1〉, we consider the dressed state |1,−1′〉 created by the

stimulated emission of a photon, so the expectation value of the perturbation

is

〈1,−1|H ′|1,−1〉 = −h̄ω. (2.17)

For |1, +1〉, however, we consider the dressed state |1, +1′〉 created by the

absorption of a photon, so the expectation value of the perturbation is

〈1, +1|H ′|1, +1〉 = +h̄ω. (2.18)

These dressed states and the relevant energy spacings are shown in Fig.

2.2(a). For the present discussion of the two-state system, we simply ignore

the |1, 0〉 state. For this perturbation, the coupling matrix element of the

Hamiltonian is given by

〈1,−1|H ′|1, +1〉 =
h̄Ω√

2
, (2.19)

where Ω is the Rabi frequency of the stimulated transition [41].

Knowing these values, we can simply plug them into expressions that we

55



read off from the abstract derivation. The total Hamiltonian in matrix form

becomes

H(q) =




1
2
µBB − h̄ω h̄Ω/

√
2

h̄Ω/
√

2 −1
2
µBB + h̄ω


 . (2.20)

From this expression, we see that field-dependent splitting of the two dressed

states is given by

E(B) = µBB − 2h̄ω, (2.21)

and thus the field strength at which the unperturbed states are degenerate

is

Bc =
2h̄ω

µB

. (2.22)

From Eq. 2.4, we see that the energies of the perturbed states are given by

E± = ±1

2

√
(µBB − 2h̄ω)2 + 2(h̄Ω)2, (2.23)

from which we can determine the avoided crossing separation

E0 =
√

2h̄Ω, (2.24)

and the avoided crossing width

q0 =

√
2h̄Ω

µB

. (2.25)

The dynamical behavior of the system as B is swept through resonance
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also can be applied easily to the system of 87Rb. Equation 2.10, with a change

of indices, correctly represents the results of sweeping the two-state system

through resonance. More interesting, though, is the extension of Landau-

Zener theory to the three-state system, which is a more accurate model of

the F = 1 hyperfine manifold. By introducing the |1, 0〉 level, the energy of

which is independent of B, we create the three-level system shown in Fig.

2.2(b).

If the system is entirely in the |1,−1〉 state prior to the Landau-Zener

sweep, as it would have to be in order to Bose-Einstein condense in the F = 1

hyperfine manifold, then the proportions of the populations after the sweep

are given by

|c|1,−1〉|2 = e−2πΓ (2.26)

|c|1,0〉|2 = 2e−πΓ(1− e−πΓ)

|c|1,+1〉|2 = (1− e−πΓ)2.

These equations are simply a recopying of Eq. 2.13 with different indices, but

they are worth repeating. The majority of our experimentation on Landau-

Zener transitions consists of trying to take data that can be fitted to these

functions, which are plotted in Fig. 2.3.

As mentioned before, extending equations such as these that are parame-

terized by the Landau-Zener parameter Γ to diverse physical systems requires

only a recasting of Γ. From the definition of Γ (Eq. 2.11) and the value of
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Figure 2.3: The theoretical relative populations of the three F = 1 states
after a Landau-Zener sweep, as functions of the abstract Landau-Zener pa-
rameter Γ. The |1, +1〉 state is plotted in blue, |1, 0〉 in black, and |1,−1〉
in red. Each point represents atoms prepared in the |1,−1〉 state and then
subjected to a Landau-Zener sweep characterized by a specific value of Γ.
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the coupling matrix element for this particular system (Eq. 2.19), we find

Γ =
h̄Ω2

2(dE/dB)(dB/dt)
. (2.27)

Taking dE/dB from Eq. 2.21 and rearranging slightly, we find

Γ =
Ω2

4πβ(dB/dt)
, (2.28)

where β ≡ µB/h = 0.70 MHz/G is the constant we calculated in Chapter

1 that relates the magnitude of the magnetic field to the Zeeman energy

spacing, given in terms of frequency, that it produces. This fact leads one to

recast Eq. 2.28 as

Γ =
Ω2

4π(dν/dt)
, (2.29)

where ν is the frequency of the incident radiation.

Physically, Eq. 2.28 corresponds to holding the frequency of the incident

radiation fixed and sweeping the magnetic field strength through resonance,

while Eq. 2.29 corresponds to holding the field fixed and sweeping the ra-

diation frequency through resonance. Essentially, instead of sweeping the

radiation frequency through resonance, we sweep the resonance through the

radiation frequency. These two approaches are equivalent insofar as the Zee-

man splitting is linear with respect to the field strength, an approximation

that we have already shown to be true to better than 0.4%. We have exten-

sively studied both of these methods of conducting a Landau-Zener sweep
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and both are vital to our ongoing experimentation.

2.2 Landau-Zener Sweeps

2.2.1 Magnetic Field Sweep

Landau-Zener transitions have been used in past experiments [4] as a means

to prepare a condensate to study Feshbach resonance, but characterization

of the transitions had not been an end in itself prior to this thesis. For

reasons that will be explained at the end of this section, a magnetic field

sweep emerged as the most convenient method of performing Landau-Zener

transitions to prepare atoms for Feshbach studies.

To express Γ in terms of experimental parameters, we can make the

derivative in Eq. 2.28 discrete and recast it as

Γ =
Ω2

4πβ∆B
∆t, (2.30)

where ∆B is the range over which the field is swept and ∆t is the ramp time.

Equation A.12 implies that the Rabi frequency Ω is proportional to the

magnitude of the radiative electric field, and thus also to the magnitude of

the radiative magnetic field. Experimentally, the latter magnitude is set by

the RF power PRF, in units of dBm. Therefore, we find

|E|2 ∝ 10PRF[dBm]/10 (2.31)
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and we can express the Rabi frequency as

Ω = Ω010PRF[dBm]/20, (2.32)

where the proportionality in Eq. 2.31 and the other factors in Eq. A.12 are

both rolled into the experimental constant Ω0. Finally, we can express the

Landau-Zener parameter purely in terms of experimental parameters:

Γ =
Ω2

010PRF[dBm]/10

4πβ∆B
∆t. (2.33)

Thus, the population distribution functions (Eq. 2.26) become functions of

the sweep time ∆t that are scaled by the RF power PRF.

In our apparatus, Landau-Zener sweeps are performed using three coils.

We run steady parallel current through the quadrupole coils, shown in Fig.

1.3, to create a uniform and precisely controllable vertical magnetic field and

sinusoidal current through the horizontal RF coil to produce an oscillating

horizontal magnetic field. The vertical field defines the atoms’ magnetic

quantization axis and the horizontal oscillating field, being perpendicular to

the axis, drives the necessary σ-transitions between the magnetic sublevels.

We have been describing non-degenerate energy states as being coupled

by electromagnetic radiation but they are coupled by a driven oscillating

magnetic field in this case. Since the two types of magnetic fields are ef-

fectively equivalent for the purposes of Landau-Zener transitions, the term

“radiation” will be understood to represent the oscillating magnetic field
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throughout this chapter.

Experimentally, the Landau-Zener procedure is fairly straightforward. As

described in Section 1.4.3, after the condensate has been transferred into the

optical trap and the rotating magnetic field has been disabled, the atoms are

in a 10.0 G vertical field. The RF radiation is enabled with a frequency of 4.0

MHz and a power of PRF and allowed to stabilize for 1.0 ms. Then, the field

is ramped from 10.0 G to 1.5 G over a given ramp time and the radiation is

disabled immediately thereafter.

To test the reliability of this Landau-Zener transition method, we plot

the relative proportions of the three populations after a Landau-Zener sweep.

Plotted as a function of the ramp time, these data should resemble Fig. 2.3.

Our data, however, are messy to the point at which their resemblance to the

theoretical functions is only vaguely recognizable. Figure 2.4 compares the

clearest set of data collected using the field sweep method with a set collected

using the frequency sweep method. The most obvious difference between the

two sets is the amount of noise. While the second data set can be fit closely

to theory, the data of the first can only be seen to follow the correct general

trends; the proportion of |1,−1〉 atoms decreases to zero, the proportion of

|1, 0〉 atoms peaks, and the proportion of |1, +1〉 atoms approaches one in

the same portion of the plot.

We believe that this unreliability is caused by a combination of instability

in the magnetic field and discontinuities in the field ramp. Although the

electronics and current sources that control the coils are stable, we cannot
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Figure 2.4: Relative populations of F = 1 atoms after a Landau-Zener (a)
magnetic field sweep or (b) radiation frequency sweep, as functions of the
ramp time ∆t. Notice that the field sweep method produces far messier
data that only vaguely follow the correct trends, which the data produced
by the frequency sweep method adhere well to the theoretical fit shown. The
different time scales are explained by the fact that PRF = −13 dBm for the
data in part (a) and PRF = −27 dBm for the data in part (b).
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easily control for shifting ambient magnetic fields. Stray currents in the lab

can be produced by any number of sources, such as our electronic equipment

or the 2 T fields created in the lab next door, and have been observed to drift

0.3 mG overnight. Magnetization is hysteretic, so if an external magnetic

field magnetizes some part of the apparatus, then a trace of this external

field remains even after the field itself has been removed. Also, the changing

magnetic field magnitude induces eddy currents in the metal structure of the

trap, which themselves create secondary magnetic fields.

Perhaps the more significant factor is the discontinuous nature of the

magnetic field ramp. The field strength is proportional to a precise analog

voltage put out by the computer controller. The computer cannot vary this

voltage smoothly but must increment it up or down in a series of discrete

steps. There is a time constant associated with each sudden field change, so

the time-dependence of the magnetic field actually resembles a series of steep

exponential decays, as depicted qualitatively in Fig. 2.5. The ramp approx-

imates a smooth sweep as the step intervals become increasingly small, but

the actual instantaneous time derivative of the field strength is rarely equal

to the average sweep rate. This discrepancy is critical for this specific exper-

iment because our experimental definition of the Landau-Zener parameter Γ

(Eq. 2.33) is predicated on the assumption of a constant sweep rate. This

assumption is implicitly made by changing the dB/dt of Eq. 2.28 into the

∆B/∆t of Eq. 2.30.

Also, the portion of the magnetic field sweep data that resembles the
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Figure 2.5: A qualitative illustration of the discontinuous nature of the mag-
netic field ramp versus the linear ramp approximation. Our magnetic field
magnitude cannot be ramped continuously but must be increased or de-
creased in a series of discrete steps. There is a time constant associate with
the response of the control equipment and current source to each discontin-
uous step, so the ramp is actually composed of a series of steep exponential
decays. The approximation of a linear ramp becomes increasingly accurate
as the step size decreases.
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theoretical population distributions begins around ∆t = 1.17 ms and not

∆t = 0 ms, as would be expected. Other data sets are similarly inconsistent

with theory for ramp times of less than approximately 1 ms. This offset hints

at a slight delay in some portion of the mechanism that supplies current to

the coils, although this, too, could be a result of the discontinuous nature of

the sweep.

Noticing that the ramp times in the frequency sweep data set are approx-

imately a factor of 200 greater than those in the field sweep set, one might

wonder whether reducing PRF and extending the ramp times might mitigate

the aforementioned effects and produce cleaner data. We are still, however,

limited by the step size and response time. Upon attempting to lengthen

the ramp time, we encountered a pathology that is even more pronounced

and less understood than those already mentioned. Because this pathology

was observed while studying Landau-Zener transitions and is not well under-

stood, it will be referred to as the field sweep pathology. For certain values

of the ramp time, the Landau-Zener sweep fails to transfer any atoms to the

|1, 0〉 or |1, +1〉 states. For the ramp times shown in Fig. 2.6, all of the

atoms should be in the |1, +1〉 state but an increasing number are not being

transferred. In this case, the transition from the “normal” regime, in which

all atoms are in the |1, +1〉 state, to the “pathological” regime, in which all

atoms are in the |1,−1〉 state, is gradual. In fact, if one reverses the order

of the four images in Fig. 2.6 and makes ∆t start at 0 ms instead of 3.9

ms, the resulting transfer pattern would be almost exactly what we expect.
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This observation by itself suggests the possibility that atoms are being trans-

ferred over to the |1, 0〉 and |1, +1〉 states and subsequently transferred back,

a rough analog of Rabi oscillation for a three-state system.

In other instances, however, the transition has been more abrupt. Figure

2.7 shows data taken during an exploration of this pathology conducted on

a different day. Notice first that these values of ∆t are approximately 1.5 ms

larger than those in Fig. 2.6, which indicates a drift in the system, and second

that the interval between them is two orders of magnitude smaller. The

proportions of the three populations shift as much in Fig. 2.7 with a difference

in ∆t of 2 µs as they do in Fig. 2.6 with a difference of 100 µs or in Fig.

2.4(a) with a difference of approximately 40 µs. In this particular exploration,

the range of ∆t over which the Landau-Zener transfer was observed to fail

completely extended from around 5.7 ms to 7.0 ms, although these limits

drifted minutely from shot to shot.

We have found a pathology that disables Landau-Zener transitions over

a sharply defined and finite yet variable range of ramp times. This effect,

together with the noisiness and offset of the data mentioned before, sug-

gests some combination of drift in the ambient magnetic field, some sort

of resonance involving the sweeping magnetic field, or subtle technological

pathologies. Further understanding of any of these three sources of unreli-

ability would provide a motivation for a more thorough investigation of the

field sweep Landau-Zener method.

Despite this method’s inability to produce precise population distribu-
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Figure 2.6: Gradual onset of the field sweep pathology. A Landau-Zener
field sweep slowly begins to fail to transfer atoms out of the |1,−1〉 state.
Notice that the time scale for the onset of the pathology here is an order of
magnitude smaller than for the data shown in Fig. 2.7.
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Figure 2.7: Sudden onset of the field sweep pathology. A Landau-Zener field
sweep quickly begins to fail to transfer atoms out of the |1,−1〉 state. Note
that the difference in ∆t between partial and almost non-existent transfer is
only 2 µs, an order of magnitude smaller than the similar intervals in Fig.
2.6 or 2.4(a).
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tions, it can transfer the entire population to the |1, +1〉 state with great

reliability. As we can see in Fig. 2.3 and Eq. 2.26, |c|1,−1〉|2 and |c|1,0〉|2 asymp-

tote to zero and |c|1,+1〉|2 asymptotes to one at high values of Γ. Therefore,

if the sweep time is made sufficiently long, the proportion of atoms trans-

ferred to the |1, +1〉 state will be highly insensitive to the field fluctuations

and sweep discontinuities that have plagued our attempts to plot population

distribution curves with this method.

For this purpose, we use a sweep time of 25.0 ms with PRF = −13.0 dBm,

which corresponds to a suitably large value of Γ = 28. Using these param-

eters, the field sweep method transfers the entire population to the |1, +1〉
state as reliably as the generally more precise frequency sweep method. This

makes the field sweep method suitable for preparing a mixture of |1, +1〉
and |2,−1〉 states for studies of the interspecies Feshbach resonance. This is

particularly convenient because the function generator used to sweep the ra-

diation frequency is also used to create the RF half of the two-photon pulse.

By using the field sweep method instead of the frequency sweep method,

we save the time necessary to reprogram the function generator and so we

can move swiftly from the Landau-Zener sweep to the two-photon transition

when preparing for Feshbach studies.

2.2.2 Radiation Frequency Sweep

Because the pronounced instability and pathologies inherent in the field-

sweep method are believed to be a result of the discontinuous nature of
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the field ramp, we turned to keeping the magnetic field strength constant

and sweeping the frequency of the RF radiation. This is the method that

the Ketterle group used to make the first spinor Bose-Einstein condensate

and in later experiments [37, 41]. We use a Hewlett-Packard 3325A func-

tion generator to produce a phase-continuous frequency ramp that is ampli-

fied to produce the oscillating magnetic field. The function generator has

a frequency resolution of 1 mHz, which is nine orders of magnitude smaller

than the sweep range. Since the ramp is phase-continuous and consists of

such small frequency steps, the frequency of the radiation changes relatively

smoothly and the problems associated with the discontinuity of discrete steps

are reduced.

Another advantage of this method is its insensitivity to variations in the

magnetic field. The Landau-Zener parameter, now recast from Eq. 2.29 as

Γ =
Ω2

010PRF[dBm]/10

4π∆ν
∆t, (2.34)

is dependent only on the rate at which the RF frequency is swept through

resonance and not on the specific value, given either in terms of frequency

or field strength, at which resonance occurs. One requires only that the

resonant frequency corresponding to the field strength, given by Eq. 1.16,

be well within the frequency range that is swept. For our experimental

parameters, this corresponds to an acceptable field strength range of 0.7 G

to 29.3 G, which is far wider than the range of any possible drift.
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The procedure for the Landau-Zener frequency sweep is straightforward

and analogous to the procedure for the field sweep. As with the field sweep

method, we use the horizontal RF coil to supply the oscillating magnetic field

and the vertical quadrupole coils in the Helmholtz configuration to supply

the static field. First, the magnetic field is ramped to 1.0 G and the RF coil is

activated at zero power (-70 dBm) and 500 kHz. After the system is allowed

to stabilize for 3.0 ms, the power driven through the RF coil is ramped up

to PRF to prepare for the sweep. It is necessary to activate the RF radiation

smoothly in this way because enabling the coil while current is being driven

at full power produces transient radiation at a range of frequencies that

causes unintentional transitions between the three F = 1 states. The field

sweep method, however, was not found to be affected by this problem and so

would not be improved by ramping on the radiation in this way. The driving

frequency is then swept smoothly from 500 kHz to 20.5 MHz over the ramp

time ∆t, which is, as with the field sweep, the independent parameter for

data collection. Finally, the RF power is ramped back to zero and the coil is

disabled.

Because of the technical limitations of the HP3325A, we are constrained

by a minimum sweep time of 10 ms and a maximum output frequency of

21.0 MHz, resulting in a maximum sweep rate of 2.1 GHz/s. So that our

observable range of ∆t begins with most of the atoms still in the |1,−1〉
state, we lower PRF to roughly -30 dBm. The proportional populations of

|1,−1〉, |1, 0〉, and |1, +1〉 atoms are shown in Fig. 2.8 as functions of the
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Figure 2.8: Results of Landau-Zener frequency sweeps performed at two
values of PRF. As per Eqs. 2.32 and 2.34, decreasing PRF decreases the Rabi
frequency for transitions between the magnetic sublevels and consequently
scales the population distribution functions outward towards longer ramp
times.

ramp time ∆t for two values of PRF.

As we can see in Figs. 2.4(b) and 2.8, sweeping the RF radiation fre-

quency instead of the magnetic field magnitude produces far cleaner data

that are consistent with theoretical predictions. For each plot, the theo-

retical fits share a common horizontal scaling parameter, equal to Ω2/4∆ν,

but the vertical scaling parameters are allowed to vary individually to take

into account the different imaging efficiencies of the three magnetic states.
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This allows us to calculate a Rabi frequency from each set of data, the re-

sults of which are plotted in Fig. 2.9. As expected, the Rabi frequency of

the transition between adjacent magnetic states is roughly proportional to

10PRF[dBm]/20, as per Eq. 2.32, and the three runs conducted with PRF = −30

dBm result in values that are well within uncertainty of each other.

We have two complementary methods of conducting a Landau-Zener

sweep. The magnetic field sweep method, while riddled with pathologies in

the short ramp time regime that we study to characterize the Landau-Zener

process, very reliably transfers the entire population of atoms to the |1, +1〉
state. This reliable performance makes a field sweep the convenient choice

for preparing a condensate for studies of the |1, +1〉 ⊗ |2,−1〉 interspecies

Feshbach resonance. The frequency sweep method, on the other hand, pro-

duces reliable population distributions at any allowed value of the ramp time,

making it ideal for producing balanced population distributions, in which the

|1,−1〉 and |1, +1〉 populations are equal. This reliable performance makes

a frequency sweep the default choice for preparing a spinor condensate with

approximately equal components.

2.3 Stern-Gerlach Separation

Our absorptive imaging technique only measures the density distribution of

the atoms within the condensate and provides no data on their magnetic

quantum states. In order to observe the atoms in the |1,−1〉, |1, 0〉, and
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Figure 2.9: Rabi frequency of transitions between magnetic sublevels as a
function of RF power, with a theoretical fit to Ω = Ω010(PRF[dBm]−P0)/20 (Eq.
2.32 with an offset in the independent variable PRF). These data were col-
lected by analyzing the theoretical fits to several sets of Landau-Zener sweep
data, such as the set shown in Fig. 2.4(b). Note that the three data points
for PRF = −30 dBm are well within uncertainty of each other and the data
roughly follow the theoretical trend.
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|1, +1〉 states distinctly, we must spatially separate the three populations.

To do this, we employ the technique first used by Otto Stern and Walther

Gerlach in 1922 to separate electrons on the basis of their magnetic moments

[42]. We apply an inhomogeneous magnetic field to the condensate as it falls

prior to imaging, which separates the three populations along an arbitrary

magnetic quantization axis. This technique can also be modified slightly to

detect any stray magnetic field gradients in the trap. To do this, we simply

provide a uniform bias field and allow the stay field gradients to exert forces

on the condensate components.

2.3.1 Derivation of Forces

In general, the force on a magnetic dipole in an inhomogeneous magnetic

field is given by

F = ∇(µ ·B). (2.35)

For an atom in a magnetic field B0 = B0ẑ, the projection of its magnetic

moment along the magnetic quantization axis ẑ is given by

µz = −gF mF µB, (2.36)

where gF is the Landé g-factor, mF is the magnetic quantum number, and

µB is the Bohr magneton. Therefore, the force exerted on a 87Rb atom in
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the F = 1 hyperfine manifold, for which gF = −1/2, is

F =
1

2
mF µB(B̂0 · ∇B). (2.37)

Note that for an atom in a given location, the magnetic field is spacially

variant but the direction of the atom’s magnetic moment is not. It is because

of the inclusion of mF here that this force discriminates between the |1,−1〉,
|1, 0〉, and |1, +1〉 states.

In our apparatus, the field gradient is produced by running the vertical

quadrupole coils in the anti-Helmholtz configuration. We assume that the

magnetic field gradients produced by these coils are sufficiently strong so that

stray field gradients in the trap may be neglected. The arbitrary bias field is

created by three pairs of bias coils, one with its axis along each axis of the lab

reference frame. For reference, all of these coils are shown in Fig. 1.3. We

assume that this bias field is homogeneous over our region of interest. The

condensates are pushed approximately 100 µm horizontally from the center

of the trap by Stern-Gerlach forces and fall roughly 2 mm before they are

imaged, so the dimensions of the area in which the condensate can be found

are two and three orders of magnitude smaller than the radii of the bias coils.

Because of the cylindrical symmetry of this configuration, we define a

cylindrical-polar coordinate system coaxial with the anti-Helmholtz pair of

coils and with its origin at the pair’s center. To make this reference frame

consistent with the lab reference frame, shown in Fig. 1.3, we define +ẑ
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as downward. In the anti-Helmholtz field, only ∂Bρ/∂ρ and ∂Bz/∂z are

non-zero. Therefore, Eq. 2.37 becomes

F =
1

2
mF µB

(
B0ρ

∂Bρ

∂ρ
ρ̂ + B0z

∂Bz

∂z
ẑ

)
. (2.38)

It must be noted that here B0xi
is defined as B0

|B0| · x̂i and not B0 · x̂i; the

force on the atoms is dependent only on the direction of the bias field and

not on its magnitude.

From the nonexistence of magnetic monopoles, we know

∇ ·B =
1

ρ

∂

∂ρ
(ρBρ) +

1

ρ

∂Bφ

∂φ
+

∂Bz

∂z
= 0. (2.39)

The azimuthal term is zero for the cylindrically symmetric configuration and

the atoms remain sufficiently close to the common axis of the anti-Helmholtz

coils so that the first-order approximation of Bρ = (∂Bρ/∂ρ)ρ represents a

calculated deviation of less than one part in 5 × 105 from the precise field

value. Substituting this expression for Bρ into Eq. 2.39, we find

2
∂Bρ

∂ρ
+

∂Bz

∂z
= 0. (2.40)

Thus, Eq. 2.38 can be simplified to

F =
1

2
mF µB

∂Bρ

∂ρ
(B0ρρ̂− 2B0zẑ). (2.41)
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For the purpose of imaging a multi-component condensate, we generally

apply a bias field only in the ρ̂ direction, resulting in the simplification of

Eq. 2.41 to an expression of horizontal force:

Fρ =
1

2
mF µB

∂Bρ

∂ρ
. (2.42)

Imaging occurs, however, after the condensate has been released from the

optical trap and has fallen through the center of the pair of anti-Helmholtz

coils. The negative value of ∂Bz/∂z implies a negative z-component of the

magnetic field below the center of the coils (z > 0), and thus a second-order

component of the Stern-Gerlach force parallel to mF ẑ. As a result, the |1,−1〉
component of the condensate is imaged slightly above the |1, 0〉 component

and the |1, +1〉 component is imaged slightly below.

2.3.2 Application to Stray Gradient Detection

We also use Stern-Gerlach separation to detect stray magnetic field gradients.

To do this, we do not use the anti-Helmholtz coils to impose strong field

gradients and we set the bias field along an axis of the lab reference frame so

that B̂0 = x̂i. We are adopting the Einstein summation convention for the

following analysis. Recasting Eq. 2.37 into Cartesian coordinates and using

this choice of B̂0, we find

FB̂0=x̂i
=

1

2
mF µB

∂Bi

∂xj

x̂j. (2.43)

79



With three choices for both i and j, Eq. 2.43 implies nine gradients to be

measured.

There are two constraints, however, that reduce the number of indepen-

dent gradients to five. First, we can recast Eq. 2.39 into Cartesian coordi-

nates to find

∇ ·B =
∂Bi

∂xi

= 0, (2.44)

which constrains the three divergence partial derivatives. Also, because there

is zero current density at the center of the trap and we are neglecting the

magnetic induction of time-dependent electric fields, we know

∇×B = µ0J + µ0ε0
∂E

∂t
= 0, (2.45)

and so

∂Bi

∂xj

=
∂Bj

∂xi

(2.46)

for all values of i and j. Therefore, using three iterations of Eq. 2.43 and Eqs.

2.44 and 2.46 as constraints, we arrive at five independent field gradients to

be measured.
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2.4 Stray Magnetic Field Gradients

2.4.1 Preliminary Detection

Understanding the stray magnetic field gradients in our apparatus is impor-

tant because they exert asymmetric forces on the condensate that hamper

our investigations of its time evolution in the trap. For example, Fig. A.2(a)

shows that the center of the crossed-beam FORT is approximately cylindri-

cally symmetric around a vertical axis. As mentioned before, this symmetry

allows us to study the evolution of vertical vortices in a single condensate or

in the components of a spinor condensate as they evolve in the optical trap.

Stray field gradients, however, exert a force on the condensate that breaks

this symmetry. This disturbance is especially severe for a spinor condensate,

in which the gradient force is exerted on the |1,−1〉 and |1, +1〉 components

in opposite directions.

For this reason, stray field gradients also hamper the observation of the

evolution of a spinor condensate without vortices. Because these stray gra-

dients are far weaker than the gradient we purposefully impose to separate

the components for imaging, the forces they exert on the condensate are not

sufficient to cause spatial separation. The condensates in different quantum

states have different s-wave scattering lengths, though, which causes them

to separate regardless of external discriminating forces. The gradient forces

simply cause the components to separate asymmetrically. Previous work [33]

has shown that a two-body condensate evolves in a complex pattern of in-
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terpenetrating rings, which are not observed if the symmetry of forces in the

trap is broken by stray field gradients.

Fortunately, though, stray field gradients do not appear to significantly

affect the time evolution of the two states used in our studies of the inter-

species Feshbach resonance. As with the |1,−1〉 and |2, +1〉 states observed

previously, the |1, +1〉 and |2,−1〉 states used in our Feshbach studies have

identical projections of their magnetic moments along the magnetic quanti-

zation axis, given by Eq. 2.36. Therefore, the magnetic field gradients exert

the same force on both components and do not significantly disturb how they

spatially separate as they evolve.

We can use this asymmetric spatial separation and Eq. 2.43 to determine

the sign and compare the magnitudes of stray field gradients in the trap. In

Fig. 2.10(a), a bias field was applied in the +ŷ direction and the |1,−1〉
component was out-coupled preferentially. This result indicates that stray

gradients exerted a force on that component in the −ẑ direction, which im-

plies that ∂By/∂z = ∂Bz/∂y < 0. In Fig. 2.10(b), the |1,−1〉 and |1, +1〉
components display preferential spatial separation, indicating other non-zero

stray field gradients. A bias field was also applied in the +ŷ direction in

this case and the |1,−1〉 component separated in the +x̂ and +ŷ directions,

indicating that ∂By/∂y < 0 and ∂Bx/∂y = ∂By/∂x < 0.

To ensure that these separations are not due to the brief but large force

applied by our applied quadrupole gradient to separate the components for

imagining, we repeated this experiment a number of times, applying a bias
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(a) (b)

Figure 2.10: Preliminary evidence of stray magnetic field gradients. Part
(a) shows a spinor condensate, with and without atom lasing. Note the
preferential out-coupling of the |1,−1〉 component, despite the other two
components’ larger initial populations. Part (b) shows a spinor condensate,
imaged from below, that displays spatial separation of the |1,−1〉 and |1, +1〉
components. For clarity, magnified images of the two magnetically affected
states are shown. In all cases, a bias field in the +ŷ direction was applied as
the condensate was evolving or lasing.
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field and separating for imaging along both the x- and y-axes. These data

are imprecise due to the currently fairly subjective judgment of how the

components of a condensate have separated out, but they are also gener-

ally consistent. Further experimental steps in this direction might include

allowing the condensate to evolve for different lengths of time or somehow

increasing the interatomic repulsion between the magnetically affected states

to achieve a more clearly defined separation axis. Higbie et al. have mea-

sured field gradients to high precision by measuring Larmor precession in

spinor condensates [43]. We could replicate this experiment once we have

implemented phase-contrast imaging in order to gain a much clearer picture

of the stray field gradients. We might also take measurements repeatedly on

different days to determine how the stray field gradients drift over time. We

have already mentioned that the stray field magnitude drifts over time, so

its gradients should do so as well.

2.4.2 Proposed Nullification

A diagnosis of the stray gradient problem, however, is only useful insofar as

it helps us to find a solution. The solution to minimizing the stray diver-

gence gradients ∂Bx/∂x, ∂By/∂y, and ∂Bz/∂z is already largely in place.

Using the quadrupole coils in the anti-Helmholtz configuration, we can ex-

actly cancel one of these three arbitrary gradients. We might alternatively

set the anti-Helmholtz current so as to minimize the sum of these three gra-

dients but because the one pair of coils allows us only one degree of freedom,
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we cannot cancel all three exactly. Once the upgrade to the coil control cir-

cuits mentioned in Chapter 1, which will allow us to create superpositions of

Helmholtz and anti-Helmholtz current in each pair of coils, is installed, we

will be able to cancel all three arbitrary divergence gradients.

The pre-existing coils will not, however, help us to nullify stray mixed

gradients. There are six mixed gradients but Eq. 2.46 reduces the number

of independent gradients to three - ∂Bx/∂y, ∂By/∂z, and ∂Bz/∂x. So as not

to couple canceling of the divergence and mixed gradients, we want a current

configuration that will have at its center all three of the divergence gradients

and two of the independent mixed gradients equal to zero and one mixed

gradient not equal to zero. With three of these configurations installed, the

current run through each of them could be adjusted in order to precisely

cancel all three stray mixed field gradients.

First, we assume that the ideal coil configuration will be some assembly of

infinitely long straight wires carrying current parallel or anti-parallel to the

z-axis. If the current configuration has no z-dependence, then the magnetic

field will have no z-dependence or z-component, and so

∂Bx/∂z = ∂By/∂z = ∂Bz/∂z = 0. (2.47)

Equation 2.44, the result of the non-existence of magnetic monopoles, equates
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the divergence gradients and now sets

∂Bx/∂x = −∂By/∂y. (2.48)

Therefore, simply by making this assumption about the geometry of the con-

figuration, we reduce the number of independent gradients to be calculated

to two - ∂Bx/∂x and ∂Bx/∂y.

Setting Î = ±ẑ, we use the Biot-Savart law to find the current created at

the center of the trap, defined as our origin, by an arbitrary array of n wires:

B =
µ0I

4π

n∑
i=1

(
δi

∫ +∞

−∞

ẑ× r̂i

z2 + r2
i

dz

)
, (2.49)

where ri is the vector from the origin to the point at which the ith wire inter-

sects the xy-plane and δi = ±1 gives the direction of the current conducted

by the ith wire. By using this formula and taking the appropriate deriva-

tives, we find that the “simple cross” configuration shown in Fig. 2.11(a)

satisfies our conditions ∂Bx/∂x = 0 and ∂Bx/∂y 6= 0. This configuration is

not physically permissible, because placing bundles of wires in this config-

uration, which has two wires set at ±d on the x-axis carrying current −I ẑ

and two wires set at ±d on the y-axis carrying current +I ẑ, would physically

interfere with the lasers incident on the cell from those directions.

Next, we try rotating this configuration by an angle θ, defining counter-

clockwise to be positive, from the axes, creating the “tilted cross” configura-

tion shown in Fig. 2.11(b). This is a simple rotation of axes, so as we would
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Figure 2.11: Four potential wire configurations for canceling stray magnetic
field gradients. The first three configurations use ideal wires - straight, un-
connected, and infinitely long - carrying current in the ±z-direction. The (a)
simple cross configuration satisfies our field requirements but blocks lasers
incident along all four axes, while the (b) tilted cross configuration produces
a non-zero ∂Bx/∂x. The (c) double cross configuration, essentially a super-
position of two tilted cross configurations, satisfies all field and space require-
ments. The (d) physically realistic double cross configuration uses wires 20
cm long that are parts of square coils and still satisfies all requirements to a
high degree.
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expect, the gradients transform like

∂Bx/∂x = A cos(θ) (2.50)

∂Bx/∂y = −A sin(θ),

where A is dependent on d and I. Here, a solution presents itself: if we

construct one set of four wires rotated by θ and another rotated by −θ, then

their contributions to ∂Bx/∂x will cancel and their contributions to ∂Bx/∂y

will add. For this “double cross” configuration, shown in Fig. 2.11(c), the size

d of the configuration has been redefined and the rotation angle θ has been

reparameterized by α = 2 tan(θ). To prove that this configuration would still

work if made more realistic, we make the wires and the corresponding integral

in Eq. 2.49 run from z = −l/2 to z = +l/2, where l is the length of the wires.

Using the physical parameters shown in Fig. 2.11(d) to calculate the field

produced by the four coils, we find ∂Bx/∂y = 4.40 mG/cm, ∂Bx/∂x ∼ 10−16

mG/cm, and B = 0 at the origin. One can qualitatively check these results

by examining the plot of the magnetic fields created by the realistic loop

configuration shown in Fig. 2.12.

Theoretically, then, we could cancel any arbitrary field gradients by build-

ing one of these configurations for each lab axis. Realistically, though, it

would be a daunting task to fit twelve more coils into the already-crowded

space around the science cell. More feasible options might include building

the “tilted cross” configuration for each axis and using the existing anti-
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Figure 2.12: Magnetic fields of the realistic, four-coil configuration (Fig.
2.11(d)) we propose to cancel stray gradients. Notice that at the center,
∂Bx/∂y = ∂By/∂x > 0, ∂Bx/∂x = ∂By/∂y = 0, and B = 0, as required.
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Helmholtz coils to cancel the small divergence gradients created, building

the gradient-canceling coils larger and farther away from the science cell,

or concentrating on nullifying the gradients along one or two axes. A more

comprehensive study of what magnetic field gradients actually need to be

corrected would better enable us to decide which of these options, or com-

bination of options, would most be worth the time, effort, and increase in

apparatus complexity that such a project would entail.

2.5 Spinor Atom Laser

One of the interesting experiments we can perform with a spinor condensate

involves the production of a spinor atom laser. Following the experimen-

tal realization of Bose-Einstein condensation in 1995, there was a surge of

proposals of methods by which this newly created medium could be used

to produce an atom laser [44]. As its name suggests, the atom laser is the

matter analog to the conventional photon laser. The trap, be it magnetic or

optical, represents the lasing cavity in which atoms in a single quantum state

accumulate through the gain mechanism of Bose-Einstein condensation. The

atoms are somehow outcoupled from the trapped mode in the cavity to an

untrapped lasing mode, which results in a phase-coherent stream of atoms

propagating in the same quantum state.

A pulsed atom laser was first created by the Ketterle group in 1996 by

using a Landau-Zener frequency sweep to outcouple sodium atoms from the
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Figure 2.13: The three components of a spinor condensate are outcoupled
from the optical trap by gravity to form a spinor atom laser
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magnetically trapped |1,−1〉 state to the magnetically untrapped |1, 0〉 and

magnetically repelled |1, +1〉 states [41]. Once outcoupled, the atoms simply

propagated downward under the influence of gravity. Atom lasers have also

been outcoupled from magnetic trapping by Raman coupling [45] and from

optical trapping by gravity [46], as we do. Pulsed atom lasers have also been

created by allowing atoms to tunnel under the influence of gravity out of a

vertical optical lattice, an array of potential wells created by the antinodes

of a standing optical wave [2]. Since a spinor condensate cannot be created

in a magnetic trap, we use the last method of outcoupling to produce spinor

atom lasers like the one shown in Fig. 2.13.

Once we have performed a Landau-Zener sweep on the optically trapped

condensate, we simply lower the optical trapping potential until atoms begin

to leak out of the trap. To produce an atom laser of uniform but appreciable

intensity, we must adjust both the amount by which and duration for which

the trap potential is lowered. As shown in Fig. 2.14(a), if we reduce the

potential too far, the trapped condensate is quickly depleted by outcoupling

but if we do not reduce the potential far enough, the atom stream is anemic.

Our attempts to observe a pulsed atom laser have been limited by the fact

that the condensate requires the potential to be lowered for approximately

9 ms in order to lase properly. When the potential is lowered for shorter

periods of time, the condensate leaks out in a tapered shape and lacks a clean

distinction between the trapped condensate and the outcoupled stream, as

shown in Fig. 2.14(b). By the time a second pulse could begin to lase cleanly,
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(a) (b)

Figure 2.14: Illustrations of the dependence of the atom laser’s shape on the
(a) value to which and (b) duration for which the optical trapping potential is
reduced. The lasing time is 12 ms for the examples in (a), so even a relatively
thin atom stream begins to taper off. Notice that for each parameter, there
is a range of values that are optimal for atom lasing, wherein the stream is
fully formed but does not taper off too quickly as the condensate is depleted.

93



the first would have already fallen below the range of our imaging. Also,

potential ramping that is rapid enough to create pulses that are brief enough

to be imaged in their entirety would cause excitations in the condensate.

If we allow the condensate to lase for more than approximately 10 ms,

the stream tapers as the condensate is depleted, even for a well-chosen value

of the lowered trapping potential. In order to compensate for this, we should

lower the trapping potential quickly to begin the outcoupling and then con-

tinue to lower it slowly to the keep the rate of outcoupling constant. By

carefully calibrating the initial potential drop and the slow potential ramp,

we should be able to produce an atom stream that maintains a uniform

thickness until the trapped condensate has been completely depleted.

Note that this outcoupling procedure does not involve the spinor nature

or magnetic states of the condensate in any way, so it can be used to cre-

ate an atom laser out of any optically trapped condensate. Upon further

refinement of our optical trap alignment, we plan to study the evolution of

a single vortex core in an atom laser, which is similar to the model of a

Raman-outcoupled topological atom laser proposed by Blakie et al. [47]. By

transferring horizontal cross-sections of this laser into the F = 2 hyperfine

manifold and imaging these slices, we hope to be able to study the evolution

of a vortex in a single condensate.
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Chapter 3

Feshbach Resonance

By making all sublevels of the 87Rb ground state available for experimenta-

tion, the optical trap and Landau-Zener sweeps have together enabled us to

pursue studies of Feshbach resonances. No resonances are predicted for the

|1,−1〉⊗|1,−1〉 scattering channel [48] but many have been predicted [39, 48]

and observed [49–51] for scattering channels involving the magnetically un-

trappable |1, +1〉 state. Of these many intra- and interspecies Feshbach res-

onances, we are interested specifically in the interspecies resonance between

the |1, +1〉 and |2,−1〉 states that occurs at a very accessible magnetic field

of 9.1 G. We have chosen to investigate this resonance first because of the

ease with which we can produce a 9.1 G field, and because the interspecies

nature of the resonance allows us to observe the binary condensate’s time

evolution, as we discuss in Section 3.6.

Feshbach resonances are a topic of great theoretical and experimental
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interest because the scattering length of the condensate varies drastically

around resonance with small changes in an external experimental parameter.

Feshbach resonances can be observed by tuning a time-dependent optical

[52] or RF field [53], but we and others [49–51, 54, 55] observe resonance

by tuning a static magnetic field. The Wieman group has recently varied

the scattering length in order to tune a binary condensate composed of 85Rb

and 87Rb atoms between miscibility and immiscibility [56]. They determine

the miscibility of the condensate by observing the spatial separation of its

components, which is very similar to the experiment we describe in Section

3.6. The scattering length has also been tuned to negative values in order to

observe matter wave solitons propagating in a single-beam optical trap [54]

and the collapse of a condensate with attractive interactions [57], a so-called

“bosenova.”

The other important feature of Feshbach resonance is molecule formation

and increased condensate loss. Feshbach resonance involves two atoms tun-

neling between an unbound state and a quasi-bound molecular state. Both

atoms can be ejected from the trap if they undergo an inelastic collision

that causes them to undergo transitions to other quantum states and release

energy. When they are in the quasi-bound state, a collision with a third

atom can be sufficient to cause the two atoms to undergo a transition to

a bound molecular state. This molecule formation has been used to cre-

ate Bose-Einstein condensates of diatomic molecules from ultra-cold Fermi

gases [23, 24]. In this chapter, we discuss the theoretical background of the
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Feshbach losses and scattering length variability associated with Feshbach

resonances and discuss the results of experiments that we have undertaken

to measure these features directly.

3.1 Scattering Length Theory

Remarkably, the majority of interatomic interactions within a Bose-Einstein

condensate are characterized by a single parameter, the s-wave scattering

length a. Essentially, a is a measure of the interaction between atoms in the

condensate, which is attractive for a < 0 and repulsive for a > 0. In this

section, we will sketch out a brief explanation of the origin of this parameter

and the role it plays in determining the behavior of the condensate. For

further details, we recommend consulting the more mathematically rigorous

discussions [30, 58] of scattering theory from which we draw this sketch.

3.1.1 Two-Particle Scattering

In Bose-Einstein condensates, interatomic interactions are predominately

elastic, in which the two atoms exchange momentum but do not change

their individual quantum states. This enables the condensate to rethermal-

ize continuously, a mechanism that is crucial for evaporative cooling. Here

we address a simple case, a low-energy elastic collision of two particles in the

same quantum state. Working in the center-of-mass frame, we describe the

scattering of one particle as a sum of an incoming plane wave and a scattered
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spherical wave:

ψ = eikz + f(θ)
eikr

r
, (3.1)

where k is the wave number of the incident particle propagating in the +ẑ

direction. The function f(θ) is the scattering amplitude and is only depen-

dent on the scattering angle, which, as in classical mechanics, is the angle

between the incident and scattered momentum vectors. This scattering am-

plitude is important because it is the amplitude of the scattered wave and,

when squared and integrated over all angular space, gives the scattering cross

section:

σ = 2π

∫ π

0

|f(θ)|2dθ. (3.2)

Our task, then, is to determine a value for f(θ). Since the interaction po-

tential of the atoms is spherically symmetric, we can express the scattering

wave function as an expansion in terms of Legendre polynomials, or

ψ =
∞∑

l=0

AlPl(cos θ)Rkl(r). (3.3)

We can solve the Schrödinger equation using this wave function and, com-

paring the solution to Eq. 3.1, we find the scattering amplitude to be given

by

f(θ) =
1

2ik

∞∑

l=0

(2l + 1)(ei2δl(k) − 1)Pl(cos θ), (3.4)

where δl(k) is a phase shift associated with the radial wave function that is

induced by the potential.
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Here, since k = 2π/λ = p/h̄ and we are working in the low-energy limit,

we are also working in the limit k → 0. For elastic collisions of neutral atoms

in the ground state, it can be shown [58] that for l = 0, δl(k) approaches

lim
k→0

δ0(k) = −ak, (3.5)

where a is introduced as the s-wave scattering length, and that δl(k) is pro-

portional to an order of k3 or higher for all l > 0. Therefore, as k approaches

zero, the (ei2δl(k) − 1) term in Eq. 3.4 quickly goes to zero for all l > 0

and so the scattering magnitude is dominated in the low-energy limit by the

l = 0 (s-wave) term. For the l = 0 case, we take advantage of the fact that

ei2δl ≈ e−i2ak ≈ 1 − i2ak if k is small to find that f(θ) from Eq. 3.4 simply

approaches

f(θ) = −a (3.6)

in the low-energy limit.

We can now insert this value for f(θ) into Eq. 3.2 to find the one-particle

scattering cross section

σ = 4πa2. (3.7)

In order to describe two-particle scattering, we simply modify the original

wave function from Eq. 3.1 to describe an additional particle incident in the

−ẑ direction and scattering at an angle of π − θ. As described in Chapter

1, this two-particle wave function must be symmetric under the exchange
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operator if the particles are bosons and anti-symmetric if the particles are

fermions, so we find

ψ = [eikz ± e−ikz] + [f(θ)± f(π − θ)]
eikr

r
, (3.8)

where we use + for bosons and − for fermions. The two-particle scattering

cross section is calculated by integrating the total scattering amplitude, so

we find

σ = 2π

∫ π

0

|f(θ)± f(π − θ)|2dθ. (3.9)

Therefore, the two-particle scattering cross section evaluates to

σ = 8πa2 (3.10)

for identical bosons and σ = 0 for identical fermions. This result indicates

that the incidence of interatomic interactions is proportional to a2, which

is consistent with the observations of non-interacting condensates when the

scattering length is tuned to a ≈ 0 [59].

3.1.2 Gross-Pitaevskii Equation

The parameter a characterizes the strong scattering interactions of specific

pairs of particles, but we would also like to describe the behavior of the con-

densate as a whole. Although scattering interactions are strong and impor-

tant in determining the behavior of the condensate, they occur only at very
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close range. When the average interparticle spacing is much greater than the

scattering length, as in the dilute gas of our condensate, then the short-range

interatomic interactions can be “integrated out” in the low-energy limit. The

effective interaction between two particles then is simply represented by the

pseudopotential

U =
4πh̄2a

m
δ(r1 − r2), (3.11)

where r1 and r2 are the positions of the two particles. This step, the reprenta-

tion of individual interactions within a multi-particle system by an effective

interaction, is known as the mean-field approximation.

To describe the state of the entire condensate, we can simply add this

pseudopotential to the regular Hamiltonian and construct the Gross-Pitaevskii

equation, which is the analog to the Schrödinger equation for a Bose gas:

[
− h̄2

2m
∇2 + V (r) +

4πh̄2a

m
|Ψ(r, t)|2

]
Ψ(r, t) = ih̄

∂

∂t
Ψ(r, t). (3.12)

Here, the Dirac delta δ(r1 − r2) from Eq. 3.11 becomes the density of parti-

cles |Ψ(r, t)|2, which makes the interaction pseudopotential term non-linear.

There are two properties of this equation that are of particular interest to

our present discussion.

First, in keeping with the analogy to the Schrödinger equation, we can

solve the time-dependent Gross-Pitaevskii equation with respect to time to
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find the time-independent Gross-Pitaevskii equation:

[
− h̄2

2m
∇2 + V (r) +

4πh̄2a

m
|ψ(r)|2

]
ψ(r) = µψ(r). (3.13)

Here, the eigenvalue of the modified Hamiltonian is the chemical potential

µ instead of the total energy E because the condensate number is not as-

sumed to be constant; atoms are free to condense into the ground state

and rethermalize from it without altering this result. As with the station-

ary states found by solving the time-dependent Schrödinger equation, the

time-dependent stationary state order parameter Ψ(r, t) is related to the

time-independent order parameter ψ(r) by

Ψ(r, t) = ψ(r)e−iµt/h̄. (3.14)

This introduces the phase of the condensate order parameter, which plays

a central role in the theory of vortices. According to hydrodynamics, the

velocity of the condensate is given by

v =
h̄

m
∇φ, (3.15)

where φ is the phase of the order parameter. Since the order parameter can

only have a single value at any given point, the change in its phase along any
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Figure 3.1: Vortices in an optically trapped condensate [60]. A subject of
current investigation in the lab, vortices are a theoretical consequence of the
phase of the condensate order parameter that arises by solving the time-
dependent Gross-Pitaevskii equation.

closed loop must be an integer multiple of 2π, or

∆φ =

∮
∇φ · dl = 2πl, (3.16)

where l is an integer. Therefore, the circulation Γ around a closed loop is

also quantized, or

Γ =

∮
v · dl = l

h

m
. (3.17)

Because of this quantization of circulation, when the condensate is given

angular momentum, it forms a matrix of vortex cores with one unit of angular

momentum each instead of rotating cohesively, as viscous fluids do. The

behavior of vortices in optically trapped condensates, such as the one pictured

in Fig. 3.1, are a topic of ongoing investigation [5] in the lab.
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Second, notice the effect that the sign of a has on the total energy of

the system. For a constant number of particles, the time-independent Gross-

Pitaevskii equation states that as the system’s density increases, its total

energy increases for positive a, decreases for negative a, and remains the same

for a = 0. These results imply that interatomic interactions are repulsive for

a > 0 and attractive for a < 0, and that atoms are effectively non-interacting

for a ≈ 0. In the first two cases, the change in energy is proportional to |a| for

a given change in density, so, as demonstrated already, a provides a measure

of the interaction strength within the condensate.

The Gross-Pitaevskii equation can also be used to describe a binary con-

densate composed of atoms in states |1−+1〉 and |2,−1〉. Neglecting losses,

the system in this case is described by a pair of coupled non-linear equations:

[
− h̄2

2m
∇2 + V1(r) +

4πh̄2a11

m
|Ψ1|2 +

4πh̄2a12

m
|Ψ2|2

]
Ψ1 = ih̄

∂

∂t
Ψ1,

[
− h̄2

2m
∇2 + V2(r) +

4πh̄2a22

m
|Ψ2|2 +

4πh̄2a12

m
|Ψ1|2

]
Ψ2 = ih̄

∂

∂t
Ψ2, (3.18)

where a11 and a22 are the intraspecies scattering lengths for the |1, +1〉 and

|2,−1〉 states and a12 is the interspecies scattering length. As is usually

the case, Ψ1 and Ψ2 are functions of r and t here. As we will describe in

Section 3.6 on the time evolution of a binary condensate near an interspecies

Feshbach resonance, the inclusion of the interspecies scattering cross-term

leads to interesting non-equilibrium component separation dynamics [33].
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3.2 Feshbach Theory

This picture of interatomic interactions, wherein unbound atoms come to-

gether and scatter elastically, is valid as long as the energy of the unbound

atoms is not close to the energy of a bound molecular state. When the un-

bound state is close in energy to an allowed bound state, the two states are

coupled in a phenomenon known as Feshbach resonance.

Figure 3.2 shows a schematic representation of a Feshbach resonance.

Here, we must define the terms we will use in our theoretical description

of this event. Each of the two potential curves in Fig. 3.2 represents one

channel, or quantum state. Each channel has a threshold energy Eth, which

is the asymptotic value of the potential at infinite separation. If the atoms

have a combined energy greater than Eth, then the channel is said to be

open and the atoms are in an unbound continuum state. If the atoms have a

combined energy less than Eth, then the channel is said to be closed. Within

each closed channel is a series of bound states, which could correspond to

the rotational or vibrational modes of a diatomic molecule.

Looking at Fig. 3.2, we can observe what happens in the absence of

any coupling between the two channels. The atoms approach each other

in the continuum state, repel each other strongly as their filled electronic

orbitals begin to overlap, and have sufficient energy to escape the potential

well again. In other words, in the absence of a Feshbach resonance, atoms

scatter as described in the previous section. When the continuum state of
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Figure 3.2: Conceptual diagram of the two channels involved in Feshbach
resonance. The atoms are initially in the unbound state of the open channel.
If the unbound state’s energy is far from the energy of any state in the closed
channel, then collisions are elastic and the atoms remains in the unbound
state. If the energy of an allowed state in the closed channel is nearly de-
generate with the energy of the unbound state (as very loosely shown), then
the atoms can tunnel (black arrow) into and out of the quasi-bound state,
a phenomenon known as Feshbach resonance. If a third atom collides with
the pair while they are in the quasi-bound state, then they can undergo a
transition (grey arrow) to a bound state, form a stable molecule, and leave
the trap.
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the open channel is nearly degenerate in energy with a bound state in the

closed channel, however, atoms can tunnel from the continuum state to the

bound state. This specific bound state is considered “quasi-bound,” because

the atoms are just as likely to tunnel back out of the bound state as they are

to tunnel in.

3.2.1 Tunable Scattering Length

The phenomenon of Feshbach resonance has two important physical manifes-

tations. First, the scattering length a changes dramatically, in both sign and

magnitude, in the vicinity of a Feshbach resonance. To see why this occurs,

we examine the perturbation of the interaction pseudopotential (Eq. 3.11)

due to the coupling of open and closed channels. To first order, the energy

correction is given by

U1 = 〈Ψu|HCO|Ψu〉 = 0, (3.19)

where Ψu is the unbound continuum state that the atoms occupy initially and

HCO is the Hamiltonian that represents the coupling between the open and

closed channels. The first-order energy correction is equal to zero because, by

definition, the continuum state cannot be coupled to itself using this specific

Hamiltonian.

The second-order energy correction is given by

U2 =
∑

n

|〈Ψn|HCO|Ψu〉|2
Eu − En

, (3.20)
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where Ψn is the nth bound state in the closed channel and En is its energy.

If the unbound state Ψu is nearly degenerate with the quasi-bound state Ψqb,

then this sum is dominated by the term involving Ψqb. All other terms in

the sum vary slowly with respect to changes in En and Eu, so they can be

assumed to be constant over the region of a Feshbach resonance. Thus, the

total perturbed interaction pseudopotential is given by

4πh̄2

m
a =

4πh̄2

m
abg +

|〈Ψqb|HCO|Ψu〉|2
Eu − Eqb

, (3.21)

where abg, the background scattering length, takes into account the scattering

length without coupling between the channels and the contributions from

coupling with all non-resonant bound states.

We now specify that the energy levels are dependent on the magnitude

of an external magnetic field, as in our experiment. We define a field B0 at

which Eu = Eqb and the energy of each state is dependent on its magnetic

moment

µ = −∂E

∂B
. (3.22)

Therefore, the denominator in Eq. 3.21 becomes

Eu − Eqb = (µqb − µ1 − µ2)(B −B0), (3.23)

where µ1 and µ2 are the magnetic moments of the two atoms in the unbound

state and µqb is the magnetic moment of the quasi-bound molecular state. We
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can insert this expression into Eq. 3.21 and rearrange to find an expression

for the scattering length

a = abg +
m

4πh̄2

|〈Ψqb|HCO|Ψu〉|2
(µqb − µ1 − µ2)(B −B0)

. (3.24)

We can recast this into a far simpler expression for the scattering length in

the region of a Feshbach resonance:

a(B) = abg

(
1− ∆B

B −B0

)
, (3.25)

where we define the width of the resonance

∆B =
m

4πh̄2abg

|〈Ψqb|HCO|Ψu〉|2
(µ1 + µ2 − µqb)

. (3.26)

Notice that the scattering length diverges to ±∞ as B approaches B0,

meaning that the magnitude and sign of a can be changed dramatically by a

slight change in B. In reality, however, inelastic decay from the closed chan-

nel necessitates a modification to this approximation. If the atoms are not

assumed to spend an infinite amount of time in the quasi-bound state, then

that state must have a finite width. When decay from the quasi-bound state

and the state’s finite width are considered, Eq. 3.25 becomes the complex

expression

a(B) = abg

(
1− e2iφR

∆Bel

B −B0 + 1
2
i∆Binel

)
, (3.27)
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where φR is a resonance phase constant, ∆Bel is the elastic resonance width

described above, and ∆Binel is the inelastic resonance width [39]. The real

part of this function represents the effective scattering length and the imagi-

nary part is proportional to the two-body loss rate due to Feshbach interac-

tions. This resonance width is given by

∆Binel = h̄Γqb/(µqb − µ1 − µ2), (3.28)

where Γqb is the finite width, in terms of frequency, of the quasi-bound state.

The real part of this expression,

Re
(
a(B)

)
= abg

[
1− γRe(B)

∆Bel

(B −B0)2 + (1
2
∆Binel)2

]
, (3.29)

where

γRe(B) = cos(2φR)(B −B0) + sin(2φR)∆Binel/2, (3.30)

is now a smooth function that does not diverge at B = B0. Thus, the

effective scattering length does not diverge at a Feshbach resonance when

inelastic processes are considered.

We would like to know, then, how exactly the effective scattering length

does vary under these conditions. By taking the derivative of Eq. 3.29 with

respect to B and performing some algebraic manipulation, we find that the
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real part of the scattering length reaches its extrema of

Re
(
a(Bex)

)
= abg

[
1− (

sin(2φR)± 1
) ∆Bel

∆Binel

]
(3.31)

at

Bex = B0 +
− sin(2φR)± 1

2 cos(2φR)
∆Binel. (3.32)

As expected, when we neglect inelastic scattering and the finite width of the

quasi-bound state, the limits of these two values are

lim
Γqb→0

Re
(
a(Bex)

)
= ∓∞ (3.33)

and

lim
Γqb→0

Bex = B0. (3.34)

Equation 3.31 also allows us to define the range ∆a of the scattering length

over a resonance as

∆a = 2abg
∆Bel

∆Binel

=
m

2πh̄2

|〈Ψqb|HCO|Ψu〉|2
h̄Γqb

, (3.35)

which we can use as a measure of the strength of a particular resonance.

3.2.2 Loss Rates

The second physical manifestation of a Feshbach resonance are increased two-

and three-body loss rates due to molecule formation. Two-body losses occur

111



9.00 9.05 9.10 9.15 9.20 9.25
B HGL

-6

-4

-2

2

4

6

a Ha.uL

Figure 3.3: A theoretical plot of the real (solid) and imaginary (dashed) parts
of the complex scattering length around the 9.1 G interspecies resonance.
For this plot, we use parameters extracted from the results of Widera et al.
[51] and listed as Refs. 1 and 2 in Table 3.1. Because the scaling of each
function cannot be determined directly from the data given, both are scaled
in arbitrary units and re-centered on a = 0.
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if the two atoms undergo an inelastic collision that conserves angular momen-

tum but results in energy being released. This extra energy, whether gained

from transitions between magnetic sublevels or between the two hyperfine

manifolds, can be sufficient to eject both atoms from the trap. Three-body

losses can occur when two atoms in the quasi-bound state collide with a third

atom. If the pair gains or loses a quantum of energy through this collision,

then the two atoms can undergo a transition to a fully bound molecular state

from which they cannot tunnel back out. The molecule can then become

untrapped because of its different electric dipole moment and the energy re-

leased by the transition might eject the third atom, as well. We collectively

refer to these two loss mechanisms as Feshbach losses, although we do not

presently know which of these loss mechanisms is dominant. By measuring

the total loss rate as the condensate evolves at various magnetic fields, we

are able to map out our selected Feshbach resonance.

Just as the real part of our complex expression for a (Eq. 3.25) represents

the effective scattering length for two-body collisions, the imaginary part is

proportional to the two-body Feshbach loss rate. The imaginary part is given

by

Im
(
a(B)

)
= −abgγIm(B)

∆Bel

(B −B0)2 + (1
2
∆Binel)2

, (3.36)

where

γIm(B) = sin(2φR)(B −B0)− cos(2φR)∆Binel/2. (3.37)

Therefore, we would expect the two-body loss rate around a Feshbach res-
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onance to have the form of a Lorentzian distribution with an asymmetry

introduced by the sin(2φR)(B − B0) term. For the sake of this thesis, we

will assume our total loss rate is proportional to Im(a), even though the

three-body loss mechanism should not be described using a component of

the two-body scattering length. Since the three-body loss mechanism out-

lined above also depends on the number of atoms in the quasi-bound state,

though, it should also increase around resonance. Further research is needed

to determine exactly how each of these loss rates varies around resonance.

3.3 Two-Photon Transitions

In this thesis, we examine the |1, +1〉 ⊗ |2,−1〉 interspecies Feshbach reso-

nance that occurs in a 9.1 G magnetic field. The preparation of a conden-

sate composed equally of |1, +1〉 and |2,−1〉 atoms consists, speaking very

broadly, of three distinct steps. First, we produce a condensate of |1,−1〉
atoms, transfer it to the optical trap, and fix the axial magnetic field, as

described in Section 1.4. This portion of the process, which we mention so

briefly here, represents years [4, 5, 17, 26–28] of diligent effort, and so we are

fortunate to be able to consider this a stable base for our current experiment.

Second, we perform a slow Landau-Zener sweep of the magnetic field,

as described in Section 2.2.1, to transfer the entire population of atoms to

the |1, +1〉 state. This process has been extensively studied and tweaked

slightly in the course of our current experimentation, but again, it remains
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fundamentally as we found it.

For the third step, we must transfer half of the atoms from the |1, +1〉
state to the |2,−1〉 state. Because ∆mF = −2 for this transition, we require

the atoms to undergo two transitions simultaneously. As with Landau-Zener

transitions, these transitions between different magnetic sublevels are actu-

ally driven by creating an oscillating magnetic field in the cell. For two-

photon transitions and Feshbach studies, we use the North-South bias coils

to produce a static field in the +ŷ direction and the vertical RF coil, which

is located inside of the top quadrupole coil, to produce a vertical oscillating

field. Again, we will treat these oscillating fields as radiation for the sake of

conceptual simplicity, so this process is known as a two-photon transition.

As shown in Fig. 3.4, we use a microwave pulse at νMW = 6.841 GHz

to excite atoms to a virtual state that is on the order of 300 kHz detuned

above the |2, 0〉 state. From this virtual state, we use a simultaneous radio-

frequency pulse to stimulate an emission to the |2,−1〉 state. We detune the

intermediate state from the |2, 0〉 state so that atoms cannot remain in the

intermediate state. To calibrate the two-photon pulse, we fix the microwave

frequency and adjust the RF frequency to map out the resonance peak.

Considering only the RF transition, the proportion of atoms transferred

to the |2,−1〉 state is given by

P (t) =

(
Ω

Ω′

)2

sin2

(
Ω′

2
t

)
, (3.38)
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Figure 3.4: The two-photon transition consists of a microwave transition from
the |1, +1〉 state to a virtual state detuned approximately 300 kHz above the
|2, 0〉 state and an RF transition from the virtual state to the |2,−1〉 state.
The microwave transition involves the absorption of a 6.841 GHz photon
and the RF transition involves the stimulated emission of a 6 MHz photon.
This latter frequency is given imprecisely here because we recalibrate the RF
frequency to transfer atoms in different magnetic fields.
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where the effective detuned Rabi frequency Ω′ is given by

Ω′ =
√

Ω2 + δ2. (3.39)

The detuning δ of the angular frequency from resonance is given by

δ = 2π(ν − ν0). (3.40)

A plot of this function and profiles of the resonance peak taken at two dif-

ferent values of of t are shown in Fig. 3.5.

For the purposes of studying the interspecies Feshbach resonance, we

want to transfer half of the atoms from the |1, +1〉 state to the |2,−1〉 state.

Although these two states have identical linear Zeeman splittings, their dif-

ferent quadratic Zeeman splittings make the RF frequency calibration highly

dependent on the magnetic field. To compensate for this shift, we adjust

how far the RF radiation is detuned from resonance. Fixing the pulse length

at 700 µs, we tune the RF frequency to find ν1/2, the RF frequency on the

lower side of the large central resonance peak that results in half of the atoms

in the condensate being transferred to the |2,−1〉 state. Because producing

equal populations of |1, +1〉 and |2,−1〉 atoms is crucial to our investiga-

tion of Feshbach resonance, considerations of how precisely we can calibrate

ν1/2 at a given magnetic field are important to the design of experimental

procedures for this investigation.

117



-2

0

2

∆ HWL

0.0

0.5

1.0

1.5

2.0

t HTWL

0.0

0.5

1.0

PÈ2,-1>

(a)

(b) t=500 µs (c) t=1090 µs

Figure 3.5: Two-photon calibration data showing Rabi oscillations of atoms
to the |2,−1〉 state. As per Eq. 3.39, the detuned Rabi frequency is greater
than the resonant Rabi frequency, so the phase of the transition varies as
the RF radiation is detuned from resonance. Part (a) shows the theoretical
|2,−1〉 population as a function of the pulse length t and detuning δ. Parts
(b) and (c) show the profile of the resonance peak at two different pulse
lengths, which correspond to cuts in the preceding plot.
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3.4 Feshbach Procedure

Our investigation of the interspecies Feshbach resonance is twofold; we map

out the Feshbach resonance by measuring condensate losses at a range of field

strengths and we infer how the scattering length changes around resonance

by observing the time evolution of the two states on both sides of resonance.

In order to do this, we need to produce equal populations of |1, +1〉 and

|2,−1〉 atoms in a magnetic field close to resonance at 9.1 G.Let Bex denote

the value of the field in the vicinity of the Feshbach resonance, centered on

B0, that we are examining in a given trial. We have developed two different

methods by which this can be accomplished: we can either perform a two-

photon pulse in a 1.0 G field and then increase the field to Bex, or we can set

the field at Bex and then perform a two photon pulse. As we will discuss, each

method has complementary advantages and difficulties, but the transfer-at-

field method is ultimately a more precise method and will be the default for

future experimentation.

3.4.1 Ramp-to-Field Method

The main advantage of the ramp-to-field method is that the two-photon

transfer process is completely independent of the resonant field value we are

probing. We take advantage of Feshbach losses to calibrate the two-photon

transition, but the loss rate near the center of the peak is too high to allow

direct calibration. Because of the resonance peaks shown in Fig. 3.5 and
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various other calibration data sets, we have a detailed understanding of how

the proportion of atoms transferred to the |2,−1〉 state varies with the pulse

length and RF detuning.

Although the broad behavior of two-photon transfer process at 1.0 G is

very well understood, we cannot calibrate ν1/2, the value of practical interest,

nearly as precisely as we can using the method described in the “Transfer-

at-Field Method” section. In short, because Feshbach losses deplete both

states equally, any initial population difference results in a surplus population

remaining in one of the states after the system has been allowed to evolve

for a long period of time. By minimizing the total population of atoms

remaining, we can very precisely calibrate ν1/2.

Because we perform the two-photon pulse far away from the Feshbach

resonance in the ramp-to-field method, though, we cannot use this precise

calibration method and we must simply image the large initial populations of

each state. Using this method, we are measuring small changes in a relatively

large signal instead of detecting marginal signal, so this method is far more

vulnerable to variations in condensate production, imaging saturation, and

differences in imaging efficiency between the two states. Therefore, we can

only achieve roughly equal proportions in the two states with any reliability.

The ramp to Bex is also problematic, regardless of the ramp speed. If

we ramp the field quickly (1.0 G to Bex in 1.0 ms), the ramp is likely to

overshoot Bex and the final field value is inexact. Since Feshbach losses are

highly sensitive to the value of the magnetic field, particularly near the center
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of resonance, the imprecision with which the field is set at the end of a rapid

ramp introduces a good deal of noise into our attempts to map the resonance.

A more gradual field ramp (1 G to 8.6 G in 1.0 ms and 8.6 G to Bex

in 10.0 ms) ends at a field that is closer to the intended Bex, but it results

in an overestimation of Feshbach losses. The more slowly we ramp the field

to Bex, the more time the system spends in fields around Bex that are near

resonance. Although we are only interested in the loss rate at Bex over an

evolve time ∆t, or L(Bex)∆t, we also measure a contribution to condensate

loss from the ramp to Bex, or

LApparent(Bex) = L(Bex)∆t +

∫ Bex

1G

L(B)

(dB/dt)
dB. (3.41)

This overestimation is particularly severe if Bex is above resonance, as the

contribution of L(B0) to the integral in Eq. 3.41 becomes significant in

comparison to L(Bex)∆t. This inaccuracy is demonstrated in Fig. 3.6, which

shows a highly asymmetric resonance peak that was produced by ramping

upward through resonance to Bex.

We can eliminate the need to ramp through resonance by discontinuously

setting the field to a value well above 9.1 G and then ramping down to Bex,

for all Bex > B0. Still, however, the additional condensate loss incurred

by ramping through one of the tails of the Lorentzian distribution can be

significant, particularly if Bex is close to B0.

Also, ramping the field slowly does not allow us to observe the time evo-
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(a) (b)

Figure 3.6: Demonstration of Feshbach losses due to the field ramp. The
data in part (a) were taken by ramping the field slowly ( 50 G/s) upward to
the desired value. Notice that the points above 9.09 G, for which the field
was ramped through resonance, exhibit significantly greater losses than the
points symmetrically below resonance. The data in part (b) were taken by
ramping upward to points for which B ≤ 9.10 G and downward to points
for which B ≥ 9.10 G. Note how closely the two halves fit together at 9.10
G and the vast improvement in symmetry gained by not ramping through
resonance.
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Figure 3.7: Ring structure in a condensate slightly below Feshbach reso-
nance. According to Fig. 3.12, ring structures such as this one occur in
the condensate approximately 3-5 ms after the two-photon pulse. We are
unable to observe this region of the condensate’s time evolution if we use the
ramp-to-field method with a slow 10-ms field ramp. These data were taken
a detuned probe beam to make the structure visible without saturation.

lution from the moment the two-component condensate is formed. A binary

condensate forms a series of complex interpenetrating rings even without the

influence of Feshbach resonance [33], we would like to be able to observe the

time evolution of our binary condensate near the Feshbach resonance starting

as soon after the two-photon pulse as possible. An example of a structure

that can be observed in the condensate using a slow ramp is shown in Fig.

3.7.

Using the ramp-to-field method, then, we are forced to choose between

a quick ramp, which imprecisely sets the field to be studied, and a slow

ramp, which exaggerates condensate loss and prevents observation of the
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condensate’s evolution for a significant period of time. These difficulties are

inevitable results of performing the two-photon pulse at a field other than

the field near the Feshbach resonance that we want to study.

3.4.2 Transfer-at-Field Method

The solution, then, is not to ramp the field at all after the two-photon pulse.

By performing the two-photon pulse at the magnetic field to be studied, we

can eliminate each problem mentioned in the previous section; we can ramp

the field to the desired value slowly enough to ensure accuracy without con-

sidering spatial evolution or Feshbach interactions within the purely |1, +1〉
condensate.

Additionally, we are able to calibrate ν1/2 with far greater precision near

the Feshbach resonance. To do this, we take advantage of the fact that one

atom in each state is lost for every molecule that forms and escapes from

the trap. If the two initial populations are equal, then the third atom in the

three-body loss mechanism also has an equal probability of being in either

state and so, on average, Feshbach losses deplete each state equally. By

allowing the system to evolve for a long period of time in a field region with

significant Feshbach losses, any initial difference in the populations of the two

states results in a small surplus population remaining in one of the states. By

simply minimizing the total number of atoms remaining in both states after

the system has evolved, we can very precisely balance the initial populations

of the states.
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The simplicity of this method allows us to quickly calibrate ν1/2 for a

range of fields. First, we tune the RF frequency until we can observe atoms

remaining in both states. If these populations are substantial, we lengthen

the period of time and tune the RF frequency more finely. By repeating this

process, we can determine ν1/2 with a precision that is bounded by how finely

we can program the function generator that produces the RF radiation. This

precision is also almost an order of magnitude smaller than the day-to-day

drift in the magnetic field. We can set these values very precisely, then, but

they only remain accurate for a short period of time.

Because this calibration method is based on observing Feshbach losses

over long time periods, it is only effective over small field ranges on either

side of resonance. Closer to resonance, losses are too high to tune ν1/2 pre-

cisely and further away from resonance, losses are insufficient to dissipate the

condensate within a time period of under 150 ms. The approximate viable

ranges for direct ν1/2 calibration are shown in Fig. 3.8.

Note the drastically different slopes of the linear fits to the subsets above

and below resonance. Theoretically, all eight data points should lie on the

same line, and we can calculate what the slope of that line should be. The

energies of the |1, +1〉 and |2,−1〉 states are given by the Breit-Rabi equation

(Eq. 1.17) and the energy splitting between these two states is given by

∆ν(B) =
∆EHF

2h

(√
1 + γB + (γB)2 +

√
1− γB + (γB)2

)
, (3.42)
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Figure 3.8: Calibrated values of ν1/2 around the Feshbach resonance. The
eight points span, to within 5 mG on each side, the viable ranges for direct
calibration. Closer in towards resonance, Feshbach losses are too high to pro-
vide sufficient signal and further away from resonance, losses are insufficient
to dissipate the condensate in under 150 ms. Note the drastically different
slopes of the linear fits to the complete data set and to the two subsets. The
theoretical value of the slope, calculated from changes in the relative ener-
gies of the states given by the Breit-Rabi equation, is -10.6 kHz/G, which is
roughly consistent with the slope of the overall fit. The points in red were
taken two days after the other points, illustrating how the drift of the ambient
magnetic field compounds this problem. At present, our inability to accu-
rately predict ν1/2 over the entire range of the Feshbach resonance presents
the largest obstacle to an accurate characterization of the resonance.
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with

γ = (gJ + gI)
µB

∆EHF

, (3.43)

where, as before, ∆EHF is the hyperfine splitting, gJ and gI are the Landé

g-factors for the total electron and nuclear magnetic moments, and µB is the

Bohr magneton. Observing the structure of the two-photon transition shown

in Fig. 3.4, we see

νRF(B) = νMW −∆ν(B), (3.44)

where νMW is assumed to be constant. The change in νRF is then given by

νRF(B)− νRF(0) =
∆EHF

2h

(
2−

√
1 + γB + (γB)2 −

√
1− γB + (γB)2

)
.

(3.45)

This equation is, to a very good approximation, linear over the small region

from 9.00 G to 9.15 G, and its derivative at the Feshbach resonance is

dνRF

dB

∣∣∣∣
9.10G

= −10.6kHz/G. (3.46)

This value is roughly consistent with the slope of the fit to the entire data

set, but it is markedly different from the slopes of either subset.

Our inability to predict ν1/2 accurately throughout the region of the Fesh-

bach resonance is at present the largest obstacle to an accurate characteriza-

tion of the resonance. The drift in the stray magnetic field further compounds

this problem. The red points plotted in Fig. 3.8 were taken two days after

127



the other points, demonstrating the significant magnitude of the drift.

Ideally, we would be able to define a function, which will likely be piece-

wise with respect to the center of resonance, that accurately predicts ν1/2 at

all points in the region of resonance. By measuring one or two points at the

beginning of each day or periodically throughout the day, we would be able to

shift the function in some predetermined way and preserve its accuracy. Until

significant progress is made in this direction, our measurements of Feshbach

losses will be heavily skewed by variable initial populations of the two states.

3.5 Resonance Mapping

For a first rough attempt to map the Feshbach resonance using the transfer-

at-field method, we tried using a single linear fit to determine ν1/2 for all

fields across resonance. This data set is plotted in Fig. 3.9 with a theoretical

fit to Im(a) (Eq. 3.36).

The most striking characteristic of the data is the apparent asymmetry of

the resonance. Although a close fit to Im(a) is allowed by the sin(2φR)(B −
B0) term in Eq. 3.37, it is more likely that this asymmetry is the result of a

systematic experimental error. With the exception of sets like the one plotted

in Fig. 3.6 that were taken by sweeping the field in only one direction, neither

the data we took using the ramp-to-field method nor the findings [50, 51] of

other groups display a similar trend. These other groups explored the same

resonance in condensates of 87Rb atoms using the ramp-to-field method [50]
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Figure 3.9: Plot of the Feshbach resonance taken using the transfer-at-field
method, with a fit to Im(a). We slowly ramp the field to the desired value,
perform the two-photon pulse, and allow the condensate to evolve for 2.0
ms before dropping and imaging it. Note both the apparent asymmetry of
the resonance and the lack of noise in the data. Although these data can
be fit closely to Im(a), which is proportional to the Feshbach loss rate, this
asymmetry is consistent neither with other trials conducted using the ramp-
to-field method nor with other groups’ findings [50, 51]. More likely, this
asymmetry is a result of our use of inaccurate values of ν1/2 when performing
the two-photon pulse.
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Data Fit Erhard, Im(a) Widera, Re(a) Widera, Im(a)
B0 (G) 9.105(1) 9.09(1) 9.128(9) 9.121(9)
∆Binel (mG) 36(3) 26-43 30(8) 40(10)
φR 0.26(3) 0 0 0

Table 3.1: Feshbach resonance parameters. Our experimental values are
extracted from fitting the data plotted in Fig. 3.9 and the reference data
are extracted from the measurements of Feshbach loss rates (Im(a)) and the
magnitude of the scattering length (Re(a)) made by Erhard et al. [50] and
Widera et al. [51].

and by trapping pairs of atoms in an optical lattice potential [51].

As mentioned in the previous section, this systematic error probably

stems from our inability to accurately calibrate the two-photon pulse around

resonance to achieve equal initial populations. Using the two-photon cali-

bration data in Fig. 3.8 as an example, if we were to use the slope of -11.4

kHz/G to calculate ν1/2 when we should actually be using -4.8 kHz/G, then

our predicted ν1/2 would fall with respect to the actual value as the field in-

creases and the relative proportion of |1, +1〉 atoms would rise. This theory

is further supported by the fact that the data only seem to skew noticeably

upward above resonance, where we should hypothetically use -4.8 kHz/G in-

stead of -11.4 kHz/G, and not below resonance, where we should use -13.2

kHz/G.

Despite the asymmetry, however, fitting the data to Eq. 3.36 provides

us with values and uncertainties for B0, ∆Binel, and φR, which are listed in

Table 3.1. Because the Feshbach losses are merely proportional to Im(a),

however, we cannot use this experiment to determine abg or ∆Bel. We can

130



compare these extracted values to those found by Erhard et al. [50] and

Widera et al. [51]. Erhard uses a method that is very similar to ours to mea-

sure the loss rate. They measure two-body Feshbach losses of pairs of atoms

trapped in an two-dimensional optical lattice potential. The key difference

between this procedure and ours is that they measure two-body losses be-

tween individual pairs of atoms in distinct lattice sites whereas we measure

two- and three-body losses within the whole condensate. They also use a

Ramsey interferometer to measure the magnitude of the scattering length of

the atoms. The measurement of loss rates produces a Lorentzian distribu-

tion and the measurement of the interspecies scattering length produces a

dispersion curve. Comparing the general forms of these two functions to our

expressions for Re(a) and Im(a), we find that they set φR = 0 and give peak

widths that are equal to ∆Binel/2.

These extracted values are listed in Table 3.1 alongside our own. Our

value for ∆Binel is consistent with their findings, but our magnetic field cal-

ibrations evidently are in disagreement. We use these parameters to plot in

Fig. 3.10 the real and imaginary parts of the complex scattering length, as

predicted by our data and by Widera. One can easily see the discrepancy in

the magnetic field calibration and the agreement on peak width, but notice

also the asymmetry of our experimental plots. This is a direct result of the

asymmetry in our data and is manifested mathematically in the non-zero

value of φR. Thus, as stated in the previous section, this asymmetry and

the factors that cause it are the largest obstacles to a detailed and accurate
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Figure 3.10: Theoretical plots of the real (solid) and imaginary (dashed)
parts of the complex scattering length around the 9.1 G interspecies Fesh-
bach resonance. For these plots, we use parameters extracted from our initial
mapping of the resonance (black) and from Widera et al. [51] (grey), which
are listed in Table 3.1. Because the scaling of each function cannot be deter-
mined directly from the data interpretation, all are scaled in arbitrary units
and re-centered on a = 0.
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picture of the behavior of the interspecies scattering length near resonance.

3.6 Time Evolution

We can, however, observe large changes in the interspecies scattering length

more directly. Because the coupled Gross-Pitaevskii equations that describe

the binary condensate have both inter- and intraspecies scattering terms, the

behavior of the system is critically dependent on the relative values of the

inter- and intraspecies scattering lengths. We can define a critical value of

|a12|, the magnitude of the interspecies scattering length, above which the

condensates cannot spatially coexist [61]:

|acr
12| =

√
a2

11 + a2
22. (3.47)

If a12 < −acr
12, then attraction between the two species overwhelms repul-

sion between the atoms of each species and the condensate collapses. If

a12 > +acr
12, then repulsion is stronger between atoms of different species

than between atoms of the same species and the components spatially sepa-

rate.

The latter case has been extensively studied in our lab by Mertes et al.

[33]. Refining an earlier experiment by Hall et al. at JILA [62], they studied

the interspecies interactions in a binary condensate composed of atoms in the

|1,−1〉 and |2, +1〉 states and observed a complex series of interpenetrating
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ringlike structures that oscillate in time. By comparing the observed compo-

nent separation patterns to the results of a numerical simulation calculated

using a multi-component mean-field model, they were able to conclude that

motional damping is not intrinsic to the process of component separation,

an important result for the study of binary superfluids. The primary differ-

ence between this experiment and our current investigation is their use of a

magnetic trap instead of an optical trap. This provides them with a more

harmonic potential but limits them to the magnetically trappable |1,−1〉 and

|2, +1〉 states. These states do not exhibit as accessible a Feshbach resonance

as the one we are currently investigating, so the scattering lengths involved

in this prior experiment were fixed at a11 = 100.40a0, a22 = 95.00a0, and

a12 = 97.66a0 and accordingly, the condensate was found to be unstable with

respect to component separation.

Our current investigation of the interspecies Feshbach resonance enables

us to examine the time evolution of the system while varying the interspecies

scattering length. Because of Feshbach losses near the center of resonance,

we will not be able able to observe time evolution with the scattering length

set at its extreme values. Preliminary evidence suggests, though, that we

can alter the scattering length enough to lower it below acr
12 and change the

binary condensate from miscible to immiscible. Figure 3.12 shows the result

of an extensive observation of the time evolution of both states at fields above

and below resonance. For this experiment, we slowly ramp the field to either

B− = 9.058 G or B+ = 9.128 G and apply the two-photon pulse for 700
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Figure 3.11: Fields used for time evolution observation with respect to reso-
nance. Note the drastically different theoretical values of Re(a) (solid func-
tion) at B− = 9.058 G (left vertical line) and B+ = 9.128 G (right vertical
line). Note also that the values of Im(a) (dotted function) are slightly dif-
ferent at the two fields because of the plot’s asymmetry. This should result
in different loss rates at the two fields, which the data shown in Fig. 3.12
do not reflect. If the plot were more symmetric, as we believe it should be,
then the values of Im(a) would be roughly equal for the two fields and the
values of Re(a) would still be drastically different. The time evolution data
in Fig. 3.12 appear to offer further confirmation of the inaccuracy of the
skewed data.
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µs at field. The values of these fields with respect to our experimentally

determined Feshbach resonance are shown in Fig. 3.11. We then allowed the

condensate to evolve for a given duration of time before dropping it from the

optical trap and imagining it using side-view imaging. Here, the convenience

of the transfer-at-field method is particularly apparent; the short duration

of the two-photon pulse notwithstanding, the time evolution of the binary

condensate and the Feshbach resonance both have the same precisely defined

t = 0.

These data possess several interesting features that should be highlighted

and commented on. First, the |1, +1〉 atoms, particularly those at B−, ex-

hibit ringlike structures that persist approximately from 2.0 ms to 5.0 ms,

which is qualitatively similar to the oscillating rings observed by Mertes et

al. For clarity, this images are enlarged in Fig. 3.13. Also notice in this

figure the marked difference between the formation of rings at the two differ-

ent field values. Below resonance, the |1, +1〉 atoms quickly coalesce in the

center of the condensate and form a clearly defined ring. Above resonance,

in contrast, the spatial distribution of the atoms is more diffuse and almost

appears to be the inverse of the spatial distribution below resonance. These

results are consistent with the interspecies scattering length being higher be-

low resonance than above it, as predicted by theory and by our plot of the

resonance shown in Fig. 3.3.

The emergence and disappearance of these ringlike structures between 2.0

ms and 5.0 ms give the impression of periodicity, even though rings distinct
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Figure continued on following page
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Figure 3.12: Co-evolution of |1, +1〉 and |2,−1〉 condensates near a Feshbach
resonance. The fields observed are B− = 9.058 G and B+ = 9.128 G, and
the resonant field is 9.102 G. The comprehensive set of data is presented here
to provide a complete illustration of the behavior of the binary condensate
above and below resonance. Various features are highlighted in subsequent
figures and analyzed in the text.
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Figure 3.13: Ringlike structures observed in the |1, +1〉 state. Note the
high central density and sharp ring definition of the atoms below resonance
and the diffuse distribution of the atoms above resonance. This distinction is
consistent with the scattering length being increased at fields below resonance
and decreased at fields above it, as theory predicts. Note also that the
spatial distribution above resonance appears to be the inverse of the spatial
distribution below resonance, but this could simply be the result of there
being fewer atoms in the |1, +1〉 state relative to the |2,−1〉 state at B+.
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enough to be observed by side-view imaging appear only once in the scope

of this data set. One imagines two possible reasons for this single appear-

ance of ringlike structures. First, our binary condensate might experience a

motional damping that was absent in the Mertes experiment, which could

quickly suppress the oscillations of our ringlike structures and prevent them

from appearing a second time. Such damping could possibly arise from the

increased rate of inelastic collisions caused by the Feshbach resonance. Ad-

ditionally, the optical trap is far more anharmonic than the TOP trap, so

the condensate could oscillate with different frequencies along the different

axes of the trap. In this case, the coherent excitation of the entire binary

condensate would be damped by being divided into components that are out

of phase with one another.

The second explanation is that the oscillating process of ring formation

continues at times beyond 5 ms but we simply cannot see it. We use side-

view imagining in this experiment, which gives the view of a condensate

from the perspective of the −ŷ direction. The axes of symmetry for both

the magnetic and optical traps, however, is vertical, and this is the axis

along which Mertes et al. imaged their binary condensates. Figure 3.14

shows examples of evolving component separation below resonance, where

we have predicted the condensate to be immiscible. The spatial distributions

of the atoms evolves in time and generally exhibits symmetry about the

vertical axis. As Fig. 3.15 demonstrates, it is possible that these condensate

components would exhibit evolving cylindrical symmetry, in accordance with
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Figure 3.14: Spatial separation of a binary condensate below the Feshbach
resonance. This figure shows images of the |1, +1〉 and |2,−1〉 components
as viewed from the −ŷ direction. Note the complementary evolving spatial
distributions of the two populations. As demonstrated by the numerical
simulations of the time evolution of the |1,−1〉 and |2, +1〉 states shown in
Fig. 3.15, it is possible that these data, which exhibit symmetry about the
vertical axis, would exhibit radial symmetry when viewed from below.

141



Figure 3.15: Numerical simulation of time evolution. These numerical simu-
lations performed by Mertes et al. display three-dimensional density distri-
butions of the |1,−1〉 (red) and |2, +1〉 (green) states at two different evolve
times, as well as simulated top-view (bottom) and side-view (right) images
of the |1,−1〉 state. They demonstrate that spatial distributions that ex-
hibit radial symmetry when imaged using top-view imaging exhibit planar
symmetry about the vertical axis when imaged using side-view imaging.

the findings of Mertes et al. Notice in Fig. 3.12 that during this time period

(8.0 ms to 12.0 ms), the binary condensate above resonance shows no signs of

component separation or non-equilibrium dynamics, which further confirms

that the change in scattering length between the two sides of resonance is

significant enough to affect the immiscibility of the condensate.

These data, however, are only a first step in this investigation and there

are three improvements that should be made for a future study of this topic.

First, steps should be taken to avoid imaging saturation. Although satura-

tion could be avoided by detuning the imaging beam from resonance, this

procedure results in lensing. Implementing the procedure used by Mertes et
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al. would be preferable and would result in more accurate data. To image the

|1,−1〉 state, they apply resonant radiation to remove the |2, +1〉 atoms and

then apply a brief two-photon pulse to transfer a small proportion of |1,−1〉
atoms into the |2, +1〉 state. This small proportion can then be imaged on

resonance, without lensing or saturation. To image the |2, +1〉 atoms, they

perform this same procedure after a population-inverting two-photon pulse.

Second, we should begin imaging the condensates using top-view imaging.

We can deduce the possibility of ringlike structures oscillating about the ver-

tical axis from these preliminary data, but we would like to observe them di-

rectly. If these structures are observed to be periodic, we could then increase

the time scale over which we observe the condensate. These procedures have

already been optimized and used in our apparatus, so implementing them

for this experiment should be relatively simple.

The second improvement will be both easier and more difficult to imple-

ment. In order to study more precisely how the change in the scattering

length affects the condensate’s time evolution, we need to know more accu-

rately how the scattering length changes around resonance. As stated earlier,

this is already a primary goal for this ongoing investigation and hinges on

a better understanding of how ν1/2 varies around resonance. Once we have

taken more reliable data and plotted more accurate scattering length curves,

it will be easy to select fields that optimize the trade-off between more sig-

nificant changes in the scattering length and greater Feshbach losses.

These two experiments are a promising first step in our investigation of the
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9.1 G interspecies Feshbach resonance. Both the measurements of Feshbach

losses and the observations of the binary condensate’s time evolution have

provided results that are roughly consistent with what we would expect or

what has been observed by other groups. More importantly, though, their in-

accuracies have provided suggestions for the future direction of this research.

They have demonstrated that the transfer-at-field method has the potential

to enable a highly precise measurements of this Feshbach resonance when

calibrated correctly. From this will hopefully follow the ability to conduct a

detailed study of the dependence of the binary condensate’s non-equilibrium

dynamics on the interspecies scattering length.
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Chapter 4

Conclusion

Here, we will summarize the suggestions for future research that we have

laid out throughout this thesis, grouped by chapter and arranged roughly

in order of descending immediacy or interest. This ordering, however, is

mostly subjective and sometimes arbitrary, so each of these topics should be

considered a promising subject for future endeavors.

Spinor Condensates

Stray Magnetic Field Gradients

Because the stray magnetic field gradients exert a difference force on each

of the components of a spinor condensate, they will hamper any attempt

to study the time evolution of a spinor condensate. The first step in our

effort to nullify these gradients should be an extensive study of the existing
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gradients along the lines of the experiment outlined in Section 2.4.1. This

future study should take efforts to maximize the sharpness of the component

separation so as to be able to determine the direction of the separation axis

more clearly. These efforts might include adjusting the amount of time for

which the spinor condensate is allowed to evolve or somehow increasing the

interspecies repulsion. Also, this experiment should be repeated periodically

to determine the day-to-day drift, if any, of these gradients.

Once the magnitude of the problem has been determined, an appropriate

solution can be decided upon. When the upgrades to the bias coil controls

mentioned in Section 1.4.2 have been implemented, we should be able to can-

cel arbitrary divergence gradients exactly. In Section 2.4.2, we have proposed

a configuration, consisting of four coils placed every 90◦ around the cell, that

should cancel one of the three independent mixed field gradients exactly. The

technical complications involved in constructing three such configurations in

the already-crowded space around the science cell might, however, outweigh

the benefits to be gained. Possible compromises include using two coils in-

stead of four for each axis, constructing larger coil configurations further

away from the science cell, or concentrating on nullifying the gradients along

only one or two axes.

Vortices and Atom Lasers

As mentioned in the introduction to Chapter 2, a ferromagnetic spinor con-

densate like ours is capable of supporting metastable Skyrmion vortices. A

146



study of these coreless vortices would provide interesting contrast with past

and ongoing studies of regular vortices. We could also study the co-evolution

of vortices in the three components of a spinor condensate and observe cou-

pling between spin gradients and superfluid flow [63]. By applying Stern-

Gerlach gradients to a spinor condensate in a weak optical trap, we could

selectively out-couple one or both of the |1,−1〉 or |1, +1〉 components. This

would create an atom laser consisting of selected spin components or even

alternating spin components.

A potentially more interesting experiment, however, does not involve

spinor condensates at all. As described in Section 2.5, we hope to be able

to observe a single vortex core propagating in an atom laser. By imagin-

ing successive cross-sections of the atom stream, we would be able to non-

destructively observe the evolution of a single vortex in one condensate at

multiple times.

Field Sweep Pathology

As described in Section 2.2.1, a Landau-Zener magnetic field sweep fails to

transfer any atoms from the |1,−1〉 state when certain ramp times are used.

This hints at a possible pathology in the equipment we use to create these

magnetic fields. The fact that this pathology has, to our knowledge, only

manifested itself in this way both emphasizes and lessens the importance of

studying it. On one hand, it is important to understand our apparatus as

completely as possible, especially if we encounter a problem of which we were
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previously unaware. Solving this problem, then, could result in unanticipated

improvements to the apparatus’ performance. On the other hand, though,

the fact that we were not aware of this problem until this point seems to

argue against this pathology being a very fundamental problem. By using

both the field sweep and frequency sweep methods, we effectively have full

Landau-Zener functionality.

Feshbach Resonance

Asymmetry in Loss Rate Data

Our measurement of the condensate loss rate due to resonance described in

Section 3.5 is the basis of our characterization of the interspecies Feshbach

resonance. The asymmetry inherent in this data results in a skewed the-

oretical prediction of how the interspecies scattering length varies around

resonance. Since two of the following topics involve studying the effects of

changing the scattering length, a more precise theoretical prediction is nec-

essary. Further research should also be conducted to understand more fully

exactly how the two- and three-body loss rates vary around resonance.

In Section 3.3, we hypothesize that this asymmetry is caused by an inac-

curate calibration of the two-photon pulse at fields close to resonance. If we

could accurately interpolate ν1/2 over the region of resonance, then we believe

that the accuracy of the data would be greatly improved. Suggestions for

determining ν1/2 more accurately include constructing a piecewise function
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that allows ν1/2 to vary differently on each side of resonance and determining

how this interpolation function shifts due to the day-to-day magnetic field

drift.

Time Evolution of Binary Condensate

Improvements in our observation of the time evolution of a binary conden-

sate should follow naturally from a more accurate understanding of how the

scattering length and loss rates vary around resonance. With this knowledge,

we will be able to optimize the balance between retaining a condensate for

a substantial period of time and subjecting it to widely different values of

the scattering length. More immediately, though, we should begin observing

the time evolution using top-view imaging. We could first detune the probe

beam from resonance to compensate for saturation, but we ultimately want

to use microwave imaging, the method described near the end of Section 3.6.

Vortices Near Feshbach Resonance

A more accurate understanding of the scattering length would also allow

us to study how interatomic interactions affect the evolution of vortices in

a binary condensate. Specifically, we are interested to know how vortices

might evolve differently in a miscible binary condensate compared to an

immiscible one. We could also test the prediction [64] that non-overlapping

vortex lattices in the two components moderate the tendency of an immiscible
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binary condensate to component-separate.

Intraspecies Feshbach Resonance

As mentioned in the introduction to Chapter 3, a number of Feshbach reso-

nances have been predicted [48] and observed [49] for atoms in the |1, +1〉 ⊗
|1, +1〉 entrance channel at fields between 0.5 and 1260 G. We could measure

the loss rates of many of these resonances without having to calibrate the

two-photon transition. We should even be able to perform a Landau-Zener

field sweep at a magnetic field close to the resonance of interest. In addition

to the loss rate experiment, we could make the scattering length negative

and observe condensate collapse [65, 66] or the formation of solitons [54] as

the condensate propagates back and forth along a single FORT beam.
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Appendix A

Modeling the Optical Trap

To aid in understanding and characterizing the crossed-beam FORT, we

found it helpful to write a numerical model in MathematicaTM to simulate

the trap’s potential. We recommend reading Daniel Guest’s thesis [4] on the

construction and alignment of this trap so that this theoretical derivation

can be placed in an experimental context.

A.1 Theory

A.1.1 Optical Dipole Potential

For a derivation of the optical potential, we follow the example given by

Pethick and Smith [30], with one minor difference; as explained later, we will

introduce a factor of 1/2 into the definition of the oscillating electric field in

order to make the definition of the Rabi frequency consistent with how it is

151



used elsewhere in this thesis. Since we are modeling an atom as an electric

dipole, the interaction of the atom with an static external electric field is

given by

H ′ = −d · E (A.1)

where d is the electric dipole moment operator and E is the electric field

vector. The second-order perturbation of the ground state energy of the

atom is given by

∆Ug = −
∑

e

|〈e|d · E|g〉|2
Ee − Eg

, (A.2)

where g and e respectively represent the ground and excited states, Ee and

Eg represents those states’ energies, and the summation is performed over

all excited states. If we define the atomic polarizability

α = 2
∑

e

|〈e|d · ê|g〉|2
Ee − Eg

, (A.3)

where ê is a unit vector parallel to the electric field, then the change in energy

of the ground state is simply given by

∆Ug = − 1/2αE2. (A.4)

By Earnshaw’s Theorem, we know that we cannot create an electrostatic

field maximum in free space, so we cannot trap atoms using static electric

fields alone. Therefore, we must generalize to the time-dependent electric
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field represented by

E(t) = 1/2(E0e
−iωt + E∗

0e
iωt). (A.5)

Equation A.4 then becomes

∆Ug = − 1/2α(ω)〈E(t)2〉 = −1

4
α(ω)|E0|2, (A.6)

where 〈E(t)2〉 is the mean-squared time average of the electric field and is

equal to 1/2|E0|2. The atomic polarizability, which is now dependent on the

frequency, is given by

α(ω) =
∑

e

|〈e|d · ê|g〉|2
(

1

Ee − Eg − h̄ω
+

1

Ee − Eg + h̄ω

)
, (A.7)

which has the ±h̄ω terms added in to represent the energy of the incident

photons. At this point, it is helpful to define the resonant frequency ωe =

(Ee−Eg)/h̄, which in turn enables us to define ∆e = ωe−ω, the detuning of

the laser from resonance, and ∆′
e = ωe +ω, which does not have as obvious a

physical significance. Thus, in terms of ∆e and ∆′
e, the polarizability becomes

α(ω) =
∑

e

|〈e|d · ê|g〉|2
(

1

h̄∆e

+
1

h̄∆′
e

)
≈

∑
e

|〈e|d · ê|g〉|2
h̄∆e

. (A.8)

Here, in order to simplify the derivation somewhat, we assume that the laser

frequency is close to resonance and that ∆′
e À ∆e. Since our trapping laser
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is actually far off-resonance, this is a poor approximation but we will address

and correct for this problem at the end of the derivation.

Next, we must take into account the finite lifetimes of the ground and

excited states. This is done by adding an imaginary term of −ih̄Γe/2, where

Γe = 1/τe is the decay rate of the excited state, to the energy of the excited

state. The polarizability, now a complex quantity, is given by

α(ω) =
∑

e

|〈e|d · ê|g〉|2
h̄(∆e − iΓe/2)

. (A.9)

Equation A.6 then must also be complex, becoming

∆Ug − ih̄Γg/2 = −1

4
α(ω)|E0|2. (A.10)

The real part ∆Ug corresponds to the change in energy of the ground state

while the imaginary part h̄Γg/2 corresponds to the finite lifetime of the

ground state due to transitions to the excited state e. Taking the real part

of both sides, we find

∆Ug =
∑

e

∆e|〈e|d · E|g〉|2
4h̄(∆2

e + (Γe/2)2)
(A.11)

Here, we can define the Rabi frequency

Ω = |〈e|d · E0|g〉|/h̄. (A.12)
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When a system with two non-degenerate energy states is exposed to resonant

radiation, the competing processes of absorption and stimulated emission will

cause the system to oscillate between the two states at the Rabi frequency.

Herein lies the discrepancy between our derivation and the example we are

following. The oscillating proportional population of one state can be repre-

sented by

|c(t)|2 = sin2(Ω′t) = 1/2

(
1 + cos(Ωt)

)
, with Ω = 2Ω′. (A.13)

We define the Rabi frequency as Ω, whereas Pethick and Smith use Ω′. From

Eq. A.12, we see that |E0| must also be twice as large under our definition, so

we simply insert the factor of 1/2 into Eq. A.5 to compensate. By doing this,

we come into agreement with another derivation that shares our definition

of the Rabi frequency [67].

We can also define a saturation intensity Isat such that when the intensity

I of the radiation is equal to Isat, 1/4 of the population is in the excited state.

In terms of known quantities, this relation is represented by

I

Isat,e

= 2

(
Ω

Γe

)2

(A.14)

Substituting Eqs. A.12 and A.14 into Eq. A.11, we find

∆Ug =
h̄

2

∑
e

∆e(I/Isat,e)

1 + (2∆e/Γe)2
. (A.15)
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D1: 52S1/2 → 52P1/2 D2: 52S1/2 → 52P3/2

λ 795.0 nm 780.2 nm
Γ 36.10(5) MHz 38.11(6) MHz
Isat 4.484(5) mW/cm2 2.503(3) mW/cm2

Table A.1: Optical trap parameters

For our experimental parameters, shown in Table A.1, the (2∆e/Γe)
2 term in

the denominator is on the order of 1015. Therefore, Eq. A.15 can reasonably

be simplified to

∆Ug =
h̄

8

∑
e

Γ2
eI

∆eIsat,e

(A.16)

Now, we can add a correction for the on-resonance approximation that

was made earlier in Eq. A.8. The percentage discrepancy between the precise

and approximate expressions in Eq. A.8 is equal to 1
2
(1−λ/λe), where λ and

λe are respectively the laser wavelength and the resonant wavelength for the

transition between the ground state and the excited state e. This is therefore

a good approximation near resonance but our trap uses a far off-resonance

beam and the discrepancy is approximately 15% for the parameters shown

in Table A.1. Because ∆Ug is linear with respect to α(ω), the remainder of

the derivation after Eq. A.8 follows for the neglected ∆′
e term as it did for

the ∆e term, and we find for a final expression

∆Ug =
h̄

8

∑
e

Γ2
e

Isat,e

(
1

∆e

+
1

∆′
e

)
I (A.17)

For 87Rb, this sum in Eq. A.17 is over the two optical transitions, the D1
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transition from the ground state 52S1/2 to 52P1/2 and the D2 transition to

52P3/2 shown in Fig. 1.2(b), that arise because of the fine-structure doublet

in the 5P sublevel. All quantities in Eq. A.17 that are properties of these

two transitions are constants that have been experimentally determined [25]

and are displayed in Table A.1. Therefore, the change in energy of the

ground state, and hence the trapping potential, is simply proportional to the

intensity of the laser at any given point.

A.2 Numerical Modeling

To calculate the optical intensity, we define a system of axes that is neither

consistent with the standard lab definition as illustrated in Fig. 1.3 nor with

the standard optical definition in which light propagates in the +ẑ-direction.

We define +x̂ as the direction of propagation of the FORT-X beam, and +ŷ

as the direction of propagation of the FORT-Y beam. To define these axes

explicitly with respect to the lab frame, +x̂ is defined as south-west and +ŷ

as south-east. These definitions require +ẑ to be defined as upward, contrary

to the lab definition. This allows us to calculate the intensity of FORT-X, for

which x̂ is the axial direction and ŷ and ẑ are radial directions, and transfer

the result to FORT-Y by switching the x and y indices.

This is a brief overview of the Gaussian optics involved in modeling the

FORT, less of a derivation than a presentation of the formulae used. For a far

more extensive and rigorous treatment of the subject, we would recommend
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Daniel Guest’s thesis [4], from which these formulae were derived. Since the

FORT-X beam has a circular Gaussian intensity profile, its intensity at a

given point (x, ρx) is given by

I(x, ρx) =
2P

πw(x)2
exp(−2ρ2

x/w(x)2), (A.18)

where P is the beam power, w(x) is the beam radius at an axial distance

x from the beam waist, and ρx =
√

y2 + z2 is the radial distance from the

center of the beam. The beam radius w(x) is defined as the distance from the

beam axis at which the intensity is reduced by a factor 1/e from its central

value [4]. At an axial distance x from the beam waist, the radius w(x) is

given by

w(x) = w0

√
1 +

(
xλ

πw2
0

)2

, (A.19)

where w0 is the beam waist and λ is the wavelength of the light. Plugging

Eq. A.19 into Eq. A.18, we can define the beam intensity at any point

relative to the beam waist and axis in terms of the experimental constants

P , λ, and w0. To calculate the intensity of FORT-Y, we simply rotate our

indices, replacing x with y and ρx =
√

y2 + z2 with ρy =
√

x2 + z2.

Since we have shown in Eq. A.17 that the trapping potential is propor-

tional to the laser intensity at any given point, we can simply insert our

intensity functions for both beams, place both beam foci at the origin, and
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add gravity to find our total potential:

U(x, y, z) =
h̄

8

∑
e

Γ2
e

Isat,e

(
1

∆e

+
1

∆′
e

) [
I

(
x,

√
y2 + z2

)
+ I

(
y,
√

x2 + z2
)]

+mgz.

(A.20)

With this expression, we have theoretically defined the potential due to grav-

ity and the two FORT beams at any point in space. Some plots of this

function for one beam (Py = 0) are shown in Fig. A.1.

The depth of the potential well in Fig. A.1(b) determines the trap depth.

By calculating the value of w0 at which this well vanishes for a given value

of P , we can use the minimum beam power at which a single beam traps

atoms to calculate that beam’s waist in the center of the cell. Also, we can

take the second derivative of the potential with respect to any coordinate in

order to find the trap frequency in that direction. This expression is

ωxi
=

[
1

m

(
∂2U

∂x2
i

)

x0,y0,z0

]1/2

, (A.21)

where (x0, y0, z0) are the coordinates of the point of lowest potential and m

is the mass of a 87Rb atom.

We can also choose to offset the two foci from each other to simulate beam

misalignment. In keeping with the physical reality of our optical trap, we fix

the focus of FORT-X at the origin and allow the focus of FORT-Y to move

relative to it. The results of displacing the focus of FORT-Y 30 µm in each

direction are shown in Fig. A.2. Notice in part (a) how the optical trapping

159



-4

-2

0

2

4

x HmmL

-50

0

50

y HΜmL

-4
-2
0

U HΜKL

-50 50
y HΜmL

-5

-4

-3

-2

-1

U HΜKL

(a)

-4

-2

0

2

4

x HmmL

-50

0

50

z HΜmL

-5

0

5

U HΜKL

-50 50
z HΜmL

-6

-4

-2

2

4

6
U HΜKL

(b)

Figure A.1: Plots of the potential due to the single FORT-X beam prop-
agating along the x-axis with gravity acting in the −ẑ direction. Part (a)
shows the potential as a function of position on a horizontal plane bisecting
the beam, with a cross-section through x = 0. Part (b) shows the same, but
for a vertical plane bisecting the beam. Notice how the potential well in the
horizontal cross-section is a symmetric Gaussian peak but the potential well
in the vertical cross-section shows the Gaussian peak of the optical potential
superimposed on the linear function of the gravitational potential. It is the
depth of the vertical well that determines whether a condensate can be held
against gravity by the optical trap. Px = 68.3 mW, w0,x = 31.9 µm.
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Figure A.2: Contour plots showing a horizontal cross-section of the cross-
beam FORT potential. The plane of cross-section is located at the height of
the local potential minimum and the origin is defined as being on a verti-
cal line that passes through the focus of FORT-X. The subfigures show the
potential with (a) the two beams aligned, (b) the focus of FORT-X 30 µm
away from the intersection, (c) the focus of FORT-Y 30 µm away from the
intersection, and (d) the focus of FORT-Y 30 µm above the focus of FORT-
X. These plots are analyzed in the text. Px = 68.3 mW, w0,x = 31.9 µm,
Py = 64.2 mW, w0,y = 31.3 µm.
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potential approximates a radially symmetric potential near the center of the

two aligned beams. Changing the focus of one beam relative to the other, as

shown in parts (b) and (c), does not significantly affect the trap symmetry.

Displacing either of the two beams vertically, however, has a drastic effect

on trap symmetry, as we have noticed during alignment.

We have built in the additional ability to tilt one beam from horizontal

by an arbitrary angle. Results from these calculations and their implications

for the sensitivity of the FORT to beam leveling are discussed in the thesis

of Elizabeth Petrik [5].
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299, 232 (2003).

[23] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta,

Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003).

[24] M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003).

[25] J. R. Rubbmark, M. M. Kash, M. G. Littman, and D. Kleppner, Phys.

Rev. A 23, 3107 (1981).

[26] S. F. Owen, Undergraduate thesis (2002).

[27] T. J. Reber, Undergraduate thesis (2003).

[28] J. Merrill, Undergraduate thesis (2006).

[29] T. W. Haensch, S. I. S., and A. L. Schawlow, Science 235, 63 (1972).

[30] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases

(Cambridge University Press, 2002), 1st ed.

[31] C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E.

Wieman, Optics Letters 21, 290 (1996).

165



[32] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Journal

of the Optical Society of America B Optical Physics 11, 1332 (1994).

[33] K. M. Mertes, J. W. Merrill, R. Carretero-González, D. J. Frantzeskakis,
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