Problem Set \# 6

Due 10/26/09

1. Text Problem 10.5.
2. Text Problem 10.8.
3. Text Problem 10.11 (Hint: Notice that the elasticities of substitution are defined with logarithms)

Note: You should also check how these results work in the Translog Cost Function in the Extensions to chapter 10. A Translog application will be featured in the second examination in this course.
4. Consider the two elementary production functions:

1. Fixed proportions: $q=[\operatorname{Min}(k, l)]^{s}$.
2. Perfect substitutes: $q=(k+l)^{s}$
a. Explain why the parameter $s(>0)$ measures the returns to scale in each of these production functions.
b. Calculate the total cost function for each of these production functions.
c. A total cost function is said to be "separable" if it can be written as

$$
C(q, v, w)=f(q) \cdot C(1, v, w)
$$

That is, scale effects can be separated from the "unit cost" function.
Are the total cost functions estimated in part b separable? Explain.
d. Explain how average and marginal cost functions can always be easily derived from separable cost functions. Make that calculation for the two cost functions in part b.

