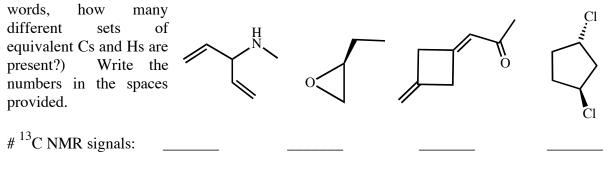

1. (a) How many lines (peaks) would be observed in the proton-decoupled ("normal") 13 C NMR spectrum of each of the isomeric C₈H₁₂ hydrocarbons below?

2 (a) An ester C7H12O2 has the 60-MHz ¹H NMR spectrum shown below left. Draw the structure. (b) A compound with the formula C4H8O has the 60-MHz ¹H NMR spectrum below right. When a drop of D₂O is added to the sample, the 3-H signal at δ 2.3 becomes a 2-H quartet (1:3:3:1), and an HOD peak appears around δ 1.6. Draw the structure.

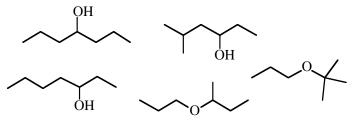
3. A compound C_4H_8O has the 180-MHz ¹H NMR spectrum shown below. (a) Although the chemical shift is a bit unusual, based on the splitting patterns, what type of Hs are likely responsible for the signals near δ 4 (enlarged in the inset)? (b) Draw the structure. (c) Why have these Hs strayed so far (about 1 ppm) from their normal δ range? (Hint: think resonance structure...)

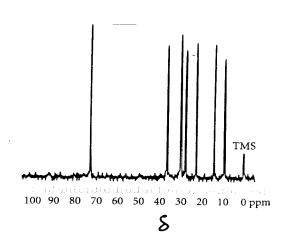
 $I-CH_a=CH_b-CH_2-CH_2CH_2CH_3$. (a) Which one belongs to H_a and which one to H_b ? (b) Draw a tree diagram for each H to account for the appearance of the signals. (c) Based on your analysis, is the compound E or

Z?

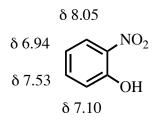

5. (a) The o, m, and p protons of nitrobenzene appear at δ 8.22, 7.53, and 7.65, respectively. Explain why the *o* and *p* appear downfield of the *meta*.

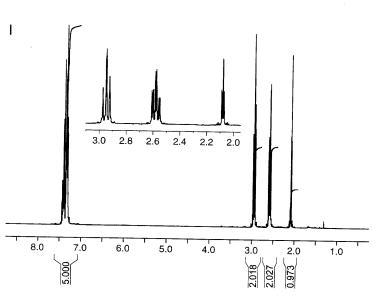
(b) The o, m, and p protons of aniline appear at δ 6.52, 7.02, and 6.62, respectively. Explain why the *o* and *p* appear upfield of the *meta*.


25 points; due Wed, Feb 10 at the beginning of class.

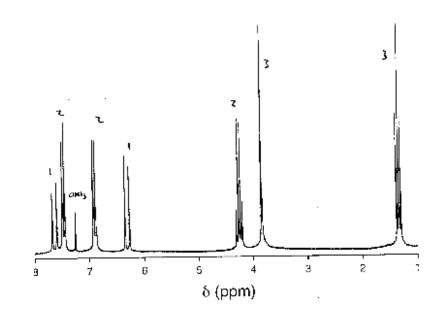

1. (a) For each compound below, how many separate signals would you expect to see in a (room temp) proton-decoupled ¹³C NMR spectrum, and how many in a ¹H NMR spectrum? (In other

#¹H NMR signals:


2. The proton-decoupled ${}^{13}C$ NMR spectrum at right belongs to one of the compounds shown. (a) Which one? Please circle your choice. (You do not need a table of ${}^{13}C$ δ values.)



(b) In the structure you chose, draw a box around the C that is responsible for the signal at δ 73.


3. Two NMR signals of *o*-nitrophenol are upfield (δ 7), and the other two are downfield (δ 7.5 - 8) within the aromatic region. Why?

4. A compound with the formula $C_{10}H_{10}$ displays IR stretches at about 3300 and 2150 cm⁻¹. The compound's ¹H NMR spectrum is shown. The number printed below the chemical shift scale are digital integrals. (a) Draw the structure. (b) Draw a tree diagram to account for the splitting pattern of the $\delta 2.0$ signal.

5. The ¹H NMR spectrum of an ester with the formula $C_{12}H_{14}O_3$ is shown below. (a) Draw the structure. (b) Explain the dramatic downfield shift of the signal at δ 7.7.

